summaryrefslogtreecommitdiff
path: root/decoder/ff_const_reorder.cc
diff options
context:
space:
mode:
Diffstat (limited to 'decoder/ff_const_reorder.cc')
-rw-r--r--decoder/ff_const_reorder.cc1318
1 files changed, 1318 insertions, 0 deletions
diff --git a/decoder/ff_const_reorder.cc b/decoder/ff_const_reorder.cc
new file mode 100644
index 00000000..77582b7c
--- /dev/null
+++ b/decoder/ff_const_reorder.cc
@@ -0,0 +1,1318 @@
+#include "ff_const_reorder.h"
+
+#include "stringlib.h"
+#include "hg.h"
+#include "sentence_metadata.h"
+#include "synutils/tree.h"
+#include "synutils/srl_sentence.h"
+#include "synutils/tsuruoka_maxent.h"
+#include "hash.h"
+#include "synutils/argument_reorder_model.h"
+
+#include <string>
+#include <vector>
+#include <stdio.h>
+
+using namespace std;
+
+typedef HASH_MAP<std::string, vector<double> > MapClassifier;
+
+struct SBitArray{
+ SBitArray(int size) :
+ size_(size){
+ int bit_size = size / 8;
+ if (size % 8 > 0)
+ bit_size++;
+
+ char_ = new unsigned char[bit_size];
+ memset(char_, 0, bit_size);
+ }
+ ~SBitArray() {
+ delete [] char_;
+ }
+
+ int Get(int index) const {
+ int i;
+
+ i = index;
+ if (i < 0)
+ i = size_ + i;
+ assert(i > -1 && i < size_);
+
+ int byte_index, bit_index;
+ byte_index = i/8;
+ bit_index = i%8;
+ unsigned char res;
+ if (bit_index == 0)
+ res = char_[byte_index] & 0x01;
+ else if (bit_index == 1)
+ res = char_[byte_index] & 0x02;
+ else if (bit_index == 2)
+ res = char_[byte_index] & 0x04;
+ else if (bit_index == 3)
+ res = char_[byte_index] & 0x08;
+ else if (bit_index == 4)
+ res = char_[byte_index] & 0x10;
+ else if (bit_index == 5)
+ res = char_[byte_index] & 0x20;
+ else if (bit_index == 6)
+ res = char_[byte_index] & 0x40;
+ else if (bit_index == 7)
+ res = char_[byte_index] & 0x80;
+ else
+ assert(false);
+ if (res != 0)
+ return 1;
+ else
+ return 0;
+ }
+
+ void Set(int index, int val) {
+ assert(val == 0 || val == 1);
+ int i;
+
+ i = index;
+ if (i < 0)
+ i = size_ + i;
+ assert(i > -1 && i < size_);
+
+ int byte_index, bit_index;
+ byte_index = i/8;
+ bit_index = i%8;
+ unsigned char res;
+
+ if (bit_index == 0) {
+ if (val == 0)
+ res = char_[byte_index] & 0xFE;
+ else
+ res = char_[byte_index] | 0x01;
+ } else if (bit_index == 1) {
+ if (val == 0)
+ res = char_[byte_index] & 0xFD;
+ else
+ res = char_[byte_index] | 0x02;
+ } else if (bit_index == 2) {
+ if (val == 0)
+ res = char_[byte_index] & 0xFB;
+ else
+ res = char_[byte_index] | 0x04;
+ } else if (bit_index == 3) {
+ if (val == 0)
+ res = char_[byte_index] & 0xF7;
+ else
+ res = char_[byte_index] | 0x08;
+ } else if (bit_index == 4) {
+ if (val == 0)
+ res = char_[byte_index] & 0xEF;
+ else
+ res = char_[byte_index] | 0x10;
+ } else if (bit_index == 5) {
+ if (val == 0)
+ res = char_[byte_index] & 0xDF;
+ else
+ res = char_[byte_index] | 0x20;
+ } else if (bit_index == 6) {
+ if (val == 0)
+ res = char_[byte_index] & 0xBF;
+ else
+ res = char_[byte_index] | 0x40;
+ } else if (bit_index == 7) {
+ if (val == 0)
+ res = char_[byte_index] & 0x7F;
+ else
+ res = char_[byte_index] | 0x80;
+ } else
+ assert(false);
+ char_[byte_index] = res;
+ }
+
+private:
+ const int size_;
+ unsigned char *char_;
+};
+
+inline bool is_inside(int i, int left, int right) {
+ if ( i < left || i > right )
+ return false;
+ return true;
+}
+
+/*
+ * assume i <= j
+ * [i, j] is inside [left, right] or [i, j] equates to [left, right]
+ */
+inline bool is_inside(int i, int j, int left, int right) {
+ if ( i >= left && j <= right )
+ return true;
+ return false;
+}
+
+/*
+ * assume i <= j
+ * [i, j] is inside [left, right], but [i, j] not equal to [left, right]
+ */
+inline bool is_proper_inside(int i, int j, int left, int right) {
+ if ( i >= left && j <= right && right - left > j - i)
+ return true;
+ return false;
+}
+
+/*
+ * assume i <= j
+ * [i, j] is proper proper inside [left, right]
+ */
+inline bool is_proper_proper_inside(int i, int j, int left, int right) {
+ if ( i > left && j < right)
+ return true;
+ return false;
+}
+
+inline bool is_overlap(int left1, int right1, int left2, int right2) {
+ if (is_inside(left1, left2, right2) || is_inside(left2, left1, right1))
+ return true;
+
+ return false;
+}
+
+inline void NewAndCopyCharArray(char**p, const char* q) {
+ if (q != NULL) {
+ (*p) = new char[strlen(q) + 1];
+ strcpy((*p), q);
+ } else
+ (*p) = NULL;
+}
+
+//TODO:to make the alignment more efficient
+struct TargetTranslation{
+ typedef vector<int> SingleWordAlign;
+ TargetTranslation(int begin_pos, int end_pos, int input_begin_pos, int input_end_pos, int e_num_word):
+ begin_pos_(begin_pos),
+ end_pos_(end_pos),
+ input_begin_pos_(input_begin_pos),
+ input_end_pos_(input_end_pos),
+ e_num_words_(e_num_word),
+ vec_left_most_(end_pos - begin_pos + 1, e_num_word),
+ vec_right_most_(end_pos - begin_pos + 1, -1),
+ vec_f_align_bit_array_(end_pos - begin_pos + 1, NULL),
+ vec_e_align_bit_array_(e_num_word, NULL) {
+ int len = end_pos - begin_pos + 1;
+
+ /*vec_f_align_bit_array_.reserve(len);
+ for (int i = 0; i < len; i++)
+ vec_f_align_bit_array_.push_back(NULL);
+
+ vec_e_align_bit_array_.reserve(e_num_word);
+ for (int i = 0; i < e_num_word; i++)
+ vec_e_align_bit_array_.push_back(NULL);*/
+ align_.reserve(1.5 * len);
+ }
+ ~TargetTranslation( ) {
+ for (size_t i = 0; i < vec_f_align_bit_array_.size(); i++)
+ if (vec_f_align_bit_array_[i] != NULL)
+ delete vec_f_align_bit_array_[i];
+
+ for (size_t i = 0; i < vec_e_align_bit_array_.size(); i++)
