diff options
Diffstat (limited to 'decoder/ff.h')
-rw-r--r-- | decoder/ff.h | 238 |
1 files changed, 15 insertions, 223 deletions
diff --git a/decoder/ff.h b/decoder/ff.h index 227787ca..4acbb7e3 100644 --- a/decoder/ff.h +++ b/decoder/ff.h @@ -1,26 +1,13 @@ #ifndef _FF_H_ #define _FF_H_ -#define DEBUG_INIT 0 -#if DEBUG_INIT -# include <iostream> -# define DBGINIT(a) do { std::cerr<<a<<"\n"; } while(0) -#else -# define DBGINIT(a) -#endif - -#include <stdint.h> +#include <string> #include <vector> -#include <cstring> -#include "fdict.h" -#include "hg.h" -#include "feature_vector.h" -#include "value_array.h" +#include "sparse_vector.h" +namespace HG { struct Edge; struct Node; } +class Hypergraph; class SentenceMetadata; -class FeatureFunction; // see definition below - -typedef std::vector<WordID> Features; // set of features ids // if you want to develop a new feature, inherit from this class and // override TraversalFeaturesImpl(...). If it's a feature that returns / @@ -30,51 +17,31 @@ class FeatureFunction { friend class ExternalFeature; public: std::string name_; // set by FF factory using usage() - bool debug_; // also set by FF factory checking param for immediate initial "debug" - //called after constructor, but before name_ and debug_ have been set - virtual void Init() { DBGINIT("default FF::Init name="<<name_); } - virtual void init_name_debug(std::string const& n,bool debug) { - name_=n; - debug_=debug; - } - bool debug() const { return debug_; } FeatureFunction() : state_size_() {} explicit FeatureFunction(int state_size) : state_size_(state_size) {} virtual ~FeatureFunction(); bool IsStateful() const { return state_size_ > 0; } + int StateSize() const { return state_size_; } // override this. not virtual because we want to expose this to factory template for help before creating a FF static std::string usage(bool show_params,bool show_details) { return usage_helper("FIXME_feature_needs_name","[no parameters]","[no documentation yet]",show_params,show_details); } static std::string usage_helper(std::string const& name,std::string const& params,std::string const& details,bool show_params,bool show_details); - static Features single_feature(int feat); -public: - - // stateless feature that doesn't depend on source span: override and return true. then your feature can be precomputed over rules. - virtual bool rule_feature() const { return false; } // called once, per input, before any feature calls to TraversalFeatures, etc. // used to initialize sentence-specific data structures virtual void PrepareForInput(const SentenceMetadata& smeta); - //OVERRIDE THIS: - virtual Features features() const { return single_feature(FD::Convert(name_)); } - // returns the number of bytes of context that this feature function will - // (maximally) use. By default, 0 ("stateless" models in Hiero/Joshua). - // NOTE: this value is fixed for the instance of your class, you cannot - // use different amounts of memory for different nodes in the forest. this will be read as soon as you create a ModelSet, then fixed forever on - inline int NumBytesContext() const { return state_size_; } - // Compute the feature values and (if this applies) the estimates of the // feature values when this edge is used incorporated into a larger context inline void TraversalFeatures(const SentenceMetadata& smeta, - Hypergraph::Edge& edge, + const HG::Edge& edge, const std::vector<const void*>& ant_contexts, - FeatureVector* features, - FeatureVector* estimated_features, + SparseVector<double>* features, + SparseVector<double>* estimated_features, void* out_state) const { - TraversalFeaturesLog(smeta, edge, ant_contexts, + TraversalFeaturesImpl(smeta, edge, ant_contexts, features, estimated_features, out_state); // TODO it's easy for careless feature function developers to overwrite // the end of their state and clobber someone else's memory. These bugs @@ -89,16 +56,13 @@ public: protected: virtual void FinalTraversalFeatures(const void* residual_state, - FeatureVector* final_features) const; + SparseVector<double>* final_features) const; public: //override either this or one of above. virtual void FinalTraversalFeatures(const SentenceMetadata& /* smeta */, - Hypergraph::Edge& /* edge */, // so you can log() + const HG::Edge& /* edge */, const void* residual_state, - FeatureVector* final_features) const { - FinalTraversalFeatures(residual_state,final_features); - } - + SparseVector<double>* final_features) const; protected: // context is a pointer to a buffer of size NumBytesContext() that the @@ -108,191 +72,19 @@ public: // of the particular FeatureFunction class. There is one exception: // equality of the contents (i.e., memcmp) is required to determine whether // two states can be combined. - - // by Log, I mean that the edge is non-const only so you can log to it with INFO_EDGE(edge,msg<<"etc."). most features don't use this so implement the below. it has a different name to allow a default implementation without name hiding when inheriting + overriding just 1. - virtual void TraversalFeaturesLog(const SentenceMetadata& smeta, - Hypergraph::Edge& edge, // this is writable only so you can use log() - const std::vector<const void*>& ant_contexts, - FeatureVector* features, - FeatureVector* estimated_features, - void* context) const { - TraversalFeaturesImpl(smeta,edge,ant_contexts,features,estimated_features,context); - } - - // override above or below. virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, - Hypergraph::Edge const& edge, + const HG::Edge& edge, const std::vector<const void*>& ant_contexts, - FeatureVector* features, - FeatureVector* estimated_features, + SparseVector<double>* features, + SparseVector<double>* estimated_features, void* context) const; // !!! ONLY call this from subclass *CONSTRUCTORS* !!! void SetStateSize(size_t state_size) { state_size_ = state_size; } - int StateSize() const { return state_size_; } - private: - int state_size_; -}; - - -// word penalty feature, for each word on the E side of a rule, -// add value_ -class WordPenalty : public FeatureFunction { - public: - Features features() const; - WordPenalty(const std::string& param); - static std::string usage(bool p,bool d) { - return usage_helper("WordPenalty","","number of target words (local feature)",p,d); - } - bool rule_feature() const { return true; } - protected: - virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, - const Hypergraph::Edge& edge, - const std::vector<const void*>& ant_contexts, - FeatureVector* features, - FeatureVector* estimated_features, - void* context) const; - private: - const int fid_; - const double value_; -}; - -class SourceWordPenalty : public FeatureFunction { - public: - bool rule_feature() const { return true; } - Features features() const; - SourceWordPenalty(const std::string& param); - static std::string usage(bool p,bool d) { - return usage_helper("SourceWordPenalty","","number of source words (local feature, and meaningless except when input has non-constant number of source words, e.g. segmentation/morphology/speech recognition lattice)",p,d); - } - protected: - virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, - const Hypergraph::Edge& edge, - const std::vector<const void*>& ant_contexts, - FeatureVector* features, - FeatureVector* estimated_features, - void* context) const; - private: - const int fid_; - const double value_; -}; - -#define DEFAULT_MAX_ARITY 9 -#define DEFAULT_MAX_ARITY_STRINGIZE(x) #x -#define DEFAULT_MAX_ARITY_STRINGIZE_EVAL(x) DEFAULT_MAX_ARITY_STRINGIZE(x) -#define DEFAULT_MAX_ARITY_STR DEFAULT_MAX_ARITY_STRINGIZE_EVAL(DEFAULT_MAX_ARITY) - -class ArityPenalty : public FeatureFunction { - public: - bool rule_feature() const { return true; } - Features features() const; - ArityPenalty(const std::string& param); - static std::string usage(bool p,bool d) { - return usage_helper("ArityPenalty","[MaxArity(default " DEFAULT_MAX_ARITY_STR ")]","Indicator feature Arity_N=1 for rule of arity N (local feature). 