diff options
Diffstat (limited to 'decoder/ff_soft_syn.cc')
-rw-r--r-- | decoder/ff_soft_syn.cc | 687 |
1 files changed, 687 insertions, 0 deletions
diff --git a/decoder/ff_soft_syn.cc b/decoder/ff_soft_syn.cc new file mode 100644 index 00000000..da840008 --- /dev/null +++ b/decoder/ff_soft_syn.cc @@ -0,0 +1,687 @@ +/* + * ff_soft_syn.cc + * + */ +#include "ff_soft_syn.h" +#include "stringlib.h" +#include "hg.h" +#include "sentence_metadata.h" +#include "tree.h" +#include "synutils.h" + +#include <string> +#include <vector> +#include <stdio.h> + +using namespace std; + +typedef HASH_MAP<std::string, vector<string> > MapFeatures; + +/* + * Note: + * In BOLT experiments, we need to merged some sequence words into one term + *(like from "1999 nian 1 yue 10 ri" to "1999_nian_1_yue_10_ri") due to some + *reasons; + * but in the parse file, we still use the parse tree before merging any + *words; + * therefore, the words in source sentence and parse tree diverse and we + *need to map a word in merged sentence into its original index; + * a word in source sentence maps 1 or more words in parse tree + * the index map info is stored at variable index_map_; + * if the index_map_ is NULL, indicating the word index in source sentence + *and parse tree is always same. + * + */ + +struct SoftSynFeatureImpl { + SoftSynFeatureImpl(const string& params) { + parsed_tree_ = NULL; + index_map_ = NULL; + + map_features_ = NULL; + } + + ~SoftSynFeatureImpl() { FreeSentenceVariables(); } + + static int ReserveStateSize() { return 2 * sizeof(uint16_t); } + + void InitializeInputSentence(const std::string& parse_file, + const std::string& index_map_file) { + FreeSentenceVariables(); + parsed_tree_ = ReadParseTree(parse_file); + + if (index_map_file != "") ReadIndexMap(index_map_file); + + // we can do the features "off-line" + map_features_ = new MapFeatures(); + InitializeFeatures(map_features_); + } + + void ReadIndexMap(const std::string& index_map_file) { + STxtFileReader* reader = new STxtFileReader(index_map_file.c_str()); + char szLine[10001]; + szLine[0] = '\0'; + reader->fnReadNextLine(szLine, NULL); + vector<string> terms; + SplitOnWhitespace(string(szLine), &terms); + + index_map_ = new short int[terms.size() + 1]; + int ix = 0; + size_t i; + for (i = 0; i < terms.size(); i++) { + index_map_[i] = ix; + ix += atoi(terms[i].c_str()); + } + index_map_[i] = ix; + assert(parsed_tree_ == NULL || ix == parsed_tree_->m_vecTerminals.size()); + delete reader; + } + + void MapIndex(short int begin, short int end, short int& mapped_begin, + short int& mapped_end) { + if (index_map_ == NULL) { + mapped_begin = begin; + mapped_end = end; + return; + } + + mapped_begin = index_map_[begin]; + mapped_end = index_map_[end + 1] - 1; + } + + /* + * ff_const_reorder.cc::ConstReorderFeatureImpl also defines this function + */ + void FindConsts(const SParsedTree* tree, int begin, int end, + vector<STreeItem*>& consts) { + STreeItem* item; + item = tree->m_vecTerminals[begin]->m_ptParent; + while (true) { + while (item->m_ptParent != NULL && + item->m_ptParent->m_iBegin == item->m_iBegin && + item->m_ptParent->m_iEnd <= end) + item = item->m_ptParent; + + if (item->m_ptParent == NULL && item->m_vecChildren.size() == 1 && + strcmp(item->m_pszTerm, "ROOT") == 0) + item = item->m_vecChildren[0]; // we automatically add a "ROOT" node at + // the top, skip it if necessary. + + consts.push_back(item); + if (item->m_iEnd < end) + item = tree->m_vecTerminals[item->m_iEnd + 