+ if (vec_e_align_bit_array_[i] != NULL)
+ delete vec_e_align_bit_array_[i];
+
+ for (size_t i = 0; i < align_.size(); i++)
+ delete align_[i];
+ }
+
+ void InsertAlignmentPoint(int s, int t) {
+ int i = s - begin_pos_;
+
+ SBitArray* &b = vec_f_align_bit_array_[i];
+ if (b == NULL)
+ b = new SBitArray(e_num_words_);
+ b->Set(t, 1);
+
+ SBitArray* &a = vec_e_align_bit_array_[t];
+ if (a == NULL)
+ a = new SBitArray(end_pos_ - begin_pos_ + 1);
+ a->Set(i, 1);
+
+ align_.push_back(new AlignmentPoint(s, t));
+
+ if (t > vec_right_most_[i])
+ vec_right_most_[i] = t;
+ if (t < vec_left_most_[i])
+ vec_left_most_[i] = t;
+ }
+
+ /*
+ * given a source span [begin, end], whether its target side is continuous,
+ * return "0": the source span is translated silently
+ * return "1": there is at least on word inside its target span, this word doesn't align to any word inside [begin, end], but outside [begin, end]
+ * return "2": otherwise
+ */
+ string IsTargetConstinousSpan(int begin, int end) const {
+ int target_begin, target_end;
+ FindLeftRightMostTargetSpan(begin, end, target_begin, target_end);
+ if (target_begin == -1) return "0";
+
+ for (int i = target_begin; i <= target_end; i++) {
+ if (vec_e_align_bit_array_[i] == NULL) continue;
+ int j = begin;
+ for (; j <= end; j++) {
+ if (vec_e_align_bit_array_[i]->Get(j - begin_pos_))
+ break;
+ }
+ if (j == end + 1) //e[i] is aligned, but e[i] doesn't align to any source word in [begin_pos, end_pos]
+ return "1";
+ }
+ return "2";
+ }
+
+ string IsTargetConstinousSpan2(int begin, int end) const {
+ int target_begin, target_end;
+ FindLeftRightMostTargetSpan(begin, end, target_begin, target_end);
+ if (target_begin == -1) return "Unaligned";
+
+ for (int i = target_begin; i <= target_end; i++) {
+ if (vec_e_align_bit_array_[i] == NULL) continue;
+ int j = begin;
+ for (; j <= end; j++) {
+ if (vec_e_align_bit_array_[i]->Get(j - begin_pos_))
+ break;
+ }
+ if (j == end + 1) //e[i] is aligned, but e[i] doesn't align to any source word in [begin_pos, end_pos]
+ return "Discon't";
+ }
+ return "Con't";
+ }
+
+
+
+ void FindLeftRightMostTargetSpan(int begin, int end, int& target_begin, int& target_end) const {
+ int b = begin - begin_pos_;
+ int e = end - begin_pos_ + 1;
+
+ target_begin = vec_left_most_[b];
+ target_end = vec_right_most_[b];
+ for (int i = b + 1; i < e; i++) {
+ if (target_begin > vec_left_most_[i])
+ target_begin = vec_left_most_[i];
+ if (target_end < vec_right_most_[i])
+ target_end = vec_right_most_[i];
+ }
+ if (target_end == -1)
+ target_begin = -1;
+ return;
+
+ target_begin = e_num_words_;
+ target_end = -1;
+
+ for (int i = begin - begin_pos_; i < end - begin_pos_ + 1; i++) {
+ if (vec_f_align_bit_array_[i] == NULL) continue;
+ for (int j = 0; j < target_begin; j++)
+ if (vec_f_align_bit_array_[i]->Get(j)) {
+ target_begin = j;
+ break;
+ }
+ }
+ for (int i = end - begin_pos_; i > begin - begin_pos_ -1; i--) {
+ if (vec_f_align_bit_array_[i] == NULL) continue;
+ for (int j = e_num_words_ - 1; j > target_end; j--)
+ if (vec_f_align_bit_array_[i]->Get(j)) {
+ target_end = j;
+ break;
+ }
+ }
+
+ if (target_end == -1)
+ target_begin = -1;
+ }
+
+ const uint16_t begin_pos_, end_pos_; //the position in parse
+ const uint16_t input_begin_pos_, input_end_pos_; //the position in input
+ const uint16_t e_num_words_;
+ vector<AlignmentPoint*> align_;
+private:
+ vector<SBitArray*> vec_f_align_bit_array_;
+ vector<SBitArray*> vec_e_align_bit_array_;
+
+ vector<short> vec_left_most_;
+ vector<short> vec_right_most_;
+};
+
+struct FocusedConstituent{
+ FocusedConstituent(const SParsedTree *pTree) {
+ if (pTree == NULL) return;
+ for (size_t i = 0; i < pTree->m_vecTerminals.size(); i++) {
+ STreeItem *pParent = pTree->m_vecTerminals[i]->m_ptParent;
+
+ while (pParent != NULL) {
+ //if (pParent->m_vecChildren.size() > 1 && pParent->m_iEnd - pParent->m_iBegin > 5) {
+ //if (pParent->m_vecChildren.size() > 1) {
+ if (true) {
+
+ //do constituent reordering for all children of pParent
+ if (strcmp(pParent->m_pszTerm, "ROOT"))
+ focus_parents_.push_back(pParent);
+ }
+ if (pParent->m_iBrotherIndex != 0) break;
+ pParent = pParent->m_ptParent;
+ }
+ }
+ }
+
+ ~FocusedConstituent() { //TODO
+ focus_parents_.clear();
+ }
+
+ vector<STreeItem*> focus_parents_;
+};
+
+
+typedef SPredicateItem FocusedPredicate;
+
+struct FocusedSRL{
+ FocusedSRL(const SSrlSentence *srl) {
+ if (srl == NULL) return;
+ for (size_t i = 0; i < srl->m_vecPred.size(); i++) {
+ if (strcmp(srl->m_pTree->m_vecTerminals[srl->m_vecPred[i]->m_iPosition]->m_ptParent->m_pszTerm, "VA") == 0)
+ continue;
+ focus_predicates_.push_back(new FocusedPredicate(srl->m_pTree, srl->m_vecPred[i]));
+ }
+ }
+
+ ~FocusedSRL() {
+ focus_predicates_.clear();
+ }
+
+ vector<const FocusedPredicate*> focus_predicates_;
+};
+
+/*
+ * Note:
+ * In BOLT experiments, we need to merged some sequence words into one term (like from "1999 nian 1 yue 10 ri" to "1999_nian_1_yue_10_ri") due to some reasons;
+ * but in the parse file, we still use the parse tree before merging any words;
+ * therefore, the words in source sentence and parse tree diverse and we need to map a word in merged sentence into its original index;
+ * a word in source sentence maps 1 or more words in parse tree
+ * the index map info is stored at variable index_map_;
+ * if the index_map_ is NULL, indicating the word index in source sentence and parse tree is always same.
