summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore22
-rw-r--r--Makefile.am3
-rw-r--r--compound-split/de/charlm.rev.5gm.de.klmbin17376695 -> 17376711 bytes
-rw-r--r--configure.ac53
-rw-r--r--decoder/Makefile.am2
-rw-r--r--decoder/aligner.cc2
-rwxr-xr-xdecoder/apply_fsa_models.cc798
-rw-r--r--decoder/apply_models.cc205
-rw-r--r--decoder/apply_models.h6
-rwxr-xr-xdecoder/cdec-fsa.ini10
-rw-r--r--decoder/cdec.cc8
-rw-r--r--decoder/cdec_ff.cc16
-rwxr-xr-xdecoder/cfg.cc2
-rwxr-xr-xdecoder/cfg_format.h2
-rw-r--r--decoder/decoder.cc124
-rw-r--r--decoder/decoder.h23
-rwxr-xr-xdecoder/feature_accum.h129
-rw-r--r--decoder/ff_factory.h2
-rwxr-xr-xdecoder/ff_from_fsa.h304
-rwxr-xr-xdecoder/ff_fsa.h401
-rwxr-xr-xdecoder/ff_fsa_data.h131
-rwxr-xr-xdecoder/ff_fsa_dynamic.h208
-rw-r--r--decoder/ff_klm.cc308
-rw-r--r--decoder/ff_lm.cc48
-rwxr-xr-xdecoder/ff_lm_fsa.h140
-rwxr-xr-xdecoder/ff_register.h38
-rw-r--r--decoder/ff_source_syntax.cc232
-rw-r--r--decoder/ff_source_syntax.h41
-rw-r--r--decoder/grammar_test.cc4
-rw-r--r--decoder/hg.cc4
-rw-r--r--decoder/hg.h8
-rw-r--r--decoder/hg_test.cc16
-rwxr-xr-xdecoder/oracle_bleu.h22
-rw-r--r--decoder/rule_lexer.l2
-rw-r--r--decoder/trule.h15
-rw-r--r--dtrain/hgsampler.cc1
-rw-r--r--dtrain/hgsampler.h1
-rw-r--r--environment/LocalConfig.pm4
-rw-r--r--expLog60
-rw-r--r--gi/markov_al/Makefile.am6
-rw-r--r--gi/markov_al/README2
-rw-r--r--gi/markov_al/ml.cc470
-rw-r--r--gi/pf/Makefile.am21
-rw-r--r--gi/pf/README2
-rw-r--r--gi/pf/base_measures.cc112
-rw-r--r--gi/pf/base_measures.h116
-rw-r--r--gi/pf/brat.cc543
-rw-r--r--gi/pf/cbgi.cc330
-rw-r--r--gi/pf/cfg_wfst_composer.cc730
-rw-r--r--gi/pf/cfg_wfst_composer.h46
-rw-r--r--gi/pf/corpus.cc57
-rw-r--r--gi/pf/corpus.h19
-rw-r--r--gi/pf/dpnaive.cc294
-rw-r--r--gi/pf/itg.cc213
-rw-r--r--gi/pf/monotonic_pseg.h88
-rw-r--r--gi/pf/pfbrat.cc543
-rw-r--r--gi/pf/pfdist.cc610
-rw-r--r--gi/pf/pfdist.new.cc620
-rw-r--r--gi/pf/pfnaive.cc280
-rw-r--r--gi/pf/reachability.cc64
-rw-r--r--gi/pf/reachability.h28
-rw-r--r--gi/pf/tpf.cc99
-rwxr-xr-xklm/compile.sh8
-rw-r--r--klm/lm/Makefile.am1
-rw-r--r--klm/lm/bhiksha.hh4
-rw-r--r--klm/lm/binary_format.cc20
-rw-r--r--klm/lm/binary_format.hh22
-rw-r--r--klm/lm/blank.hh14
-rw-r--r--klm/lm/left.hh251
-rw-r--r--klm/lm/left_test.cc360
-rw-r--r--klm/lm/model.cc135
-rw-r--r--klm/lm/model.hh62
-rw-r--r--klm/lm/model_test.cc192
-rw-r--r--klm/lm/model_type.hh16
-rw-r--r--klm/lm/quantize.cc4
-rw-r--r--klm/lm/quantize.hh13
-rw-r--r--klm/lm/return.hh39
-rw-r--r--klm/lm/search_hashed.cc79
-rw-r--r--klm/lm/search_hashed.hh43
-rw-r--r--klm/lm/search_trie.cc1040
-rw-r--r--klm/lm/search_trie.hh37
