diff options
Diffstat (limited to 'decoder')
-rw-r--r-- | decoder/ff_klm.cc | 49 | ||||
-rw-r--r-- | decoder/ff_klm.h | 5 | ||||
-rw-r--r-- | decoder/ff_ngrams.cc | 68 | ||||
-rw-r--r-- | decoder/ff_rules.cc | 20 | ||||
-rw-r--r-- | decoder/ff_rules.h | 1 | ||||
-rw-r--r-- | decoder/kbest.h | 18 |
6 files changed, 127 insertions, 34 deletions
diff --git a/decoder/ff_klm.cc b/decoder/ff_klm.cc index fefa90bd..c8ca917a 100644 --- a/decoder/ff_klm.cc +++ b/decoder/ff_klm.cc @@ -1,6 +1,7 @@ #include "ff_klm.h" #include <cstring> +#include <cstdlib> #include <iostream> #include <boost/scoped_ptr.hpp> @@ -151,8 +152,9 @@ template <class Model> class BoundaryRuleScore { template <class Model> class KLanguageModelImpl { public: - double LookupWords(const TRule& rule, const vector<const void*>& ant_states, double* oovs, void* remnant) { + double LookupWords(const TRule& rule, const vector<const void*>& ant_states, double* oovs, double* emit, void* remnant) { *oovs = 0; + *emit = 0; const vector<WordID>& e = rule.e(); BoundaryRuleScore<Model> ruleScore(*ngram_, *static_cast<BoundaryAnnotatedState*>(remnant)); unsigned i = 0; @@ -169,8 +171,9 @@ class KLanguageModelImpl { if (e[i] <= 0) { ruleScore.NonTerminal(*static_cast<const BoundaryAnnotatedState*>(ant_states[-e[i]])); } else { - const WordID cdec_word_or_class = ClassifyWordIfNecessary(e[i]); // in future, - // maybe handle emission + float ep = 0.f; + const WordID cdec_word_or_class = ClassifyWordIfNecessary(e[i], &ep); + if (ep) { *emit += ep; } const lm::WordIndex cur_word = MapWord(cdec_word_or_class); // map to LM's id if (cur_word == 0) (*oovs) += 1.0; ruleScore.Terminal(cur_word); @@ -205,12 +208,14 @@ class KLanguageModelImpl { // if this is not a class-based LM, returns w untransformed, // otherwise returns a word class mapping of w, // returns TD::Convert("<unk>") if there is no mapping for w - WordID ClassifyWordIfNecessary(WordID w) const { + WordID ClassifyWordIfNecessary(WordID w, float* emitp) const { if (word2class_map_.empty()) return w; if (w >= word2class_map_.size()) return kCDEC_UNK; - else - return word2class_map_[w]; + else { + *emitp = word2class_map_[w].second; + return word2class_map_[w].first; + } } // converts to cdec word id's to KenLM's id space, OOVs and <unk> end up at 0 @@ -256,32 +261,32 @@ class KLanguageModelImpl { int lc = 0; if (!SILENT) cerr << " Loading word classes from " << file << " ...\n"; - AddWordToClassMapping_(TD::Convert("<s>"), TD::Convert("<s>")); - AddWordToClassMapping_(TD::Convert("</s>"), TD::Convert("</s>")); - while(in) { - getline(in, line); - if (!in) continue; + AddWordToClassMapping_(TD::Convert("<s>"), TD::Convert("<s>"), 0.0); + AddWordToClassMapping_(TD::Convert("</s>"), TD::Convert("</s>"), 0.0); + while(getline(in, line)) { dummy.clear(); TD::ConvertSentence(line, &dummy); ++lc; - if (dummy.size() != 2) { + if (dummy.size() != 3) { + cerr << " Class map file expects: CLASS WORD logp(WORD|CLASS)\n"; cerr << " Format error in " << file << ", line " << lc << ": " << line << endl; abort(); } - AddWordToClassMapping_(dummy[0], dummy[1]); + AddWordToClassMapping_(dummy[1], dummy[0], strtof(TD::Convert(dummy[2]).c_str(), NULL)); } } - void AddWordToClassMapping_(WordID