+ *
+ * In ConstReorderFeatureImpl, as to store alignment info, we use the word index of the parse tree
+ */
+
+struct SIndexMap{
+ SIndexMap(const string& index_map_file) {
+ if (index_map_file == "") {
+ index_map_input_2_parse = NULL;
+ index_map_parse_2_input = NULL;
+ return;
+ }
+ STxtFileReader *reader = new STxtFileReader(index_map_file.c_str());
+ char szLine[10001];
+ szLine[0] = '\0';
+ reader->fnReadNextLine(szLine, NULL);
+ delete reader;
+ vector<string> terms;
+ SplitOnWhitespace(string(szLine), &terms);
+
+ index_map_input_2_parse = new short int[terms.size() + 1];
+ int ix = 0;
+ size_t i;
+ for (i = 0; i < terms.size(); i++) {
+ index_map_input_2_parse[i] = ix;
+ ix += atoi(terms[i].c_str());
+ }
+ index_map_input_2_parse[i] = ix;
+ //assert(ix == parsed_tree_->m_vecTerminals.size());
+
+ index_map_parse_2_input = new short int[ix+1];
+ int jx = 0;
+ for (i = 0; i < terms.size(); i++) {
+ int num_word = atoi(terms[i].c_str());
+ for (int j = 0; j < num_word; j++)
+ index_map_parse_2_input[jx++] = i;
+ }
+ index_map_parse_2_input[jx] = i;
+ assert(jx == ix);
+ }
+
+ ~SIndexMap() {
+ if (index_map_input_2_parse != NULL)
+ delete index_map_input_2_parse;
+ if (index_map_parse_2_input != NULL)
+ delete index_map_parse_2_input;
+ }
+
+ /*
+ * an input word maps to 1 or more words in parse
+ */
+ void MapIndex_Input_2_Parse(short int ix, short int& mapped_begin, short int& mapped_end) {
+ MapIndex_Input_2_Parse(ix, ix, mapped_begin, mapped_end);
+ }
+
+ /*
+ * given the indices in input,
+ * return the indices in parse tree
+ */
+ void MapIndex_Input_2_Parse(short int begin, short int end, short int& mapped_begin, short int& mapped_end) {
+ if (index_map_input_2_parse == NULL) {
+ mapped_begin = begin;
+ mapped_end = end;
+ return;
+ }
+
+ mapped_begin = index_map_input_2_parse[begin];
+ mapped_end = index_map_input_2_parse[end + 1] - 1;
+ }
+
+ /*
+ * given the indices in input,
+ * return the indices in parse tree
+ */
+ void MapIndex_Parse_2_Input(short int mapped_begin, short int mapped_end, short int& begin, short int& end) {
+ if (index_map_parse_2_input == NULL) {
+ begin = mapped_begin;
+ end = mapped_end;
+ return;
+ }
+
+ begin = index_map_parse_2_input[mapped_begin];
+ end = index_map_parse_2_input[mapped_end];
+
+ assert(mapped_begin == 0 || index_map_parse_2_input[mapped_begin - 1] != index_map_parse_2_input[mapped_begin]);
+ assert(index_map_parse_2_input[mapped_end + 1] != index_map_parse_2_input[mapped_end]);
+ }
+
+ /*
+ * given a index in input
+ * return the number of its corresponding words in parse tree
+ */
+ int MapIndexWordCount(int ix) {
+ if (index_map_input_2_parse == NULL)
+ return 1;
+ return index_map_input_2_parse[ix + 1] - index_map_input_2_parse[ix];
+ }
+
+private:
+
+ short int *index_map_input_2_parse;
+ short int *index_map_parse_2_input;
+};
+
+struct ConstReorderFeatureImpl{
+ ConstReorderFeatureImpl(const std::string& param) {
+
+ b_block_feature_ = false;
+ b_order_feature_ = false;
+ b_srl_block_feature_ = false;
+ b_srl_order_feature_ = false;
+
+
+ vector<string> terms;
+ SplitOnWhitespace(param, &terms);
+ if (terms.size() == 1) {
+ b_block_feature_ = true;
+ b_order_feature_ = true;
+ } else if (terms.size() >= 3) {
+ if (terms[1].compare("1") == 0)
+ b_block_feature_ = true;
+ if (terms[2].compare("1") == 0)
+ b_order_feature_ = true;
+ if (terms.size() == 6) {
+ if (terms[4].compare("1") == 0)
+ b_srl_block_feature_ = true;
+ if (terms[5].compare("1") == 0)
+ b_srl_order_feature_ = true;
+
+ assert(b_srl_block_feature_ || b_srl_order_feature_);
+ }
+
+ } else {
+ assert("ERROR");
+ }
+
+ const_reorder_classifier_left_ = NULL;
+ const_reorder_classifier_right_ = NULL;
+
+ srl_reorder_classifier_left_ = NULL;
+ srl_reorder_classifier_right_ = NULL;
+
+ if (b_order_feature_) {
+ InitializeClassifier((terms[0] + string(".left")).c_str(), &const_reorder_classifier_left_);
+ InitializeClassifier((terms[0] + string(".right")).c_str(), &const_reorder_classifier_right_);
+ }
+
+ if (b_srl_order_feature_) {
+ InitializeClassifier((terms[3] + string(".left")).c_str(), &srl_reorder_classifier_left_);
+ InitializeClassifier((terms[3] + string(".right")).c_str(), &srl_reorder_classifier_right_);
+ }
+
+ parsed_tree_ = NULL;
+ focused_consts_ = NULL;
+ index_map_ = NULL;
+
+ srl_sentence_ = NULL;
+ focused_srl_ = NULL;
+
+ map_left_ = NULL;
+ map_right_ = NULL;
+
+ map_srl_left_ = NULL;
+ map_srl_right_ = NULL;
+
+ dict_block_status_ = new Dict();
+ dict_block_status_->Convert("Unaligned", false);
+ dict_block_status_->Convert("Discon't", false);
+ dict_block_status_->Convert("Con't", false);
+ }
+ ~ConstReorderFeatureImpl() {
+ if (const_reorder_classifier_left_)
+ delete const_reorder_classifier_left_;
+ if (const_reorder_classifier_right_)
+ delete const_reorder_classifier_right_;
+ if (srl_reorder_classifier_left_)
+ delete srl_reorder_classifier_left_;
+ if (srl_reorder_classifier_right_)
+ delete srl_reorder_classifier_right_;
+ FreeSentenceVariables();
+
+ delete dict_block_status_;
+ }
+
+ static int ReserveStateSize() {
