diff options
Diffstat (limited to 'decoder/ff_wordalign.cc')
-rw-r--r-- | decoder/ff_wordalign.cc | 96 |
1 files changed, 88 insertions, 8 deletions
diff --git a/decoder/ff_wordalign.cc b/decoder/ff_wordalign.cc index e3fa91d4..fb90df62 100644 --- a/decoder/ff_wordalign.cc +++ b/decoder/ff_wordalign.cc @@ -1,5 +1,6 @@ #include "ff_wordalign.h" +#include <set> #include <sstream> #include <string> #include <cmath> @@ -12,20 +13,20 @@ #include "tdict.h" // Blunsom hack #include "filelib.h" // Blunsom hack -static const size_t MAX_SENTENCE_SIZE = 100; +static const int MAX_SENTENCE_SIZE = 100; using namespace std; Model2BinaryFeatures::Model2BinaryFeatures(const string& param) : fids_(boost::extents[MAX_SENTENCE_SIZE][MAX_SENTENCE_SIZE][MAX_SENTENCE_SIZE]) { - for (int i = 0; i < MAX_SENTENCE_SIZE; ++i) { - for (int j = 0; j < MAX_SENTENCE_SIZE; ++j) { + for (int i = 1; i < MAX_SENTENCE_SIZE; ++i) { + for (int j = 0; j < i; ++j) { for (int k = 0; k < MAX_SENTENCE_SIZE; ++k) { int& val = fids_[i][j][k]; val = -1; if (j < i) { ostringstream os; - os << "M2_" << i << '_' << j << ':' << k; + os << "M2_FL:" << i << "_SI:" << j << "_TI:" << k; val = FD::Convert(os.str()); } } @@ -56,8 +57,24 @@ RelativeSentencePosition::RelativeSentencePosition(const string& param) : if (!param.empty()) { cerr << " Loading word classes from " << param << endl; condition_on_fclass_ = true; - template_ = "RSP:FC000"; - assert(!"not implemented"); + ReadFile rf(param); + istream& in = *rf.stream(); + set<WordID> classes; + while(in) { + string line; + getline(in, line); + if (line.empty()) continue; + vector<WordID> v; + TD::ConvertSentence(line, &v); + pos_.push_back(v); + for (int i = 0; i < v.size(); ++i) + classes.insert(v[i]); + for (set<WordID>::iterator i = classes.begin(); i != classes.end(); ++i) { + ostringstream os; + os << "RelPos_FC:" << TD::Convert(*i); + fids_[*i] = FD::Convert(os.str()); + } + } } else { condition_on_fclass_ = false; } @@ -79,17 +96,22 @@ void RelativeSentencePosition::TraversalFeaturesImpl(const SentenceMetadata& sme static_cast<double>(edge.prev_i_) / smeta.GetTargetLength()); features->set_value(fid_, val); if (condition_on_fclass_) { - assert(!"not implemented"); + assert(smeta.GetSentenceID() < pos_.size()); + const WordID cur_fclass = pos_[smeta.GetSentenceID()][edge.i_]; + const int fid = fids_.find(cur_fclass)->second; + features->set_value(fid, val); } // cerr << f_len_ << " " << e_len_ << " [" << edge.i_ << "," << edge.j_ << "|" << edge.prev_i_ << "," << edge.prev_j_ << "]\t" << edge.rule_->AsString() << "\tVAL=" << val << endl; } MarkovJumpFClass::MarkovJumpFClass(const string& param) : - FeatureFunction(1) { + FeatureFunction(1), + fids_(MAX_SENTENCE_SIZE) { cerr << " MarkovJumpFClass" << endl; cerr << "Reading source POS tags from " << param << endl; ReadFile rf(param); istream& in = *rf.stream(); + set<WordID> classes; while(in) { string line; getline(in, line); @@ -97,8 +119,66 @@ MarkovJumpFClass::MarkovJumpFClass(const string& param) : vector<WordID> v; TD::ConvertSentence(line, &v); pos_.push_back(v); + for (int i = 0; i < v.size(); ++i) + classes.insert(v[i]); } cerr << " (" << pos_.size() << " lines)\n"; + cerr << " Classes: " << classes.size() << endl; + for (int ss = 1; ss < MAX_SENTENCE_SIZE; ++ss) { + map<WordID, map<int, int> >& cfids = fids_[ss]; + for (set<WordID>::iterator i = classes.begin(); i != classes.end(); ++i) { + map<int, int> &fids = cfids[*i]; + for (int j = -ss; j <= ss; ++j) { + ostringstream os; + os << "Jump_FL:" << ss << "_FC:" << TD::Convert(*i) << "_J:" << j; + fids[j] = FD::Convert(os.str()); + } + } + } +} + +void MarkovJumpFClass::FireFeature(const SentenceMetadata& smeta, + int prev_src_pos, + int cur_src_pos, + SparseVector<double>* features) const { + const int jumpsize = cur_src_pos - prev_src_pos; + assert(smeta.GetSentenceID() < pos_.size()); + const WordID cur_fclass = pos_[smeta.GetSentenceID()][cur_src_pos]; + const int fid = fids_[smeta.GetSourceLength()].find(cur_fclass)->second.find(jumpsize)->second; + features->set_value(fid, 1.0); +} + +void MarkovJumpFClass::FinalTraversalFeatures(const void* context, + SparseVector<double>* features) const { + int left_index = *static_cast<const unsigned char*>(context); +// int right_index = cur_flen; + // TODO +} + +void MarkovJumpFClass::TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector<const void*>& ant_states, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* state) const { + unsigned char& dpstate = *((unsigned char*)state); + if (edge.Arity() == 0) { + dpstate = static_cast<unsigned int>(edge.i_); + } else if (edge.Arity() == 1) { + dpstate = *((unsigned char*)ant_states[0]); + } else if (edge.Arity() == 2) { + int left_index = *((unsigned char*)ant_states[0]); + int right_index = *((unsigned char*)ant_states[1]); + if (right_index == -1) + dpstate = static_cast<unsigned int>(left_index); + else + dpstate = static_cast<unsigned int>(right_index); +// const WordID cur_fclass = pos_[smeta.GetSentenceID()][right_index]; +// cerr << edge.i_ << "," << edge.j_ << ": fclass=" << TD::Convert(cur_fclass) << " j=" << jumpsize << endl; +// const int fid = fids_[smeta.GetSourceLength()].find(cur_fclass)->second.find(jumpsize)->second; +// features->set_value(fid, 1.0); + FireFeature(smeta, left_index, right_index, features); + } } MarkovJump::MarkovJump(const string& param) : |