1]->m_ptParent; + else + break; + } + } + + /* + * according to Marton & Resnik (2008) + * a span cann't have both X+ style and X= style features + * a constituent XP is crossed only if the span not only covers parts of XP's + *content, but also covers one or more words outside XP + * a span may have X+, Y+ + * + * (note, we refer X* features to X= features in Marton & Resnik (2008)) + */ + void GenerateSoftFeature(int begin, int end, const SParsedTree* tree, + vector<string>& vecFeature) { + vector<STreeItem*> vecNode; + FindConsts(tree, begin, end, vecNode); + + if (vecNode.size() == 1) { + // match to one constituent + string feature_name = string(vecNode[0]->m_pszTerm) + string("*"); + vecFeature.push_back(feature_name); + } else { + // match to multiple constituents, find the lowest common parent (lcp) + STreeItem* lcp = vecNode[0]; + while (lcp->m_iEnd < end) lcp = lcp->m_ptParent; + + for (size_t i = 0; i < vecNode.size(); i++) { + STreeItem* item = vecNode[i]; + + while (item != lcp) { + if (item->m_iBegin < begin || item->m_iEnd > end) { + // item is crossed + string feature_name = string(item->m_pszTerm) + string("+"); + vecFeature.push_back(feature_name); + } + if (item->m_iBrotherIndex > 0 && + item->m_ptParent->m_vecChildren[item->m_iBrotherIndex - 1] + ->m_iBegin >= begin && + item->m_ptParent->m_vecChildren[item->m_iBrotherIndex - 1] + ->m_iEnd <= end) + break; // we don't want to collect crossed constituents twice + item = item->m_ptParent; + } + } + } + } + + void GenerateSoftFeatureFromFlattenedTree(int begin, int end, + const SParsedTree* tree, + vector<string>& vecFeature) { + vector<STreeItem*> vecNode; + FindConsts(tree, begin, end, vecNode); + + if (vecNode.size() == 1) { + // match to one constituent + string feature_name = string(vecNode[0]->m_pszTerm) + string("*"); + vecFeature.push_back(feature_name); + } else { + // match to multiple constituents, see if they have a common parent + size_t i = 0; + for (i = 1; i < vecNode.size(); i++) { + if (vecNode[i]->m_ptParent != vecNode[0]->m_ptParent) break; + } + if (i == vecNode.size()) { + // they share a common parent + string feature_name = + string(vecNode[0]->m_ptParent->m_pszTerm) + string("&"); + vecFeature.push_back(feature_name); + } else { + // they don't share a common parent, find the lowest common parent (lcp) + STreeItem* lcp = vecNode[0]; + while (lcp->m_iEnd < end) lcp = lcp->m_ptParent; + + for (size_t i = 0; i < vecNode.size(); i++) { + STreeItem* item = vecNode[i]; + + while (item != lcp) { + if (item->m_iBegin < begin || item->m_iEnd > end) { + // item is crossed + string feature_name = string(item->m_pszTerm) + string("+"); + vecFeature.push_back(feature_name); + } + if (item->m_iBrotherIndex > 0 && + item->m_ptParent->m_vecChildren[item->m_iBrotherIndex - 1] + ->m_iBegin >= begin && + item->m_ptParent->m_vecChildren[item->m_iBrotherIndex - 1] + ->m_iEnd <= end) + break; // we don't want to collect crossed constituents twice + item = item->m_ptParent; + } + } + } + } + } + + void SetSoftSynFeature(const Hypergraph::Edge& edge, + SparseVector<double>* features, + const vector<const void*>& ant_states, void* state) { + vector<uint16_t> vec_pos; + if (parsed_tree_ == NULL) return; + + uint16_t* remnant = reinterpret_cast<uint16_t*>(state); + + short int mapped_begin, mapped_end; + MapIndex(edge.i_, edge.j_ - 1, mapped_begin, mapped_end); + + remnant[0] = mapped_begin; + remnant[1] = mapped_end; + + for (size_t i = 0; i < edge.tail_nodes_.size(); i++) { + const