+ return 1 * sizeof(TargetTranslation*);
+ }
+
+ void InitializeInputSentence(const std::string& parse_file, const std::string& srl_file, const std::string& index_map_file) {
+ FreeSentenceVariables();
+ if (b_srl_block_feature_ || b_srl_order_feature_) {
+ assert(srl_file != "");
+ srl_sentence_ = ReadSRLSentence(srl_file);
+ parsed_tree_ = srl_sentence_->m_pTree;
+ } else {
+ assert(parse_file != "");
+ srl_sentence_ = NULL;
+ parsed_tree_ = ReadParseTree(parse_file);
+ }
+
+ if (b_block_feature_ || b_order_feature_) {
+ focused_consts_ = new FocusedConstituent(parsed_tree_);
+
+ if (b_order_feature_) {
+ //we can do the classifier "off-line"
+ map_left_ = new MapClassifier();
+ map_right_ = new MapClassifier();
+ InitializeConstReorderClassifierOutput();
+ }
+ }
+
+ if (b_srl_block_feature_ || b_srl_order_feature_) {
+ focused_srl_ = new FocusedSRL(srl_sentence_);
+
+ if (b_srl_order_feature_) {
+ map_srl_left_ = new MapClassifier();
+ map_srl_right_ = new MapClassifier();
+ InitializeSRLReorderClassifierOutput();
+ }
+ }
+
+ index_map_ = new SIndexMap(index_map_file);
+
+ if (parsed_tree_ != NULL) {
+ size_t i = parsed_tree_->m_vecTerminals.size();
+ vec_target_tran_.reserve(20 * i * i * i);
+ } else
+ vec_target_tran_.reserve(1000000);
+ }
+
+ void SetConstReorderFeature(const Hypergraph::Edge& edge, SparseVector<double>* features, const vector<const void*>& ant_states, void* state) {
+ if (parsed_tree_ == NULL) return;
+
+ short int mapped_begin, mapped_end;
+ index_map_->MapIndex_Input_2_Parse(edge.i_, edge.j_ - 1, mapped_begin, mapped_end);
+
+ typedef TargetTranslation* PtrTargetTranslation;
+ PtrTargetTranslation* remnant = reinterpret_cast<PtrTargetTranslation*>(state);
+
+ vector<const TargetTranslation*> vec_node;
+ vec_node.reserve(edge.tail_nodes_.size());
+ for (size_t i = 0; i < edge.tail_nodes_.size(); i++) {
+ const PtrTargetTranslation* astate = reinterpret_cast<const PtrTargetTranslation*>(ant_states[i]);
+ vec_node.push_back(astate[0]);
+ }
+
+ int e_num_word = edge.rule_->e_.size();
+ for (size_t i = 0; i < vec_node.size(); i++) {
+ e_num_word += vec_node[i]->e_num_words_;
+ e_num_word--;
+ }
+
+ remnant[0] = new TargetTranslation(mapped_begin, mapped_end, edge.i_, edge.j_ - 1, e_num_word);
+ vec_target_tran_.push_back(remnant[0]);
+
+ //reset the alignment
+ //for the source side, we know its position in source sentence
+ //for the target side, we always assume its starting position is 0
+ unsigned vc = 0;
+ const TRulePtr rule = edge.rule_;
+ std::vector<int> f_index(rule->f_.size());
+ int index = edge.i_;
+ for (unsigned i = 0; i < rule->f_.size(); i++) {
+ f_index[i] = index;
+ const WordID& c = rule->f_[i];
+ if (c < 1)
+ index = vec_node[vc++]->input_end_pos_ + 1;
+ else
+ index++;
+ }
+ assert(vc == vec_node.size());
+ assert(index == edge.j_);
+
+ std::vector<int> e_index(rule->e_.size());
+ index = 0;
+ vc = 0;
+ for (unsigned i = 0; i < rule->e_.size(); i++) {
+ e_index[i] = index;
+ const WordID& c = rule->e_[i];
+ if (c < 1) {
+ index += vec_node[-c]->e_num_words_;
+ vc++;
+ }
+ else
+ index++;
+ }
+ assert(vc == vec_node.size());
+
+ size_t nt_pos = 0;
+ for (size_t i = 0; i < edge.rule_->f_.size(); i++) {
+ if (edge.rule_->f_[i] > 0) continue;
+
+ //it's an NT
+ size_t j;
+ for (j = 0; j < edge.rule_->e_.size(); j++)
+ if (edge.rule_->e_[j] * -1 == nt_pos)
+ break;
+ assert(j != edge.rule_->e_.size());
+ nt_pos++;
+
+ //i aligns j
+ int eindex = e_index[j];
+ const vector<AlignmentPoint*>& align = vec_node[-1 * edge.rule_->e_[j]]->align_;
+ for (size_t k = 0; k < align.size(); k++) {
+ remnant[0]->InsertAlignmentPoint(align[k]->s_, eindex + align[k]->t_);
+ }
+ }
+ for (size_t i = 0; i < edge.rule_->a_.size(); i++) {
+ short int parse_index_begin, parse_index_end;
+ index_map_->MapIndex_Input_2_Parse(f_index[edge.rule_->a_[i].s_], parse_index_begin, parse_index_end);
+ int findex = parse_index_begin;
+ int eindex = e_index[edge.rule_->a_[i].t_];
+ int word_count = index_map_->MapIndexWordCount(f_index[edge.rule_->a_[i].s_]);
+ assert(word_count == parse_index_end - parse_index_begin + 1);
+ for (int i = 0; i < word_count; i++)
+ remnant[0]->InsertAlignmentPoint(findex + i, eindex);
+ }
+
+
+ //till now, we finished setting state values
+ //next, use the state values to calculate constituent reorder feature
+ SetConstReorderFeature(mapped_begin, mapped_end, features, remnant[0], vec_node, f_index);
+ }
+
+ void SetConstReorderFeature(short int mapped_begin, short int mapped_end, SparseVector<double>* features, const TargetTranslation* target_translation, const vector<const TargetTranslation*>& vec_node, std::vector<int>& findex) {
+ if (b_srl_block_feature_ || b_srl_order_feature_){
+ double logprob_srl_reorder_left = 0.0, logprob_srl_reorder_right = 0.0;
+ for (size_t i = 0; i < focused_srl_->focus_predicates_.size(); i++) {
+ const FocusedPredicate* pred = focused_srl_->focus_predicates_[i];
+ if (!is_overlap(mapped_begin, mapped_end, pred->begin_, pred->end_)) continue; //have no overlap between this predicate (with its argument) and the current edge