word, WordID cls) { + void AddWordToClassMapping_(WordID word, WordID cls, float emit) { if (word2class_map_.size() <= word) { - word2class_map_.resize((word + 10) * 1.1, kCDEC_UNK); + word2class_map_.resize((word + 10) * 1.1, pair<WordID,float>(kCDEC_UNK,0.f)); assert(word2class_map_.size() > word); } - if(word2class_map_[word] != kCDEC_UNK) { + if(word2class_map_[word].first != kCDEC_UNK) { cerr << "Multiple classes for symbol " << TD::Convert(word) << endl; abort(); } - word2class_map_[word] = cls; + word2class_map_[word].first = cls; + word2class_map_[word].second = emit; } ~KLanguageModelImpl() { @@ -304,7 +309,9 @@ class KLanguageModelImpl { int order_; vector<lm::WordIndex> cdec2klm_map_; - vector<WordID> word2class_map_; // if this is a class-based LM, this is the word->class mapping + vector<pair<WordID,float> > word2class_map_; // if this is a class-based LM, + // .first is the word->class mapping + // .second is the emission log probability }; template <class Model> @@ -322,6 +329,7 @@ KLanguageModel<Model>::KLanguageModel(const string& param) { } fid_ = FD::Convert(featname); oov_fid_ = FD::Convert(featname+"_OOV"); + emit_fid_ = FD::Convert(featname+"_Emit"); // cerr << "FID: " << oov_fid_ << endl; SetStateSize(pimpl_->ReserveStateSize()); } @@ -340,9 +348,12 @@ void KLanguageModel<Model>::TraversalFeaturesImpl(const SentenceMetadata& /* sme void* state) const { double est = 0; double oovs = 0; - features->set_value(fid_, pimpl_->LookupWords(*edge.rule_, ant_states, &oovs, state)); + double emit = 0; + features->set_value(fid_, pimpl_->LookupWords(*edge.rule_, ant_states, &oovs, &emit, state)); if (oovs && oov_fid_) features->set_value(oov_fid_, oovs); + if (emit && emit_fid_) + features->set_value(emit_fid_, emit); } template <class Model> diff --git a/decoder/ff_klm.h b/decoder/ff_klm.h index b5ceffd0..db4032f7 100644 --- a/decoder/ff_klm.h +++ b/decoder/ff_klm.h @@ -28,8 +28,9 @@ class KLanguageModel : public FeatureFunction { SparseVector<double>* estimated_features, void* out_context) const; private: - int fid_; // conceptually const; mutable only to simplify constructor - int oov_fid_; // will be zero if extra OOV feature is not configured by decoder + int fid_; // LanguageModel + int oov_fid_; // LanguageModel_OOV + int emit_fid_; // LanguageModel_Emit [only used for class-based LMs] KLanguageModelImpl<Model>* pimpl_; }; diff --git a/decoder/ff_ngrams.cc b/decoder/ff_ngrams.cc index 9c13fdbb..d337b28b 100644 --- a/decoder/ff_ngrams.cc +++ b/decoder/ff_ngrams.cc @@ -60,7 +60,7 @@ namespace { } } -static bool ParseArgs(string const& in, bool* explicit_markers, unsigned* order, vector<string>& prefixes, string& target_separator) { +static bool ParseArgs(string const& in, bool* explicit_markers, unsigned* order, vector<string>& prefixes, string& target_separator, string* cluster_file) { vector<string> const& argv=SplitOnWhitespace(in); *explicit_markers = false; *order = 3; @@ -103,6 +103,10 @@ static bool ParseArgs(string const& in, bool* explicit_markers, unsigned* order, LMSPEC_NEXTARG; prefixes[5] = *i; break; + case 'c': + LMSPEC_NEXTARG; + *cluster_file = *i; + break; case 'S': LMSPEC_NEXTARG; target_separator = *i; @@ -124,6 +128,7 @@ usage: << "NgramFeatures Usage: \n" << " feature_function=NgramFeatures filename.lm [-x] [-o <order>] \n" + << " [-c <cluster-file>]\n" << " [-U <unigram-prefix>] [-B <bigram-prefix>][-T <trigram-prefix>]\n" << " [-4 <4-gram-prefix>] [-5 <5-gram-prefix>] [-S <separator>]\n\n" @@ -203,6 +208,12 @@ class NgramDetectorImpl { SetFlag(flag, HAS_FULL_CONTEXT, state); } + WordID MapToClusterIfNecessary(WordID w) const { + if (cluster_map.size() == 0) return w; + if (w >= cluster_map.size()) return kCDEC_UNK; + return cluster_map[w]; + } + void FireFeatures(const State<5>& state, WordID cur, SparseVector<double>* feats) { FidTree* ft = &fidroot_; int n = 0; @@ -285,7 +296,7 @@ class NgramDetectorImpl { context_complete = true; } } else { // handle terminal - const WordID cur_word = e[j]; + const WordID cur_word = MapToClusterIfNecessary(e[j]); SparseVector<double> p; if (cur_word == kSOS_) { state = BeginSentenceState(); @@ -348,9 +359,52 @@ class NgramDetectorImpl { } } + void ReadClusterFile(const string& clusters) { + ReadFile rf(clusters); + istream& in = *rf.stream(); + string line; + int lc = 0; + string cluster; + string word; + while(getline(in, line)) { + ++lc; + if (line.size() == 0) continue; + if (line[0] == '#') continue; + unsigned cend = 1; + while((line[cend] != ' ' && line[cend] != '\t') && cend < line.size()) { + ++cend; + } + if (cend == line.size()) { + cerr << "Line " << lc << " in " << clusters << " malformed: " << line << endl; + abort(); + } + unsigned wbeg = cend + 1; + while((line[wbeg] == ' ' || line[wbeg] == '\t') && wbeg < line.size()) { + ++wbeg; + } + if (wbeg == line.size()) { + cerr << "Line " << lc << " in " << clusters << " malformed: " << line << endl; + abort(); + } + unsigned wend = wbeg + 1; + while((line[wend] != ' ' && line[wend] != '\t') && wend < line.size()) { + ++wend; + } + const WordID clusterid = TD::Convert(line.substr(0, cend)); + const WordID wordid = TD::Convert(line.substr(wbeg, wend - wbeg)); + if (wordid >= cluster_map.size()) + cluster_map.resize(wordid + 10, kCDEC_UNK); + cluster_map[wordid] = clusterid; + } + cluster_map[kSOS_] = kSOS_; + cluster_map[kEOS_] = kEOS_; + } + + vector<WordID> cluster_map; + public: explicit NgramDetectorImpl(bool explicit_markers, unsigned order, - vector<string>& prefixes, string& target_separator) : + vector<string>& prefixes, string& target_separator, const string& clusters) : kCDEC_UNK(TD::Convert("<unk>")) , add_sos_eos_(!explicit_markers) { order_ = order; @@ -369,6 +423,9 @@ class NgramDetectorImpl { dummy_rule_.reset(new TRule("[DUMMY] ||| [BOS] [DUMMY] ||| [1] [2] </s> ||| X=0")); kSOS_ = TD::Convert("<s>"); kEOS_ = TD::Convert("</s>"); + + if (clusters.size()) + ReadClusterFile(clusters); } ~NgramDetectorImpl() { @@ -409,9 +466,10 @@ NgramDetector::NgramDetector(const string& param) { vector<string> prefixes; bool explicit_markers = false; unsigned order = 3; - ParseArgs(param, &explicit_markers, &order, prefixes, target_separator); + string clusters; + ParseArgs(param, &explicit_markers, &order, prefixes, target_separator, &clusters); pimpl_ = new NgramDetectorImpl(explicit_markers, order, prefixes, - target_separator); + target_separator, clusters); SetStateSize(pimpl_->ReserveStateSize()); } diff --git a/decoder/ff_rules.cc b/decoder/ff_rules.cc index 6716d3da..410e083c 100644 --- a/decoder/ff_rules.cc +++ b/decoder/ff_rules.cc @@ -107,7 +107,12 @@ void RuleSourceBigramFeatures::TraversalFeaturesImpl(const SentenceMetadata& sme (*features) += it->second; } -RuleTargetBigramFeatures::RuleTargetBigramFeatures(const std::string& param) { +RuleTargetBigramFeatures::RuleTargetBigramFeatures(const std::string& param) : inds(1000) { + for (unsigned i = 0; i < inds.size(); ++i) { + ostringstream os; + os << (i + 1); + inds[i] = os.str(); + } } void RuleTargetBigramFeatures::PrepareForInput(const SentenceMetadata& smeta) { @@ -126,11 +131,18 @@ void RuleTargetBigramFeatures::TraversalFeaturesImpl(const SentenceMetadata& sme it = rule2_feats_.insert(make_pair(&rule, SparseVector<double>())).first; SparseVector<double>& f = it->second; string prev = "<r>"; + vector<WordID> nt_types(rule.Arity()); + unsigned ntc = 0; + for (int i = 0; i < rule.f_.size(); ++i) + if (rule.f_[i] < 0) nt_types[ntc++] = -rule.f_[i]; for (int i = 0; i < rule.e_.size(); ++i) { WordID w = rule.e_[i]; - if (w < 0) w = -w; - if (w == 0) return; - const string& cur = TD::Convert(w); + string cur; + if (w > 0) { + cur = TD::Convert(w); + } else { + cur = TD::Convert(nt_types[-w]) + inds[-w]; + } ostringstream os; os << "RBT:" << prev << '_' << cur; const int fid = FD::Convert(Escape(os.str())); diff --git a/decoder/ff_rules.h b/decoder/ff_rules.h index b100ec34..f210dc65 100644 --- a/decoder/ff_rules.h +++ b/decoder/ff_rules.h @@ -51,6 +51,7 @@ class RuleTargetBigramFeatures : public FeatureFunction { void* context) const; virtual void PrepareForInput(const SentenceMetadata& smeta); private: + std::vector<std::string> inds; mutable std::map<const TRule*, SparseVector<double> > rule2_feats_; }; diff --git a/decoder/kbest.h b/decoder/kbest.h index 9a55f653..44c23151 100644 --- a/decoder/kbest.h +++ b/decoder/kbest.h @@ -6,6 +6,7 @@ #include <tr1/unordered_set> #include <boost/shared_ptr.hpp> +#include <boost/type_traits.hpp> #include "wordid.h" #include "hg.h" @@ -134,7 +135,7 @@ namespace KBest { } add_next = false; - if (cand.size() > 0) { + while (!add_next && cand.size() > 0) { std::pop_heap(cand.begin(), cand.end(), HeapCompare()); Derivation* d = cand.back(); cand.pop_back(); @@ -145,10 +146,15 @@ namespace KBest { if (!filter(d->yield)) { D.push_back(d); add_next = true; + } else { + // just because a node already derived a string (or whatever + // equivalent derivation class), you need to add its successors + // to the node's candidate pool + LazyNext(d, &cand, &s.ds); } - } else { - break; } + if (!add_next) + break; } if (k < D.size()) return D[k]; else return NULL; } @@ -184,7 +190,11 @@ namespace KBest { s.cand.push_back(d); } - const unsigned effective_k = std::min(k_prime, s.cand.size()); + unsigned effective_k = s.cand.size(); + if (boost::is_same<DerivationFilter,NoFilter<T> >::value) { + // if there's no filter you can use this optimization + effective_k = std::min(k_prime, s.cand.size()); + } const typename CandidateHeap::iterator kth = s.cand.begin() + effective_k; std::nth_element(s.cand.begin(), kth, s.cand.end(), DerivationCompare()); s.cand.resize(effective_k); |