-rw-r--r--klm/lm/trie.cc13
-rw-r--r--klm/lm/trie.hh11
-rw-r--r--klm/lm/trie_sort.cc261
-rw-r--r--klm/lm/trie_sort.hh94
-rw-r--r--klm/lm/virtual_interface.hh26
-rw-r--r--klm/lm/vocab.cc44
-rw-r--r--klm/lm/vocab.hh10
-rwxr-xr-xklm/test.sh2
-rw-r--r--klm/util/Makefile.am4
-rw-r--r--klm/util/bit_packing.hh14
-rw-r--r--klm/util/exception.cc5
-rw-r--r--klm/util/exception.hh6
-rw-r--r--klm/util/file.cc74
-rw-r--r--klm/util/file.hh74
-rw-r--r--klm/util/file_piece.cc18
-rw-r--r--klm/util/file_piece.hh14
-rw-r--r--klm/util/mmap.cc18
-rw-r--r--klm/util/mmap.hh4
-rw-r--r--klm/util/scoped.cc24
-rw-r--r--klm/util/scoped.hh58
-rw-r--r--klm/util/sized_iterator.hh107
-rw-r--r--klm/util/tokenize_piece.hh69
-rw-r--r--m4/acx_pthread.m4363
-rw-r--r--m4/gtest.m465
-rw-r--r--mira/kbest_mira.cc62
-rw-r--r--mteval/mbr_kbest.cc4
-rw-r--r--mteval/scorer.cc12
-rw-r--r--phrasinator/Makefile.am10
-rw-r--r--phrasinator/ccrp_nt.h170
-rw-r--r--phrasinator/gibbs_train_plm.notables.cc335
-rwxr-xr-xphrasinator/train-phrasinator.pl2
-rw-r--r--pro-train/Makefile.am13
-rw-r--r--pro-train/README.shared-mem9
-rwxr-xr-xpro-train/dist-pro.pl657
-rwxr-xr-xpro-train/mr_pro_generate_mapper_input.pl18
-rw-r--r--pro-train/mr_pro_map.cc347
-rw-r--r--pro-train/mr_pro_reduce.cc279
-rw-r--r--training/Makefile.am26
-rw-r--r--training/augment_grammar.cc4
-rw-r--r--training/cllh_filter_grammar.cc197
-rwxr-xr-xtraining/cluster-em.pl114
-rwxr-xr-xtraining/cluster-ptrain.pl206
-rw-r--r--training/collapse_weights.cc6
-rw-r--r--training/feature_expectations.cc232
-rw-r--r--training/grammar_convert.cc8
-rwxr-xr-xtraining/make-lexcrf-grammar.pl285
-rw-r--r--training/mpi_batch_optimize.cc164
-rw-r--r--training/mpi_compute_cllh.cc (renamed from training/compute_cllh.cc)66
-rw-r--r--training/mpi_extract_features.cc151
-rw-r--r--training/mpi_extract_reachable.cc163
-rw-r--r--training/mpi_flex_optimize.cc346
-rw-r--r--training/mpi_online_optimize.cc75
-rw-r--r--training/mr_optimize_reduce.cc19
-rw-r--r--utils/Makefile.am14
-rw-r--r--utils/ccrp_nt.h169
-rw-r--r--utils/ccrp_onetable.h241
-rw-r--r--utils/fdict.cc4
-rw-r--r--utils/fdict.h41
-rwxr-xr-xutils/feature_vector.h4
-rw-r--r--utils/filelib.cc31
-rw-r--r--utils/filelib.h6
-rw-r--r--utils/logval.h10
-rw-r--r--utils/logval_test.cc14
-rw-r--r--utils/perfect_hash.cc37
-rw-r--r--utils/perfect_hash.h24
-rw-r--r--utils/phmt.cc40
-rw-r--r--utils/reconstruct_weights.cc68
-rw-r--r--utils/sampler.h2
-rw-r--r--utils/sparse_vector.h38
-rw-r--r--utils/stringlib.cc370
-rw-r--r--utils/stringlib.h3
-rw-r--r--utils/tdict.cc4
-rw-r--r--utils/ts.cc6
-rw-r--r--utils/weights.cc196
-rw-r--r--utils/weights.h30
-rw-r--r--utils/weights_test.cc7