+
+ size_t j;
+ for (j = 0; j < vec_node.size(); j++) {
+ if (is_inside(pred->begin_, pred->end_, vec_node[j]->begin_pos_, vec_node[j]->end_pos_))
+ break;
+ }
+ if (j < vec_node.size()) continue;
+
+ vector<int> vecBlockStatus;
+ vecBlockStatus.reserve(pred->vec_items_.size());
+ for (j = 0; j < pred->vec_items_.size(); j++) {
+ const STreeItem *con1 = pred->vec_items_[j]->tree_item_;
+ if (con1->m_iBegin < mapped_begin || con1->m_iEnd > mapped_end) {vecBlockStatus.push_back(0); continue;} //the node is partially outside the current edge
+
+ string type = target_translation->IsTargetConstinousSpan2(con1->m_iBegin, con1->m_iEnd);
+ vecBlockStatus.push_back(dict_block_status_->Convert(type, false));
+
+ if (!b_srl_block_feature_) continue;
+ //see if the node is covered by an NT
+ size_t k;
+ for (k = 0; k < vec_node.size(); k++) {
+ if (is_inside(con1->m_iBegin, con1->m_iEnd, vec_node[k]->begin_pos_, vec_node[k]->end_pos_))
+ break;
+ }
+ if (k < vec_node.size()) continue;
+ int f_id = FD::Convert(string(pred->vec_items_[j]->role_) + type);
+ if (f_id)
+ features->add_value(f_id, 1);
+ }
+
+ if (!b_srl_order_feature_) continue;
+
+ vector<int> vecPosition, vecRelativePosition;
+ vector<int> vecRightPosition, vecRelativeRightPosition;
+ vecPosition.reserve(pred->vec_items_.size());
+ vecRelativePosition.reserve(pred->vec_items_.size());
+ vecRightPosition.reserve(pred->vec_items_.size());
+ vecRelativeRightPosition.reserve(pred->vec_items_.size());
+ for (j = 0; j < pred->vec_items_.size(); j++) {
+ const STreeItem *con1 = pred->vec_items_[j]->tree_item_;
+ if (con1->m_iBegin < mapped_begin || con1->m_iEnd > mapped_end) {vecPosition.push_back(-1); vecRightPosition.push_back(-1);continue;} //the node is partially outside the current edge
+ int left1 = -1, right1 = -1;
+ target_translation->FindLeftRightMostTargetSpan(con1->m_iBegin, con1->m_iEnd, left1, right1);
+ vecPosition.push_back(left1);
+ vecRightPosition.push_back(right1);
+ }
+ fnGetRelativePosition(vecPosition, vecRelativePosition);
+ fnGetRelativePosition(vecRightPosition, vecRelativeRightPosition);
+
+ for (j = 1; j < pred->vec_items_.size(); j++) {
+ const STreeItem *con1 = pred->vec_items_[j - 1]->tree_item_;
+ const STreeItem *con2 = pred->vec_items_[j]->tree_item_;
+
+ if (con1->m_iBegin < mapped_begin || con2->m_iEnd > mapped_end) continue; //one of the two nodes is partially outside the current edge
+
+ //both con1 and con2 are covered, need to check if they are covered by the same NT
+ size_t k;
+ for (k = 0; k < vec_node.size(); k++) {
+ if (is_inside(con1->m_iBegin, con2->m_iEnd, vec_node[k]->begin_pos_, vec_node[k]->end_pos_))
+ break;
+ }
+ if (k < vec_node.size()) continue;
+
+ //they are not covered bye the same NT
+ string outcome;
+ string key;
+ GenerateKey(pred->vec_items_[j-1]->tree_item_, pred->vec_items_[j]->tree_item_, vecBlockStatus[j-1], vecBlockStatus[j], key);
+
+ fnGetOutcome(vecRelativePosition[j - 1], vecRelativePosition[j], outcome);
+ double prob = CalculateConstReorderProb(srl_reorder_classifier_left_, map_srl_left_, key, outcome);
+ //printf("%s %s %f\n", ostr.str().c_str(), outcome.c_str(), prob);
+ logprob_srl_reorder_left += log10(prob);
+
+
+ fnGetOutcome(vecRelativeRightPosition[j - 1], vecRelativeRightPosition[j], outcome);
+ prob = CalculateConstReorderProb(srl_reorder_classifier_right_, map_srl_right_, key, outcome);
+ logprob_srl_reorder_right += log10(prob);
+ }
+ }
+
+ if (b_srl_order_feature_) {
+ int f_id = FD::Convert("SRLReorderFeatureLeft");
+ if (f_id && logprob_srl_reorder_left != 0.0)
+ features->set_value(f_id, logprob_srl_reorder_left);
+ f_id = FD::Convert("SRLReorderFeatureRight");
+ if (f_id && logprob_srl_reorder_right != 0.0)
+ features->set_value(f_id, logprob_srl_reorder_right);
+ }
+ }
+
+ if (b_block_feature_ || b_order_feature_){
+ double logprob_const_reorder_left = 0.0, logprob_const_reorder_right = 0.0;
+
+ for (size_t i = 0; i < focused_consts_->focus_parents_.size(); i++) {
+ STreeItem* parent = focused_consts_->focus_parents_[i];
+ if (!is_overlap(mapped_begin, mapped_end, parent->m_iBegin, parent->m_iEnd)) continue; //have no overlap between this parent node and the current edge
+
+ size_t j;
+ for (j = 0; j < vec_node.size(); j++) {
+ if (is_inside(parent->m_iBegin, parent->m_iEnd, vec_node[j]->begin_pos_, vec_node[j]->end_pos_))
+ break;
+ }
+ if (j < vec_node.size()) continue;
+
+
+ if (b_block_feature_) {
+ if (parent->m_iBegin >= mapped_begin && parent->m_iEnd <= mapped_end) {
+ string type = target_translation->IsTargetConstinousSpan2(parent->m_iBegin, parent->m_iEnd);
+ int f_id = FD::Convert(string(parent->m_pszTerm) + type);
+ if (f_id)
+ features->add_value(f_id, 1);
+ }
+ }
+
+ if (parent->m_vecChildren.size() == 1 || !b_order_feature_) continue;
+
+ vector<int> vecChunkBlock;
+ vecChunkBlock.reserve(parent->m_vecChildren.size());
+
+ for (j = 0; j < parent->m_vecChildren.size(); j++) {
+ STreeItem *con1 = parent->m_vecChildren[j];
