summaryrefslogtreecommitdiff
path: root/decoder/ff.h
diff options
context:
space:
mode:
Diffstat (limited to 'decoder/ff.h')
-rw-r--r--decoder/ff.h136
1 files changed, 136 insertions, 0 deletions
diff --git a/decoder/ff.h b/decoder/ff.h
new file mode 100644
index 00000000..e962b4ba
--- /dev/null
+++ b/decoder/ff.h
@@ -0,0 +1,136 @@
+#ifndef _FF_H_
+#define _FF_H_
+
+#include <vector>
+
+#include "fdict.h"
+#include "hg.h"
+
+class SentenceMetadata;
+class FeatureFunction; // see definition below
+
+// if you want to develop a new feature, inherit from this class and
+// override TraversalFeaturesImpl(...). If it's a feature that returns /
+// depends on context, you may also need to implement
+// FinalTraversalFeatures(...)
+class FeatureFunction {
+ public:
+ FeatureFunction() : state_size_() {}
+ explicit FeatureFunction(int state_size) : state_size_(state_size) {}
+ virtual ~FeatureFunction();
+
+ // returns the number of bytes of context that this feature function will
+ // (maximally) use. By default, 0 ("stateless" models in Hiero/Joshua).
+ // NOTE: this value is fixed for the instance of your class, you cannot
+ // use different amounts of memory for different nodes in the forest.
+ inline int NumBytesContext() const { return state_size_; }
+
+ // Compute the feature values and (if this applies) the estimates of the
+ // feature values when this edge is used incorporated into a larger context
+ inline void TraversalFeatures(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const std::vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* out_state) const {
+ TraversalFeaturesImpl(smeta, edge, ant_contexts,
+ features, estimated_features, out_state);
+ // TODO it's easy for careless feature function developers to overwrite
+ // the end of their state and clobber someone else's memory. These bugs
+ // will be horrendously painful to track down. There should be some
+ // optional strict mode that's enforced here that adds some kind of
+ // barrier between the blocks reserved for the residual contexts
+ }
+
+ // if there's some state left when you transition to the goal state, score
+ // it here. For example, the language model computes the cost of adding
+ // <s> and </s>.
+ virtual void FinalTraversalFeatures(const void* residual_state,
+ SparseVector<double>* final_features) const;
+
+ protected:
+ // context is a pointer to a buffer of size NumBytesContext() that the
+ // feature function can write its state to. It's up to the feature function
+ // to determine how much space it needs and to determine how to encode its
+ // residual contextual information since it is OPAQUE to all clients outside
+ // of the particular FeatureFunction class. There is one exception:
+ // equality of the contents (i.e., memcmp) is required to determine whether
+ // two states can be combined.
+ virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const std::vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* context) const = 0;
+
+ // !!! ONLY call this from subclass *CONSTRUCTORS* !!!
+ void SetStateSize(size_t state_size) {
+ state_size_ = state_size;
+ }
+
+ private:
+ int state_size_;
+};
+
+// word penalty feature, for each word on the E side of a rule,
+// add value_
+class WordPenalty : public FeatureFunction {
+ public:
+ WordPenalty(const std::string& param);
+ protected:
+ virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const std::vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* context) const;
+ private:
+ const int fid_;
+ const double value_;
+};
+
+class SourceWordPenalty : public FeatureFunction {
+ public:
+ SourceWordPenalty(const std::string& param);
+ protected:
+ virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const std::vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* context) const;
+ private:
+ const int fid_;
+ const double value_;
+};
+
+// this class is a set of FeatureFunctions that can be used to score, rescore,
+// etc. a (translation?) forest
+class ModelSet {
+ public:
+ ModelSet() : state_size_(0) {}
+
+ ModelSet(const std::vector<double>& weights,
+ const std::vector<const FeatureFunction*>& models);
+
+ // sets edge->feature_values_ and edge->edge_prob_
+ // NOTE: edge must not necessarily be in hg.edges_ but its TAIL nodes
+ // must be.
+ void AddFeaturesToEdge(const SentenceMetadata& smeta,
+ const Hypergraph& hg,
+ Hypergraph::Edge* edge,
+ std::string* residual_context,
+ prob_t* combination_cost_estimate = NULL) const;
+
+ void AddFinalFeatures(const std::string& residual_context,
+ Hypergraph::Edge* edge) const;
+
+ bool empty() const { return models_.empty(); }
+ private:
+ std::vector<const FeatureFunction*> models_;
+ std::vector<double> weights_;
+ int state_size_;
+ std::vector<int> model_state_pos_;
+};
+
+#endif