diff options
-rw-r--r-- | minrisk/minrisk_optimize.cc | 67 | ||||
-rw-r--r-- | training/Makefile.am | 1 | ||||
-rw-r--r-- | training/entropy.cc | 41 | ||||
-rw-r--r-- | training/entropy.h | 22 | ||||
-rw-r--r-- | utils/fdict.h | 2 |
5 files changed, 124 insertions, 9 deletions
diff --git a/minrisk/minrisk_optimize.cc b/minrisk/minrisk_optimize.cc index 6e651994..da8b5260 100644 --- a/minrisk/minrisk_optimize.cc +++ b/minrisk/minrisk_optimize.cc @@ -17,6 +17,7 @@ #include "ns_docscorer.h" #include "candidate_set.h" #include "risk.h" +#include "entropy.h" using namespace std; namespace po = boost::program_options; @@ -28,6 +29,9 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { ("weights,w",po::value<string>(), "[REQD] Weights files from current iterations") ("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)") ("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)") + ("temperature,T",po::value<double>()->default_value(0.0), "Temperature parameter for objective (>0 increases the entropy)") + ("l1_strength,C",po::value<double>()->default_value(0.0), "L1 regularization strength") + ("memory_buffers,M",po::value<unsigned>()->default_value(20), "Memory buffers used in LBFGS") ("kbest_repository,R",po::value<string>(), "Accumulate k-best lists from previous iterations (parameter is path to repository)") ("kbest_size,k",po::value<unsigned>()->default_value(500u), "Top k-hypotheses to extract") ("help,h", "Help"); @@ -52,36 +56,80 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { EvaluationMetric* metric = NULL; struct RiskObjective { - explicit RiskObjective(const vector<training::CandidateSet>& tr) : training(tr) {} + explicit RiskObjective(const vector<training::CandidateSet>& tr, const double temp) : training(tr), T(temp) {} double operator()(const vector<double>& x, double* g) const { fill(g, g + x.size(), 0.0); double obj = 0; + double h = 0; for (unsigned i = 0; i < training.size(); ++i) { training::CandidateSetRisk risk(training[i], *metric); - SparseVector<double> tg; + training::CandidateSetEntropy entropy(training[i]); + SparseVector<double> tg, hg; double r = risk(x, &tg); + double hh = entropy(x, &hg); + h += hh; obj += r; for (SparseVector<double>::iterator it = tg.begin(); it != tg.end(); ++it) g[it->first] += it->second; + if (T) { + for (SparseVector<double>::iterator it = hg.begin(); it != hg.end(); ++it) + g[it->first] += T * it->second; + } } - cerr << (1-(obj / training.size())) << endl; - return obj; + cerr << (1-(obj / training.size())) << " H=" << h << endl; + return obj - T * h; } const vector<training::CandidateSet>& training; + const double T; // temperature for entropy regularization }; double LearnParameters(const vector<training::CandidateSet>& training, + const double temp, // > 0 increases the entropy, < 0 decreases the entropy const double C1, const unsigned memory_buffers, vector<weight_t>* px) { - RiskObjective obj(training); + RiskObjective obj(training, temp); LBFGS<RiskObjective> lbfgs(px, obj, memory_buffers, C1); lbfgs.MinimizeFunction(); return 0; } -// runs lines 4--15 of rampion algorithm +#if 0 +struct FooLoss { + double operator()(const vector<double>& x, double* g) const { + fill(g, g + x.size(), 0.0); + training::CandidateSet cs; + training::CandidateSetEntropy cse(cs); + cs.cs.resize(3); + cs.cs[0].fmap.set_value(FD::Convert("F1"), -1.0); + cs.cs[1].fmap.set_value(FD::Convert("F2"), 1.0); + cs.cs[2].fmap.set_value(FD::Convert("F1"), 2.0); + cs.cs[2].fmap.set_value(FD::Convert("F2"), 0.5); + SparseVector<double> xx; + double h = cse(x, &xx); + cerr << cse(x, &xx) << endl; cerr << "G: " << xx << endl; + for (SparseVector<double>::iterator i = xx.begin(); i != xx.end(); ++i) + g[i->first] += i->second; + return -h; + } +}; +#endif + int main(int argc, char** argv) { +#if 0 + training::CandidateSet cs; + training::CandidateSetEntropy