+ if (con1->m_iBegin < mapped_begin || con1->m_iEnd > mapped_end) {vecChunkBlock.push_back(0); continue;} //the node is partially outside the current edge
+
+ string type = target_translation->IsTargetConstinousSpan2(con1->m_iBegin, con1->m_iEnd);
+ vecChunkBlock.push_back(dict_block_status_->Convert(type, false));
+
+ /*if (!b_block_feature_) continue;
+ //see if the node is covered by an NT
+ size_t k;
+ for (k = 0; k < vec_node.size(); k++) {
+ if (is_inside(con1->m_iBegin, con1->m_iEnd, vec_node[k]->begin_pos_, vec_node[k]->end_pos_))
+ break;
+ }
+ if (k < vec_node.size()) continue;
+ int f_id = FD::Convert(string(con1->m_pszTerm) + type);
+ if (f_id)
+ features->add_value(f_id, 1);*/
+ }
+
+ if (!b_order_feature_) continue;
+
+ vector<int> vecPosition, vecRelativePosition;
+ vector<int> vecRightPosition, vecRelativeRightPosition;
+ vecPosition.reserve(parent->m_vecChildren.size());
+ vecRelativePosition.reserve(parent->m_vecChildren.size());
+ vecRightPosition.reserve(parent->m_vecChildren.size());
+ vecRelativeRightPosition.reserve(parent->m_vecChildren.size());
+ for (j = 0; j < parent->m_vecChildren.size(); j++) {
+ STreeItem *con1 = parent->m_vecChildren[j];
+ if (con1->m_iBegin < mapped_begin || con1->m_iEnd > mapped_end) {vecPosition.push_back(-1); vecRightPosition.push_back(-1);continue;} //the node is partially outside the current edge
+ int left1 = -1, right1 = -1;
+ target_translation->FindLeftRightMostTargetSpan(con1->m_iBegin, con1->m_iEnd, left1, right1);
+ vecPosition.push_back(left1);
+ vecRightPosition.push_back(right1);
+ }
+ fnGetRelativePosition(vecPosition, vecRelativePosition);
+ fnGetRelativePosition(vecRightPosition, vecRelativeRightPosition);
+
+ for (j = 1; j < parent->m_vecChildren.size(); j++) {
+ STreeItem *con1 = parent->m_vecChildren[j - 1];
+ STreeItem *con2 = parent->m_vecChildren[j];
+
+ if (con1->m_iBegin < mapped_begin || con2->m_iEnd > mapped_end) continue; //one of the two nodes is partially outside the current edge
+
+ //both con1 and con2 are covered, need to check if they are covered by the same NT
+ size_t k;
+ for (k = 0; k < vec_node.size(); k++) {
+ if (is_inside(con1->m_iBegin, con2->m_iEnd, vec_node[k]->begin_pos_, vec_node[k]->end_pos_))
+ break;
+ }
+ if (k < vec_node.size()) continue;
+
+ //they are not covered bye the same NT
+ string outcome;
+ string key;
+ GenerateKey(parent->m_vecChildren[j-1], parent->m_vecChildren[j], vecChunkBlock[j-1], vecChunkBlock[j], key);
+
+ fnGetOutcome(vecRelativePosition[j - 1], vecRelativePosition[j], outcome);
+ double prob = CalculateConstReorderProb(const_reorder_classifier_left_, map_left_, key, outcome);
+ //printf("%s %s %f\n", ostr.str().c_str(), outcome.c_str(), prob);
+ logprob_const_reorder_left += log10(prob);
+
+
+ fnGetOutcome(vecRelativeRightPosition[j - 1], vecRelativeRightPosition[j], outcome);
+ prob = CalculateConstReorderProb(const_reorder_classifier_right_, map_right_, key, outcome);
+ logprob_const_reorder_right += log10(prob);
+ }
+ }
+
+ if (b_order_feature_) {
+ int f_id = FD::Convert("ConstReorderFeatureLeft");
+ if (f_id && logprob_const_reorder_left != 0.0)
+ features->set_value(f_id, logprob_const_reorder_left);
+ f_id = FD::Convert("ConstReorderFeatureRight");
+ if (f_id && logprob_const_reorder_right != 0.0)
+ features->set_value(f_id, logprob_const_reorder_right);
+ }
+ }
+
+ }
+
+
+private:
+ void Byte_to_Char(unsigned char *str, int n) {
+ str[0] = (n & 255);
+ str[1] = n / 256;
+ }
+ void GenerateKey(const STreeItem *pCon1, const STreeItem *pCon2, int iBlockStatus1, int iBlockStatus2, string& key) {
+ assert(iBlockStatus1 != 0);
+ assert(iBlockStatus2 != 0);
+ unsigned char szTerm[ 1001 ];
+ Byte_to_Char(szTerm, pCon1->m_iBegin);
+ Byte_to_Char(szTerm + 2, pCon2->m_iEnd);
+ szTerm[4] = (char)iBlockStatus1;
+ szTerm[5] = (char)iBlockStatus2;
+ szTerm[6] = '\0';
+ //sprintf(szTerm, "%d|%d|%d|%d|%s|%s", pCon1->m_iBegin, pCon1->m_iEnd, pCon2->m_iBegin, pCon2->m_iEnd, strBlockStatus1.c_str(), strBlockStatus2.c_str());
+ key = string(szTerm, szTerm + 6);
+
+ }
+ void InitializeConstReorderClassifierOutput( ) {
+ if (!b_order_feature_) return;
+ int size_block_status = dict_block_status_->max();
+
+ for (size_t i = 0; i < focused_consts_->focus_parents_.size(); i++) {
+ STreeItem* parent = focused_consts_->focus_parents_[i];
+
+ for (size_t j = 1; j < parent->m_vecChildren.size(); j++) {
+ for (size_t k = 1; k <= size_block_status; k++) {
+ for (size_t l = 1; l <= size_block_status; l++) {
+ ostringstream ostr;
+ GenerateFeature(parsed_tree_, parent, j, dict_block_status_->Convert(k), dict_block_status_->Convert(l), ostr);
+
+ string strKey;
+ GenerateKey(parent->m_vecChildren[j-1], parent->m_vecChildren[j], k, l, strKey);
+
+ vector<double> vecOutput;
+ const_reorder_classifier_left_->fnEval(ostr.str().c_str(), vecOutput);
+ (*map_left_)[strKey] = vecOutput;
+
+ const_reorder_classifier_right_->fnEval(ostr.str().c_str(), vecOutput);
+ (*map_right_)[strKey] = vecOutput;
+ }
+ }
+ }
+ }
+
+ }
+
+ void InitializeSRLReorderClassifierOutput() {
+ if (!b_srl_order_feature_) return;
+ int size_block_status = dict_block_status_->max();