-rw-r--r--vest/mr_vest_generate_mapper_input.cc6
158 files changed, 12990 insertions, 4761 deletions
diff --git a/.gitignore b/.gitignore
index 0590b009..7e63c4ef 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,5 +1,27 @@
+pro-train/.deps
+pro-train/mr_pro_map
+pro-train/mr_pro_reduce
+utils/reconstruct_weights
+decoder/.libs
+training/augment_grammar
+training/mpi_batch_optimize
+training/mpi_compute_cllh
+training/mpi_em_optimize
+training/mpi_extract_features
+training/mpi_extract_reachable
klm/lm/build_binary
extools/extractor_monolingual
+gi/pf/.deps
+gi/pf/brat
+gi/pf/cbgi
+gi/pf/dpnaive
+gi/pf/itg
+gi/pf/libpf.a
+gi/pf/pfbrat
+gi/pf/pfdist
+gi/pf/pfnaive
+gi/markov_al/.deps
+gi/markov_al/ml
gi/posterior-regularisation/prjava/lib/*.jar
klm/lm/libklm.a
klm/util/.deps
diff --git a/Makefile.am b/Makefile.am
index 214542a9..6b2ec7b6 100644
--- a/Makefile.am
+++ b/Makefile.am
@@ -1,7 +1,8 @@
# warning - the subdirectories in the following list should
# be kept in topologically sorted order. Also, DO NOT introduce
# cyclic dependencies between these directories!
-SUBDIRS = utils mteval klm/util klm/lm decoder phrasinator training mira dtrain vest extools
+SUBDIRS = utils mteval klm/util klm/lm decoder phrasinator training mira dtrain vest pro-train extools gi/pf gi/markov_al
+
#gi/pyp-topics/src gi/clda/src gi/posterior-regularisation/prjava
AUTOMAKE_OPTIONS = foreign
diff --git a/compound-split/de/charlm.rev.5gm.de.klm b/compound-split/de/charlm.rev.5gm.de.klm
index e8d114bd..28d09b54 100644
--- a/compound-split/de/charlm.rev.5gm.de.klm
+++ b/compound-split/de/charlm.rev.5gm.de.klm
Binary files differ
diff --git a/configure.ac b/configure.ac
index 1e984fcc..ec519067 100644
--- a/configure.ac
+++ b/configure.ac
@@ -11,6 +11,41 @@ AC_PROG_CXX
AC_LANG_CPLUSPLUS
BOOST_REQUIRE
BOOST_PROGRAM_OPTIONS
+AC_ARG_ENABLE(mpi,
+ [ --enable-mpi Build MPI binaries, assumes mpi.h is present ],
+ [ mpi=yes
+ ])
+AM_CONDITIONAL([MPI], [test "x$mpi" = xyes])
+
+if test "x$mpi" = xyes
+then
+ BOOST_SERIALIZATION
+ AC_DEFINE([HAVE_MPI], [1], [flag for MPI])
+ # TODO BOOST_MPI needs to be implemented
+ LIBS="$LIBS -lboost_mpi $BOOST_SERIALIZATION_LIBS"
+fi
+
+AM_CONDITIONAL([HAVE_CMPH], false)
+AC_ARG_WITH(cmph,
+ [AC_HELP_STRING([--with-cmph=PATH], [(optional) path to cmph perfect hashing library])],
+ [with_cmph=$withval],
+ [with_cmph=no]
+ )
+
+if test "x$with_cmph" != 'xno'
+then
+ SAVE_CPPFLAGS="$CPPFLAGS"
+ CPPFLAGS="$CPPFLAGS -I${with_cmph}/include"
+
+ AC_CHECK_HEADER(cmph.h,
+ [AC_DEFINE([HAVE_CMPH], [], [flag for cmph perfect hashing library])],
+ [AC_MSG_ERROR([Cannot find cmph library!])])