cse(cs); + cs.cs.resize(3); + cs.cs[0].fmap.set_value(FD::Convert("F1"), -1.0); + cs.cs[1].fmap.set_value(FD::Convert("F2"), 1.0); + cs.cs[2].fmap.set_value(FD::Convert("F1"), 2.0); + cs.cs[2].fmap.set_value(FD::Convert("F2"), 0.5); + FooLoss foo; + vector<double> ww(FD::NumFeats()); ww[FD::Convert("F1")] = 1.0; + LBFGS<FooLoss> lbfgs(&ww, foo, 100, 0.0); + lbfgs.MinimizeFunction(); + return 1; +#endif po::variables_map conf; InitCommandLine(argc, argv, &conf); const string evaluation_metric = conf["evaluation_metric"].as<string>(); @@ -89,8 +137,6 @@ int main(int argc, char** argv) { metric = EvaluationMetric::Instance(evaluation_metric); DocumentScorer ds(metric, conf["reference"].as<vector<string> >()); cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl; - double goodsign = -1; - double badsign = -goodsign; Hypergraph hg; string last_file; @@ -141,7 +187,10 @@ int main(int argc, char** argv) { cerr << "\nHypergraphs loaded.\n"; weights.resize(FD::NumFeats()); - LearnParameters(kis, 0.0, 100, &weights); + double c1 = conf["l1_strength"].as<double>(); + double temp = conf["temperature"].as<double>(); + unsigned m = conf["memory_buffers"].as<unsigned>(); + LearnParameters(kis, temp, c1, m, &weights); Weights::WriteToFile("-", weights); return 0; } diff --git a/training/Makefile.am b/training/Makefile.am index 68ebfab4..4cef0d5b 100644 --- a/training/Makefile.am +++ b/training/Makefile.am @@ -26,6 +26,7 @@ TESTS = lbfgs_test optimize_test noinst_LIBRARIES = libtraining.a libtraining_a_SOURCES = \ candidate_set.cc \ + entropy.cc \ optimize.cc \ online_optimizer.cc \ risk.cc diff --git a/training/entropy.cc b/training/entropy.cc new file mode 100644 index 00000000..4fdbe2be --- /dev/null +++ b/training/entropy.cc @@ -0,0 +1,41 @@ +#include "entropy.h" + +#include "prob.h" +#include "candidate_set.h" + +using namespace std; + +namespace training { + +// see Mann and McCallum "Efficient Computation of Entropy Gradient ..." for +// a mostly clear derivation of: +// g = E[ F(x,y) * log p(y|x) ] + H(y | x) * E[ F(x,y) ] +double CandidateSetEntropy::operator()(const vector<double>& params, + SparseVector<double>* g) const { + prob_t z; + vector<double> dps(cands_.size()); + for (unsigned i = 0; i < cands_.size(); ++i) { + dps[i] = cands_[i].fmap.dot(params); + const prob_t u(dps[i], init_lnx()); + z += u; + } + const double log_z = log(z); + + SparseVector<double> exp_feats; + double entropy = 0; + for (unsigned i = 0; i < cands_.size(); ++i) { + const double log_prob = cands_[i].fmap.dot(params) - log_z; + const double prob = exp(log_prob); + const double e_logprob = prob * log_prob; + entropy -= e_logprob; + if (g) { + (*g) += cands_[i].fmap * e_logprob; + exp_feats += cands_[i].fmap * prob; + } + } + if (g) (*g) += exp_feats * entropy; + return entropy; +} + +} + diff --git a/training/entropy.h b/training/entropy.h new file mode 100644 index 00000000..796589ca --- /dev/null +++ b/training/entropy.h @@ -0,0 +1,22 @@ +#ifndef _CSENTROPY_H_ +#define _CSENTROPY_H_ + +#include <vector> +#include "sparse_vector.h" + +namespace training { + class CandidateSet; + + class CandidateSetEntropy { + public: + explicit CandidateSetEntropy(const CandidateSet& cs) : cands_(cs) {} + // compute the entropy (expected log likelihood) of a CandidateSet + // (optional) the gradient of the entropy with respect to params + double operator()(const std::vector<double>& params, + SparseVector<double>* g = NULL) const; + private: + const CandidateSet& cands_; + }; +}; + +#endif diff --git a/utils/fdict.h b/utils/fdict.h index 71547d2e..eb853fb2 100644 --- a/utils/fdict.h +++ b/utils/fdict.h @@ -33,6 +33,8 @@ struct FD { assert(dict_.max() == 0); // dictionary must not have // been added to hash_ = new PerfectHashFunction(cmph_file); +#else + (void) cmph_file; #endif } static inline int NumFeats() { |