+
+ for (size_t i = 0; i < focused_srl_->focus_predicates_.size(); i++) {
+ const FocusedPredicate *pred = focused_srl_->focus_predicates_[i];
+
+ for (size_t j = 1; j < pred->vec_items_.size(); j++) {
+ for (size_t k = 1; k <= size_block_status; k++) {
+ for (size_t l = 1; l <= size_block_status; l++) {
+ ostringstream ostr;
+
+ SArgumentReorderModel::fnGenerateFeature(parsed_tree_, pred->pred_, pred, j, dict_block_status_->Convert(k), dict_block_status_->Convert(l), ostr);
+
+ string strKey;
+ GenerateKey(pred->vec_items_[j - 1]->tree_item_, pred->vec_items_[j]->tree_item_, k, l, strKey);
+
+ vector<double> vecOutput;
+ srl_reorder_classifier_left_->fnEval(ostr.str().c_str(), vecOutput);
+ (*map_srl_left_)[strKey] = vecOutput;
+
+ srl_reorder_classifier_right_->fnEval(ostr.str().c_str(), vecOutput);
+ (*map_srl_right_)[strKey] = vecOutput;
+ }
+ }
+ }
+ }
+ }
+
+ double CalculateConstReorderProb(const Tsuruoka_Maxent *const_reorder_classifier, const MapClassifier *map, const string& key, const string& outcome) {
+ MapClassifier::const_iterator iter = (*map).find(key);
+ assert(iter != map->end());
+ int id = const_reorder_classifier->fnGetClassId(outcome);
+ return iter->second[id];
+ }
+
+ void FreeSentenceVariables( ) {
+ if (srl_sentence_ != NULL) {
+ delete srl_sentence_;
+ srl_sentence_ = NULL;
+ }
+ else {
+ if (parsed_tree_ != NULL)
+ delete parsed_tree_;
+ parsed_tree_ = NULL;
+ }
+
+ if (focused_consts_ != NULL)
+ delete focused_consts_;
+ focused_consts_ = NULL;
+
+ for (size_t i = 0; i < vec_target_tran_.size(); i++)
+ delete vec_target_tran_[i];
+ vec_target_tran_.clear();
+
+ if (index_map_ != NULL)
+ delete index_map_;
+ index_map_ = NULL;
+
+ if (map_left_ != NULL)
+ delete map_left_;
+ map_left_ = NULL;
+ if (map_right_ != NULL)
+ delete map_right_;
+ map_right_ = NULL;
+
+ if (map_srl_left_ != NULL)
+ delete map_srl_left_;
+ map_srl_left_ = NULL;
+ if (map_srl_right_ != NULL)
+ delete map_srl_right_;
+ map_srl_right_ = NULL;
+ }
+
+ void InitializeClassifier(const char* pszFname, Tsuruoka_Maxent **ppClassifier) {
+ (*ppClassifier) = new Tsuruoka_Maxent(pszFname);
+ }
+
+ void GenerateOutcome(const vector<int>& vecPos, vector<string>& vecOutcome) {
+ vecOutcome.clear();
+
+ for (size_t i = 1; i < vecPos.size(); i++) {
+ if (vecPos[i] == -1 || vecPos[i] == vecPos[i - 1]) {
+ vecOutcome.push_back("M"); //monotone
+ continue;
+ }
+
+
+ if (vecPos[i - 1] == -1) {
+ //vecPos[i] is not -1
+ size_t j = i - 2;
+ while (j > -1 && vecPos[j] == -1)
+ j--;
+
+ size_t k;
+ for (k = 0; k < j; k++) {
+ if (vecPos[k] > vecPos[j] || vecPos[k] <= vecPos[i])
+ break;
+ }
+ if (k < j) {
+ vecOutcome.push_back("DM");
+ continue;
+ }
+
+ for (k = i + 1; k < vecPos.size(); k++)
+ if (vecPos[k] < vecPos[i] && (j == -1 && vecPos[k] >= vecPos[j]))
+ break;
+ if (k < vecPos.size()) {
+ vecOutcome.push_back("DM");
+ continue;
+ }
+ vecOutcome.push_back("M");
+ } else {
+ //neither of vecPos[i-1] and vecPos[i] is -1
+ if (vecPos[i - 1] < vecPos[i]) {
+ //monotone or discon't monotone
+ size_t j;
+ for (j = 0; j < i - 1; j++)
+ if (vecPos[j] > vecPos[i - 1] && vecPos[j] <= vecPos[i])
+ break;
+ if (j < i - 1) {
+ vecOutcome.push_back("DM");
+ continue;
+ }
+ for (j = i + 1; j < vecPos.size(); j++)
+ if (vecPos[j] >= vecPos[i - 1] && vecPos[j] < vecPos[i])
+ break;
+ if (j < vecPos.size()) {
+ vecOutcome.push_back("DM");
+ continue;
+ }
+ vecOutcome.push_back("M");
+ } else {
+ //swap or discon't swap
+ size_t j;
+ for (j = 0; j < i - 1; j++)
+ if (vecPos[j] > vecPos[i] && vecPos[j] <= vecPos[i - 1])
+ break;
+ if (j < i - 1) {
+ vecOutcome.push_back("DS");
+ continue;
+ }
+ for (j = i + 1; j < vecPos.size(); j++)
+ if ( vecPos[j] >= vecPos[i] && vecPos[j] < vecPos[i - 1])
+ break;
+ if (j < vecPos.size()) {
+ vecOutcome.push_back("DS");
+ continue;
+ }
+ vecOutcome.push_back("S");
+ }
+ }
+ }
+
+ assert(vecOutcome.size() == vecPos.size() - 1);
+ }
+
+ void fnGetRelativePosition(const vector<int>& vecLeft, vector<int>& vecPosition) {
+ vecPosition.clear();
+
+ vector<float> vec;
+ vec.reserve(vecLeft.size());
+ for (size_t i = 0; i < vecLeft.size(); i++) {
+ if (vecLeft[i] == -1) {
+ if (i == 0)
+ vec.push_back(-1);
+ else
+ vec.push_back(vecLeft[i-1] + 0.1);
+ } else
+ vec.push_back(vecLeft[i]);
+ }
+
+ for (size_t i = 0; i < vecLeft.size(); i++) {
+ int count = 0;
+
+ for (size_t j = 0; j < vecLeft.size(); j++) {
+ if ( j == i) continue;
+ if (vec[j] < vec[i]) {
+ count++;
+ } else if (vec[j] == vec[i] && j < i) {
+ count++;
+ }
+ }
+ vecPosition.push_back(count);
+ }
+
+ for (size_t i = 1; i < vecPosition.size(); i++) {
+ if (vecPosition[i - 1] == vecPosition[i]) {
+ for (size_t j = 0; j < vecLeft.size(); j++)
+ cout << vecLeft[j] << " ";
+ cout << "\n";
+ assert(false);
+ }
+ }
+ }
+
+ inline void fnGetOutcome(int i1, int i2, string& strOutcome) {
+ assert(i1 != i2);
+ if (i1 < i2) {
+ if (i2 > i1 + 1) strOutcome = string("DM");
+ else strOutcome = string("M");
+ } else {
+ if (i1 > i2 + 1) strOutcome = string("DS");
+ else strOutcome = string("S");
+ }
+ }