uint16_t* astate = reinterpret_cast<const uint16_t*>(ant_states[i]); + vec_pos.push_back(astate[0]); + vec_pos.push_back(astate[1]); + } + + // soft feature for the whole span + const vector<string> vecFeature = + GenerateSoftFeature(mapped_begin, mapped_end, map_features_); + for (size_t i = 0; i < vecFeature.size(); i++) { + int f_id = FD::Convert(vecFeature[i]); + if (f_id) features->set_value(f_id, 1); + } + } + + private: + const vector<string>& GenerateSoftFeature(int begin, int end, + MapFeatures* map_features) { + string key; + GenerateKey(begin, end, key); + MapFeatures::const_iterator iter = (*map_features).find(key); + assert(iter != map_features->end()); + return iter->second; + } + + void Byte_to_Char(unsigned char* str, int n) { + str[0] = (n & 255); + str[1] = n / 256; + } + + void GenerateKey(int begin, int end, string& key) { + unsigned char szTerm[1001]; + Byte_to_Char(szTerm, begin); + Byte_to_Char(szTerm + 2, end); + szTerm[4] = '\0'; + key = string(szTerm, szTerm + 4); + } + + void InitializeFeatures(MapFeatures* map_features) { + if (parsed_tree_ == NULL) return; + + for (size_t i = 0; i < parsed_tree_->m_vecTerminals.size(); i++) + for (size_t j = i; j < parsed_tree_->m_vecTerminals.size(); j++) { + vector<string> vecFeature; + GenerateSoftFeature(i, j, parsed_tree_, vecFeature); + string key; + GenerateKey(i, j, key); + (*map_features)[key] = vecFeature; + } + } + + void FreeSentenceVariables() { + if (parsed_tree_ != NULL) delete parsed_tree_; + if (index_map_ != NULL) delete[] index_map_; + index_map_ = NULL; + + if (map_features_ != NULL) delete map_features_; + } + + SParsedTree* ReadParseTree(const std::string& parse_file) { + SParseReader* reader = new SParseReader(parse_file.c_str(), false); + SParsedTree* tree = reader->fnReadNextParseTree(); + // assert(tree != NULL); + delete reader; + return tree; + } + + private: + SParsedTree* parsed_tree_; + + short int* index_map_; + + MapFeatures* map_features_; +}; + +SoftSynFeature::SoftSynFeature(std::string param) { + pimpl_ = new SoftSynFeatureImpl(param); + SetStateSize(SoftSynFeatureImpl::ReserveStateSize()); + name_ = "SoftSynFeature"; +} + +SoftSynFeature::~SoftSynFeature() { delete pimpl_; } + +void SoftSynFeature::PrepareForInput(const SentenceMetadata& smeta) { + string parse_file = smeta.GetSGMLValue("parse"); + assert(parse_file != ""); + + string indexmap_file = smeta.GetSGMLValue("index-map"); + + pimpl_->InitializeInputSentence(parse_file, indexmap_file); +} + +void SoftSynFeature::TraversalFeaturesImpl( + const SentenceMetadata& /* smeta */, const Hypergraph::Edge& edge, + const vector<const void*>& ant_states, SparseVector<double>* features, + SparseVector<double>* estimated_features, void* state) const { + pimpl_->SetSoftSynFeature(edge, features, ant_states, state); +} + +string SoftSynFeature::usage(bool /*param*/, bool /*verbose*/) { + return "SoftSynFeature"; +} + +boost::shared_ptr<FeatureFunction> CreateSoftSynFeatureModel( + std::string param) { + SoftSynFeature* ret = new SoftSynFeature(param); + return boost::shared_ptr<FeatureFunction>(ret); +} + +boost::shared_ptr<FeatureFunction> SoftSynFeatureFactory::Create( + std::string param) const { + return CreateSoftSynFeatureModel(param); +} + +std::string SoftSynFeatureFactory::usage(bool params, bool verbose) const { + return SoftSynFeature::usage(params, verbose); +} + +typedef HASH_MAP<std::string, double> MapDouble; +typedef