0<=N<=MaxArity(default " DEFAULT_MAX_ARITY_STR ")",p,d); - } - - protected: - virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, - const Hypergraph::Edge& edge, - const std::vector<const void*>& ant_contexts, - FeatureVector* features, - FeatureVector* estimated_features, - void* context) const; - private: - std::vector<WordID> fids_; - const double value_; -}; - -void show_features(Features const& features,DenseWeightVector const& weights,std::ostream &out,std::ostream &warn,bool warn_zero_wt=true); //show features and weights - -template <class FFp> -Features all_features(std::vector<FFp> const& models_,DenseWeightVector &weights_,std::ostream *warn=0,bool warn_fid_0=false) { - using namespace std; - Features ffs; -#define WARNFF(x) do { if (warn) { *warn << "WARNING: "<< x << endl; } } while(0) - typedef map<WordID,string> FFM; - FFM ff_from; - for (unsigned i=0;i<models_.size();++i) { - string const& ffname=models_[i]->name_; - Features si=models_[i]->features(); - if (si.empty()) { - WARNFF(ffname<<" doesn't yet report any feature IDs - either supply feature weight, or use --no_freeze_feature_set, or implement features() method"); - } - unsigned n0=0; - for (unsigned j=0;j<si.size();++j) { - WordID fid=si[j]; - if (!fid) ++n0; - if (fid >= weights_.size()) - weights_.resize(fid+1); - if (warn_fid_0 || fid) { - pair<FFM::iterator,bool> i_new=ff_from.insert(FFM::value_type(fid,ffname)); - if (i_new.second) { - if (fid) - ffs.push_back(fid); - else - WARNFF("Feature id 0 for "<<ffname<<" (models["<<i<<"]) - probably no weight provided. Don't freeze feature ids to see the name"); - } else { - WARNFF(ffname<<" (models["<<i<<"]) tried to define feature "<<FD::Convert(fid)<<" already defined earlier by "<<i_new.first->second); - } - } - } - if (n0) - WARNFF(ffname<<" (models["<<i<<"]) had "<<n0<<" unused features (--no_freeze_feature_set to see them)"); - } - return ffs; -#undef WARNFF -} - -template <class FFp> -void show_all_features(std::vector<FFp> const& models_,DenseWeightVector &weights_,std::ostream &out,std::ostream &warn,bool warn_fid_0=true,bool warn_zero_wt=true) { - return show_features(all_features(models_,weights_,&warn,warn_fid_0),weights_,out,warn,warn_zero_wt); -} - -typedef ValueArray<uint8_t> FFState; // this is about 10% faster than string. -//typedef std::string FFState; - -//FIXME: only context.data() is required to be contiguous, and it becomes invalid after next string operation. use ValueArray instead? (higher performance perhaps, save a word due to fixed size) -typedef std::vector<FFState> FFStates; - -// this class is a set of FeatureFunctions that can be used to score, rescore, -// etc. a (translation?) forest -class ModelSet { - public: - ModelSet(const std::vector<double>& weights, - const std::vector<const FeatureFunction*>& models); - - // sets edge->feature_values_ and edge->edge_prob_ - // NOTE: edge must not necessarily be in hg.edges_ but its TAIL nodes - // must be. edge features are supposed to be overwritten, not added to (possibly because rule features aren't in ModelSet so need to be left alone - void AddFeaturesToEdge(const SentenceMetadata& smeta, - const Hypergraph& hg, - const FFStates& node_states, - Hypergraph::Edge* edge, - FFState* residual_context, - prob_t* combination_cost_estimate = NULL) const; - - //this is called INSTEAD of above when result of edge is goal (must be a unary rule - i.e. one variable, but typically it's assumed that there are no target terminals either (e.g. for LM)) - void AddFinalFeatures(const FFState& residual_context, - Hypergraph::Edge* edge, - SentenceMetadata const& smeta) const; - - // this is called once before any feature functions apply to a hypergraph - // it can be used to initialize sentence-specific data structures - void PrepareForInput(const SentenceMetadata& smeta); - - bool empty() const { return models_.empty(); } - - bool stateless() const { return !state_size_; } - Features all_features(std::ostream *warnings=0,bool warn_fid_zero=false); // this will warn about duplicate features as well (one function overwrites the feature of another). also resizes weights_ so it is large enough to hold the (0) weight for the largest reported feature id. since 0 is a NULL feature id, it's never included. if warn_fid_zero, then even the first 0 id is - void show_features(std::ostream &out,std::ostream &warn,bool warn_zero_wt=true); - private: - std::vector<const FeatureFunction*> models_; - const std::vector<double>& weights_; int state_size_; - std::vector<int> model_state_pos_; }; #endif |