+
+ //features in constituent_reorder_model.cc
+ void GenerateFeature(const SParsedTree *pTree, const STreeItem *pParent, int iPos, const string& strBlockStatus1, const string& strBlockStatus2, ostringstream& ostr) {
+ STreeItem *pCon1, *pCon2;
+ pCon1 = pParent->m_vecChildren[iPos - 1];
+ pCon2 = pParent->m_vecChildren[iPos];
+
+ string left_label = string(pCon1->m_pszTerm);
+ string right_label = string(pCon2->m_pszTerm);
+ string parent_label = string(pParent->m_pszTerm);
+
+ vector<string> vec_other_right_sibling;
+ for (int i = iPos + 1; i < pParent->m_vecChildren.size(); i++)
+ vec_other_right_sibling.push_back(string(pParent->m_vecChildren[i]->m_pszTerm));
+ if (vec_other_right_sibling.size() == 0)
+ vec_other_right_sibling.push_back(string("NULL"));
+ vector<string> vec_other_left_sibling;
+ for (int i = 0; i < iPos - 1; i++)
+ vec_other_left_sibling.push_back(string(pParent->m_vecChildren[i]->m_pszTerm));
+ if (vec_other_left_sibling.size() == 0)
+ vec_other_left_sibling.push_back(string("NULL"));
+
+ //generate features
+ //f1
+ ostr << "f1=" << left_label << "_" << right_label << "_" << parent_label;
+ //f2
+ for (int i = 0; i < vec_other_right_sibling.size(); i++)
+ ostr << " f2=" << left_label << "_" << right_label << "_" << parent_label << "_" << vec_other_right_sibling[i];
+ //f3
+ for (int i = 0; i < vec_other_left_sibling.size(); i++)
+ ostr << " f3=" << left_label << "_" << right_label << "_" << parent_label << "_" << vec_other_left_sibling[i];
+ //f4
+ ostr << " f4=" << left_label << "_" << right_label << "_" << pTree->m_vecTerminals[pCon1->m_iHeadWord]->m_ptParent->m_pszTerm;
+ //f5
+ ostr << " f5=" << left_label << "_" << right_label << "_" << pTree->m_vecTerminals[pCon1->m_iHeadWord]->m_pszTerm;
+ //f6
+ ostr << " f6=" << left_label << "_" << right_label << "_" << pTree->m_vecTerminals[pCon2->m_iHeadWord]->m_ptParent->m_pszTerm;
+ //f7
+ ostr << " f7=" << left_label << "_" << right_label << "_" << pTree->m_vecTerminals[pCon2->m_iHeadWord]->m_pszTerm;
+ //f8
+ ostr << " f8=" << left_label << "_" << right_label << "_" << strBlockStatus1;
+ //f9
+ ostr << " f9=" << left_label << "_" << right_label << "_" << strBlockStatus2;
+
+ //f10
+ ostr << " f10=" << left_label << "_" << parent_label;
+ //f11
+ ostr << " f11=" << right_label << "_" << parent_label;
+ }
+
+ SParsedTree* ReadParseTree(const std::string& parse_file) {
+ SParseReader *reader = new SParseReader(parse_file.c_str(), false);
+ SParsedTree *tree = reader->fnReadNextParseTree();
+ //assert(tree != NULL);
+ delete reader;
+ return tree;
+ }
+
+ SSrlSentence* ReadSRLSentence(const std::string& srl_file) {
+ SSrlSentenceReader *reader = new SSrlSentenceReader(srl_file.c_str());
+ SSrlSentence *srl = reader->fnReadNextSrlSentence();
+ //assert(srl != NULL);
+ delete reader;
+ return srl;
+ }
+
+private:
+ Tsuruoka_Maxent *const_reorder_classifier_left_;
+ Tsuruoka_Maxent *const_reorder_classifier_right_;
+
+ Tsuruoka_Maxent *srl_reorder_classifier_left_;
+ Tsuruoka_Maxent *srl_reorder_classifier_right_;
+
+ MapClassifier *map_left_;
+ MapClassifier *map_right_;
+
+ MapClassifier *map_srl_left_;
+ MapClassifier *map_srl_right_;
+
+ SParsedTree *parsed_tree_;
+ FocusedConstituent *focused_consts_;
+ vector<TargetTranslation*> vec_target_tran_;
+
+ bool b_order_feature_;
+ bool b_block_feature_;
+
+ bool b_srl_block_feature_;
+ bool b_srl_order_feature_;
+ SSrlSentence *srl_sentence_;
+ FocusedSRL *focused_srl_;
+
+ SIndexMap *index_map_;
+
+ Dict *dict_block_status_;
+};
+
+ConstReorderFeature::ConstReorderFeature(const std::string& param) {
+ pimpl_ = new ConstReorderFeatureImpl(param);
+ SetStateSize(ConstReorderFeatureImpl::ReserveStateSize());
+ name_ = "ConstReorderFeature";
+}
+
+ConstReorderFeature::~ConstReorderFeature( ) { //TODO
+ delete pimpl_;
+}
+
+void ConstReorderFeature::PrepareForInput(const SentenceMetadata& smeta) {
+ string parse_file = smeta.GetSGMLValue("parse");
+ string srl_file = smeta.GetSGMLValue("srl");
+ assert(!(parse_file == "" && srl_file == ""));
+
+ string indexmap_file = smeta.GetSGMLValue("index-map");
+ pimpl_->InitializeInputSentence(parse_file, srl_file, indexmap_file);
+}
+
+void ConstReorderFeature::TraversalFeaturesImpl(const SentenceMetadata& /* smeta */,
+ const Hypergraph::Edge& edge,
+ const vector<const void*>& ant_states,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* state) const {
+ pimpl_->SetConstReorderFeature(edge, features, ant_states, state);
+}
+
+string ConstReorderFeature::usage(bool /*param*/,bool /*verbose*/) {
+ return "ConstReorderFeature";
+}
+
+boost::shared_ptr<FeatureFunction> CreateConstReorderModel(const std::string &param) {
+ ConstReorderFeature *ret = new ConstReorderFeature(param);
+ return boost::shared_ptr<FeatureFunction>(ret);
+}
+
+boost::shared_ptr<FeatureFunction> ConstReorderFeatureFactory::Create(std::string param) const {
+ return CreateConstReorderModel(param);
+}
+
+std::string ConstReorderFeatureFactory::usage(bool params,bool verbose) const {
+ return ConstReorderFeature::usage(params, verbose);
+}