+
+ LDFLAGS="$LDFLAGS -L${with_cmph}/lib"
+ AC_CHECK_LIB(cmph, cmph_search)
+ AM_CONDITIONAL([HAVE_CMPH], true)
+fi
+
#BOOST_THREADS
CPPFLAGS="$CPPFLAGS $BOOST_CPPFLAGS"
LDFLAGS="$LDFLAGS $BOOST_PROGRAM_OPTIONS_LDFLAGS"
@@ -25,21 +60,7 @@ AC_CHECK_HEADER(google/dense_hash_map,
[AC_DEFINE([HAVE_SPARSEHASH], [], [flag for google::dense_hash_map])])
AC_PROG_INSTALL
-GTEST_LIB_CHECK
-
-AC_ARG_ENABLE(mpi,
- [ --enable-mpi Build MPI binaries, assumes mpi.h is present ],
- [ mpi=yes
- ])
-AM_CONDITIONAL([MPI], [test "x$mpi" = xyes])
-
-if test "x$mpi" = xyes
-then
- BOOST_SERIALIZATION
- AC_DEFINE([HAVE_MPI], [1], [flag for MPI])
- # TODO BOOST_MPI needs to be implemented
- LIBS="$LIBS -lboost_mpi $BOOST_SERIALIZATION_LIBS -lmpi++ -lmpi"
-fi
+GTEST_LIB_CHECK(1.0)
AM_CONDITIONAL([RAND_LM], false)
AC_ARG_WITH(randlm,
@@ -92,4 +113,4 @@ then
AM_CONDITIONAL([GLC], true)
fi
-AC_OUTPUT(Makefile utils/Makefile mteval/Makefile extools/Makefile decoder/Makefile phrasinator/Makefile training/Makefile vest/Makefile klm/util/Makefile klm/lm/Makefile mira/Makefile dtrain/Makefile gi/pyp-topics/src/Makefile gi/clda/src/Makefile)
+AC_OUTPUT(Makefile utils/Makefile mteval/Makefile extools/Makefile decoder/Makefile phrasinator/Makefile training/Makefile vest/Makefile pro-train/Makefile klm/util/Makefile klm/lm/Makefile mira/Makefile dtrain/Makefile gi/pyp-topics/src/Makefile gi/clda/src/Makefile gi/pf/Makefile gi/markov_al/Makefile)
diff --git a/decoder/Makefile.am b/decoder/Makefile.am
index e5f7505f..6b9360d8 100644
--- a/decoder/Makefile.am
+++ b/decoder/Makefile.am
@@ -42,7 +42,6 @@ libcdec_a_SOURCES = \
cfg.cc \
dwarf.cc \
ff_dwarf.cc \
- apply_fsa_models.cc \
rule_lexer.cc \
fst_translator.cc \
csplit.cc \
@@ -72,6 +71,7 @@ libcdec_a_SOURCES = \
ff_wordalign.cc \
ff_csplit.cc \
ff_tagger.cc \
+ ff_source_syntax.cc \
ff_bleu.cc \
ff_factory.cc \
freqdict.cc \
diff --git a/decoder/aligner.cc b/decoder/aligner.cc
index 292ee123..53e059fb 100644
--- a/decoder/aligner.cc
+++ b/decoder/aligner.cc
@@ -165,7 +165,7 @@ inline void WriteProbGrid(const Array2D<prob_t>& m, ostream* pos) {
if (m(i,j) == prob_t::Zero()) {
os << "\t---X---";
} else {
- snprintf(b, 1024, "%0.5f", static_cast<double>(m(i,j)));
+ snprintf(b, 1024, "%0.5f", m(i,j).as_float());
os << '\t' << b;
}
}
diff --git a/decoder/apply_fsa_models.cc b/decoder/apply_fsa_models.cc
deleted file mode 100755
index 3e93cadd..00000000
--- a/decoder/apply_fsa_models.cc
+++ /dev/null
@@ -1,798 +0,0 @@
