diff options
Diffstat (limited to 'decoder')
-rw-r--r-- | decoder/cdec_ff.cc | 1 | ||||
-rw-r--r-- | decoder/ff.cc | 4 | ||||
-rw-r--r-- | decoder/ff_wordalign.cc | 66 | ||||
-rw-r--r-- | decoder/ff_wordalign.h | 20 |
4 files changed, 90 insertions, 1 deletions
diff --git a/decoder/cdec_ff.cc b/decoder/cdec_ff.cc index 84ba19fa..c0c595a5 100644 --- a/decoder/cdec_ff.cc +++ b/decoder/cdec_ff.cc @@ -46,6 +46,7 @@ void register_feature_functions() { ff_registry.Register("Model2BinaryFeatures", new FFFactory<Model2BinaryFeatures>); ff_registry.Register("MarkovJump", new FFFactory<MarkovJump>); ff_registry.Register("MarkovJumpFClass", new FFFactory<MarkovJumpFClass>); + ff_registry.Register("SourceBigram", new FFFactory<SourceBigram>); ff_registry.Register("SourcePOSBigram", new FFFactory<SourcePOSBigram>); ff_registry.Register("BlunsomSynchronousParseHack", new FFFactory<BlunsomSynchronousParseHack>); ff_registry.Register("AlignerResults", new FFFactory<AlignerResults>); diff --git a/decoder/ff.cc b/decoder/ff.cc index 7bdd21e3..a32c0dcb 100644 --- a/decoder/ff.cc +++ b/decoder/ff.cc @@ -171,7 +171,9 @@ void ModelSet::AddFeaturesToEdge(const SentenceMetadata& smeta, prob_t* combination_cost_estimate) const { edge->reset_info(); context->resize(state_size_); - memset(&(*context)[0], 0, state_size_); + if (state_size_ > 0) { + memset(&(*context)[0], 0, state_size_); + } SparseVector<double> est_vals; // only computed if combination_cost_estimate is non-NULL if (combination_cost_estimate) *combination_cost_estimate = prob_t::One(); for (int i = 0; i < models_.size(); ++i) { diff --git a/decoder/ff_wordalign.cc b/decoder/ff_wordalign.cc index a1968159..da86b714 100644 --- a/decoder/ff_wordalign.cc +++ b/decoder/ff_wordalign.cc @@ -266,6 +266,72 @@ void MarkovJump::TraversalFeaturesImpl(const SentenceMetadata& smeta, } } +// state: src word used, number of trg words generated +SourceBigram::SourceBigram(const std::string& param) : + FeatureFunction(sizeof(WordID) + sizeof(int)) { +} + +void SourceBigram::FinalTraversalFeatures(const void* context, + SparseVector<double>* features) const { + WordID left = *static_cast<const WordID*>(context); + int left_wc = *(static_cast<const int*>(context) + 1); + if (left_wc == 1) + FireFeature(-1, left, features); + FireFeature(left, -1, features); +} + +void SourceBigram::FireFeature(WordID left, + WordID right, + SparseVector<double>* features) const { + int& fid = fmap_[left][right]; + // TODO important important !!! escape strings !!! + if (!fid) { + ostringstream os; + os << "SB:"; + if (left < 0) { os << "BOS"; } else { os << TD::Convert(left); } + os << '_'; + if (right < 0) { os << "EOS"; } else { os << TD::Convert(right); } + fid = FD::Convert(os.str()); + if (fid == 0) fid = -1; + } + if (fid > 0) features->set_value(fid, 1.0); + int& ufid = ufmap_[left]; + if (!ufid) { + ostringstream os; + os << "SU:"; + if (left < 0) { os << "BOS"; } else { os << TD::Convert(left); } + ufid = FD::Convert(os.str()); + if (ufid == 0) fid = -1; + } + if (ufid > 0) features->set_value(ufid, 1.0); +} + +void SourceBigram::TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* /* estimated_features */, + void* context) const { + WordID& out_context = *static_cast<WordID*>(context); + int& out_word_count = *(static_cast<int*>(context) + 1); + const int arity = edge.Arity(); + if (arity == 0) { + out_context = edge.rule_->f()[0]; + out_word_count = edge.rule_->EWords(); + assert(out_word_count == 1); // this is only defined for lex translation! + // revisit this if you want to translate into null words + } else if (arity == 2) { + WordID left = *static_cast<const WordID*>(ant_contexts[0]); + WordID right = *static_cast<const WordID*>(ant_contexts[1]); + int left_wc = *(static_cast<const int*>(ant_contexts[0]) + 1); + int right_wc = *(static_cast<const int*>(ant_contexts[0]) + 1); + if (left_wc == 1 && right_wc == 1) + FireFeature(-1, left, features); + FireFeature(left, right, features); + out_word_count = left_wc + right_wc; + out_context = right; + } +} // state: POS of src word used, number of trg words generated SourcePOSBigram::SourcePOSBigram(const std::string& param) : FeatureFunction(sizeof(WordID) + sizeof(int)) { diff --git a/decoder/ff_wordalign.h b/decoder/ff_wordalign.h index c44ad26b..ebbecfea 100644 --- a/decoder/ff_wordalign.h +++ b/decoder/ff_wordalign.h @@ -78,6 +78,26 @@ class MarkovJumpFClass : public FeatureFunction { typedef std::map<WordID, int> Class2FID; typedef std::map<WordID, Class2FID> Class2Class2FID; +class SourceBigram : public FeatureFunction { + public: + SourceBigram(const std::string& param); + virtual void FinalTraversalFeatures(const void* context, + SparseVector<double>* features) const; + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const; + private: + void FireFeature(WordID src, + WordID trg, + SparseVector<double>* features) const; + mutable Class2Class2FID fmap_; + mutable Class2FID ufmap_; +}; + class SourcePOSBigram : public FeatureFunction { public: SourcePOSBigram(const std::string& param); |