summaryrefslogtreecommitdiff
path: root/corpus
diff options
context:
space:
mode:
Diffstat (limited to 'corpus')
-rwxr-xr-xcorpus/sample-dev-test.py65
1 files changed, 65 insertions, 0 deletions
diff --git a/corpus/sample-dev-test.py b/corpus/sample-dev-test.py
new file mode 100755
index 00000000..0c0514ee
--- /dev/null
+++ b/corpus/sample-dev-test.py
@@ -0,0 +1,65 @@
+#!/usr/bin/env python
+
+import gzip
+import os
+import sys
+
+HELP = '''Process an input corpus by dividing it into pseudo-documents and uniformly
+sampling train, dev, and test sets (simulate uniform sampling at the document
+level when document boundaries are unknown)
+
+usage: {} in_file out_prefix doc_size dev_test_docs [-lc]
+recommended: doc_size=20, dev_test_docs=100
+'''
+
+def gzopen(f):
+ return gzip.open(f, 'rb') if f.endswith('.gz') else open(f, 'r')
+
+def wc(f):
+ return sum(1 for _ in gzopen(f))
+
+def main(argv):
+
+ if len(argv[1:]) < 4:
+ sys.stderr.write(HELP.format(os.path.basename(argv[0])))
+ sys.exit(2)
+
+ in_file = os.path.abspath(argv[1])
+ out_prefix = os.path.abspath(argv[2])
+ doc_size = int(argv[3])
+ dev_test_docs = int(argv[4])
+ lc = (len(argv[1:]) == 5 and argv[5] == '-lc')
+
+ corpus_size = wc(in_file)
+ total_docs = corpus_size / doc_size
+ leftover = corpus_size % doc_size
+ train_docs = total_docs - (2 * dev_test_docs)
+ train_batch_size = (train_docs / dev_test_docs) - 2
+
+ sys.stderr.write('Splitting {} lines ({} documents)\n'.format(corpus_size, total_docs + (1 if leftover else 0)))
+ sys.stderr.write('Train: {} ({})\n'.format((train_docs * doc_size) + leftover, train_docs + (1 if leftover else 0)))
+ sys.stderr.write('Dev: {} ({})\n'.format(dev_test_docs * doc_size, dev_test_docs))
+ sys.stderr.write('Test: {} ({})\n'.format(dev_test_docs * doc_size, dev_test_docs))
+
+ with gzopen(in_file) as inp, \
+ open('{}.train'.format(out_prefix), 'w') as train_out, \
+ open('{}.dev'.format(out_prefix), 'w') as dev_out, \
+ open('{}.test'.format(out_prefix), 'w') as test_out:
+ i = 0
+ for _ in range(dev_test_docs):
+ for _ in range(train_batch_size):
+ for _ in range(doc_size):
+ i += 1
+ train_out.write('{} ||| {}'.format(i, inp.readline()) if lc else inp.readline())
+ for _ in range(doc_size):
+ i += 1
+ dev_out.write('{} ||| {}'.format(i, inp.readline()) if lc else inp.readline())
+ for _ in range(doc_size):
+ i += 1
+ test_out.write('{} ||| {}'.format(i, inp.readline()) if lc else inp.readline())
+ for line in inp:
+ i += 1
+ train_out.write('{} ||| {}'.format(i, line) if lc else line)
+
+if __name__ == '__main__':
+ main(sys.argv)