HASH_MAP<std::string, MapDouble*> MapDoubleFeatures; + +/* + * Note: + * In BOLT experiments, we need to merged some sequence words into one term + *(like from "1999 nian 1 yue 10 ri" to "1999_nian_1_yue_10_ri") due to some + *reasons; + * but in the parse file, we still use the parse tree before merging any + *words; + * therefore, the words in source sentence and parse tree diverse and we + *need to map a word in merged sentence into its original index; + * a word in source sentence maps 1 or more words in parse tree + * the index map info is stored at variable index_map_; + * if the index_map_ is NULL, indicating the word index in source sentence + *and parse tree is always same. + * + */ + +struct SoftKBestSynFeatureImpl { + SoftKBestSynFeatureImpl(const string& params) { + index_map_ = NULL; + + map_features_ = NULL; + } + + ~SoftKBestSynFeatureImpl() { FreeSentenceVariables(); } + + static int ReserveStateSize() { return 2 * sizeof(uint16_t); } + + void InitializeInputSentence(const std::string& parse_file, + const std::string& index_map_file) { + FreeSentenceVariables(); + ReadParseTree(parse_file, vec_parsed_tree_, vec_tree_prob_); + + if (index_map_file != "") ReadIndexMap(index_map_file); + + // we can do the features "off-line" + map_features_ = new MapDoubleFeatures(); + InitializeFeatures(map_features_); + } + + void SetSoftKBestSynFeature(const Hypergraph::Edge& edge, + SparseVector<double>* features, + const vector<const void*>& ant_states, + void* state) { + vector<uint16_t> vec_pos; + if (vec_parsed_tree_.size() == 0) return; + + uint16_t* remnant = reinterpret_cast<uint16_t*>(state); + + short int mapped_begin, mapped_end; + MapIndex(edge.i_, edge.j_ - 1, mapped_begin, mapped_end); + + remnant[0] = mapped_begin; + remnant[1] = mapped_end; + + for (size_t i = 0; i < edge.tail_nodes_.size(); i++) { + const uint16_t* astate = reinterpret_cast<const uint16_t*>(ant_states[i]); + vec_pos.push_back(astate[0]); + vec_pos.push_back(astate[1]); + } + + // soft feature for the whole span + const MapDouble* pMapFeature = + GenerateSoftFeature(mapped_begin, mapped_end, map_features_); + for (MapDouble::const_iterator iter = pMapFeature->begin(); + iter != pMapFeature->end(); iter++) { + int f_id = FD::Convert(iter->first); + if (f_id) features->set_value(f_id, iter->second); + } + } + + private: + void ReadIndexMap(const std::string& index_map_file) { + STxtFileReader* reader = new STxtFileReader(index_map_file.c_str()); + char szLine[10001]; + szLine[0] = '\0'; + reader->fnReadNextLine(szLine, NULL); + vector<string> terms; + SplitOnWhitespace(string(szLine), &terms); + + index_map_ = new short int[terms.size() + 1]; + int ix = 0; + size_t i; + for (i = 0; i < terms.size(); i++) { + index_map_[i] = ix; + ix += atoi(terms[i].c_str()); + } + index_map_[i] = ix; + assert(vec_parsed_tree_.size() == 0 || + ix == vec_parsed_tree_[0]->m_vecTerminals.size()); + delete reader; + } + + void MapIndex(short int begin, short int end, short int& mapped_begin, + short int& mapped_end) { + if (index_map_ == NULL) { + mapped_begin = begin; + mapped_end = end; + return; + } + + mapped_begin = index_map_[begin]; + mapped_end = index_map_[end + 1] - 1; + } + + /* + * ff_const_reorder.cc::ConstReorderFeatureImpl also defines this function + */ + void FindConsts(const SParsedTree* tree, int begin, int end, + vector<STreeItem*>& consts) { + STreeItem* item; + item = tree->m_vecTerminals[begin]->m_ptParent; + while (true) { + while (item->m_ptParent != NULL && + item->m_ptParent->m_iBegin == item->m_iBegin && + item->m_ptParent->m_iEnd <= end) + item = item->m_ptParent; + + if (item->m_ptParent == NULL && item->m_vecChildren.size() == 1 && + strcmp(item->m_pszTerm, "ROOT") == 0) + item = item->m_vecChildren[0]; // we automatically add a "ROOT" node at + // the top, skip it if necessary. + + consts.push_back(item); + if (item->m_iEnd < end) + item = tree->m_vecTerminals[item->m_iEnd + 1]->m_ptParent; + else + break; + } + } + + /* + * according to Marton & Resnik (2008) + * a span cann't have both X+ style and X= style features + * a constituent XP is crossed only if the span not only covers parts of XP's + *content, but also covers one or more words outside XP + * a span may have X+, Y+ + * + * (note, we refer X* features to X= features in Marton & Resnik (2008)) + */ + void GenerateSoftFeature(int begin, int end, + const vector<SParsedTree*>& vec_tree, + const vector<double>& vec_prob, + MapDouble* pMapFeature) { + + for (size_t i = 0; i < vec_tree.size(); i++) { + const SParsedTree* tree = vec_tree[i]; + vector<STreeItem*> vecNode; + FindConsts(tree, begin, end, vecNode); + + if (vecNode.size() == 1) { + // match to one constituent + string feature_name = string(vecNode[0]->m_pszTerm) + string("*"); + MapDouble::iterator iter = pMapFeature->find(feature_name); + if (iter != pMapFeature->end()) { + iter->second += vec_prob[i]; + } else + (*pMapFeature)[feature_name] = vec_prob[i]; + } else { + // match to multiple constituents, find the lowest common parent (lcp) + STreeItem* lcp = vecNode[0]; + while (lcp->m_iEnd < end) lcp = lcp->m_ptParent; + + for (size_t j = 0; j < vecNode.size(); j++) { + STreeItem* item = vecNode[j]; + + while (item != lcp) { + if (item->m_iBegin < begin || item->m_iEnd > end) { + // item is crossed + string feature_name = string(item->m_pszTerm) + string("+"); + MapDouble::iterator iter = pMapFeature->find(feature_name); + if (iter != pMapFeature->end()) { + iter->second += vec_prob[i]; + } else + (*pMapFeature)[feature_name] = vec_prob[i]; + } + if (item->m_iBrotherIndex > 0 && + item->m_ptParent->m_vecChildren[item->m_iBrotherIndex - 1] + ->m_iBegin >= begin && + item->m_ptParent->m_vecChildren[item->m_iBrotherIndex - 1] + ->m_iEnd <= end) + break; // we don't want to collect crossed constituents twice + item = item->m_ptParent; + } + } + } + } + } + + const MapDouble* GenerateSoftFeature(int begin, int end, + MapDoubleFeatures* map_features) { + string key; + GenerateKey(begin, end, key); + MapDoubleFeatures::const_iterator iter = (*map_features).find(key); + assert(iter != map_features->end()); + return iter->second; + } + + void Byte_to_Char(unsigned char* str, int n) { + str[0] = (n & 255); + str[1] = n / 256; + } + + void GenerateKey(int begin, int end, string& key) { + unsigned char szTerm[1001]; + Byte_to_Char(szTerm, begin); + Byte_to_Char(szTerm + 2, end); + szTerm[4] = '\0'; + key = string(szTerm, szTerm + 4); + } + + void InitializeFeatures(MapDoubleFeatures* map_features) { + if (vec_parsed_tree_.size() == 0) return; + + const SParsedTree* pTree = vec_parsed_tree_[0]; + + vector<double> vec_prob; + vec_prob.reserve(vec_tree_prob_.size()); + double tmp = 0.0; + for (size_t i = 0; i < vec_tree_prob_.size(); i++) { + vec_prob.push_back(pow(10, vec_tree_prob_[i] - vec_tree_prob_[0])); + tmp += vec_prob[i]; + } + for (size_t i = 0; i < vec_prob.size(); i++) vec_prob[i] /= tmp; + + for (size_t i = 0; i < pTree->m_vecTerminals.size(); i++) + for (size_t j = i; j < pTree->m_vecTerminals.size(); j++) { + MapDouble* pMap = new MapDouble(); + GenerateSoftFeature(i, j, vec_parsed_tree_, vec_prob, pMap); + string key; + GenerateKey(i, j, key); + (*map_features)[key] = pMap; + } + } + + void FreeSentenceVariables() { + for (size_t i = 0; i < vec_parsed_tree_.size(); i++) { + if (vec_parsed_tree_[i] != NULL) delete vec_parsed_tree_[i]; + } + vec_parsed_tree_.clear(); + vec_tree_prob_.clear(); + if (index_map_ != NULL) delete[] index_map_; + index_map_ = NULL; + + if (map_features_ != NULL) { + for (MapDoubleFeatures::iterator iter = map_features_->begin(); + iter != map_features_->end(); iter++) + delete iter->second; + delete map_features_; + } + } + + void ReadParseTree(const std::string& parse_file, + vector<SParsedTree*>& vec_tree, vector<double>& vec_prob) { + STxtFileReader* reader = new STxtFileReader(parse_file.c_str()); + SParsedTree* tree; + string line; + while (reader->fnReadNextLine(line)) { + const char* p = strchr(line.c_str(), ' '); + assert(p != NULL); + string strProb = line.substr(0, line.find(' ')); + tree = SParsedTree::fnConvertFromString(p + 1); + tree->fnSetSpanInfo(); + tree->fnSetHeadWord(); + vec_tree.push_back(tree); + if (strProb == string("-Infinity")) { + vec_prob.push_back(-99.0); + break; + } else { + vec_prob.push_back(atof(strProb.c_str())); + } + } + delete reader; + } + + void ReadParseTree2(const std::string& parse_file, + vector<SParsedTree*>& vec_tree, + vector<double>& vec_prob) { + SParseReader* reader = new SParseReader(parse_file.c_str(), false); + double prob; + SParsedTree* tree; + while ((tree = reader->fnReadNextParseTreeWithProb(&prob)) != NULL) { + vec_tree.push_back(tree); + if (std::isinf(prob)) { + vec_prob.push_back(-99); + break; + } else + vec_prob.push_back(prob); + } + // assert(tree != NULL); + delete reader; + } + + private: + vector<SParsedTree*> vec_parsed_tree_; + vector<double> vec_tree_prob_; + + short int* index_map_; + + MapDoubleFeatures* map_features_; +}; + +SoftKBestSynFeature::SoftKBestSynFeature(std::string param) { + pimpl_ = new SoftKBestSynFeatureImpl(param); + SetStateSize(SoftKBestSynFeatureImpl::ReserveStateSize()); + name_ = "SoftKBestSynFeature"; +} + +SoftKBestSynFeature::~SoftKBestSynFeature() { delete pimpl_; } + +void SoftKBestSynFeature::PrepareForInput(const SentenceMetadata& smeta) { + string parse_file = smeta.GetSGMLValue("kbestparse"); + assert(parse_file != ""); + + string indexmap_file = smeta.GetSGMLValue("index-map"); + + pimpl_->InitializeInputSentence(parse_file, indexmap_file); +} + +void SoftKBestSynFeature::TraversalFeaturesImpl( + const SentenceMetadata& /* smeta */, const Hypergraph::Edge& edge, + const vector<const void*>& ant_states, SparseVector<double>* features, + SparseVector<double>* estimated_features, void* state) const { + pimpl_->SetSoftKBestSynFeature(edge, features, ant_states, state); +} + +string SoftKBestSynFeature::usage(bool /*param*/, bool /*verbose*/) { + return "SoftKBestSynFeature"; +} + +boost::shared_ptr<FeatureFunction> CreateSoftKBestSynFeatureModel( + std::string param) { + SoftKBestSynFeature* ret = new SoftKBestSynFeature(param); + return boost::shared_ptr<FeatureFunction>(ret); +} + +boost::shared_ptr<FeatureFunction> SoftKBestSynFeatureFactory::Create( + std::string param) const { + return CreateSoftKBestSynFeatureModel(param); +} + +std::string SoftKBestSynFeatureFactory::usage(bool params, bool verbose) const { + return SoftKBestSynFeature::usage(params, verbose); +} |