-//see apply_fsa_models.README for notes on the l2r earley fsa+cfg intersection
-//implementation in this file (also some comments in this file)
-#define SAFE_VALGRIND 1
-
-#include "apply_fsa_models.h"
-#include <stdexcept>
-#include <cassert>
-#include <queue>
-#include <stdint.h>
-
-#include "writer.h"
-#include "hg.h"
-#include "ff_fsa_dynamic.h"
-#include "ff_from_fsa.h"
-#include "feature_vector.h"
-#include "stringlib.h"
-#include "apply_models.h"
-#include "cfg.h"
-#include "hg_cfg.h"
-#include "utoa.h"
-#include "hash.h"
-#include "value_array.h"
-#include "d_ary_heap.h"
-#include "agenda.h"
-#include "show.h"
-#include "string_to.h"
-
-
-#define DFSA(x) x
-//fsa earley chart
-
-#define DPFSA(x) x
-//prefix trie
-
-#define DBUILDTRIE(x)
-
-#define PRINT_PREFIX 1
-#if PRINT_PREFIX
-# define IF_PRINT_PREFIX(x) x
-#else
-# define IF_PRINT_PREFIX(x)
-#endif
-// keep backpointers in prefix trie so you can print a meaningful node id
-
-static const unsigned FSA_AGENDA_RESERVE=10; // TODO: increase to 1<<24 (16M)
-
-using namespace std;
-
-//impl details (not exported). flat namespace for my ease.
-
-typedef CFG::RHS RHS;
-typedef CFG::BinRhs BinRhs;
-typedef CFG::NTs NTs;
-typedef CFG::NT NT;
-typedef CFG::NTHandle NTHandle;
-typedef CFG::Rules Rules;
-typedef CFG::Rule Rule;
-typedef CFG::RuleHandle RuleHandle;
-
-namespace {
-
-/*
-
-1) A -> x . * (trie)
-
-this is somewhat nice. cost pushed for best first, of course. similar benefit as left-branching binarization without the explicit predict/complete steps?
-
-vs. just
-
-2) * -> x . y
-
-here you have to potentially list out all A -> . x y as items * -> . x y immediately, and shared rhs seqs won't be shared except at the usual single-NT predict/complete. of course, the prediction of items -> . x y can occur lazy best-first.
-
-vs.
-
-3) * -> x . *
-
-with 3, we predict all sorts of useless items - that won't give us our goal A and may not partcipate in any parse. this is not a good option at all.
-
-I'm using option 1.
-*/
-
-// if we don't greedy-binarize, we want to encode recognized prefixes p (X -> p . rest) efficiently. if we're doing this, we may as well also push costs so we can best-first select rules in a lazy fashion. this is effectively left-branching binarization, of course.
-
-template <class K,class V,class Hash>
-struct fsa_map_type {
- typedef std::map<K,V> type; // change to HASH_MAP ?
-};
-//template typedef - and macro to make it less painful
-#define FSA_MAP(k,v) fsa_map_type<k,v,boost::hash<k> >::type
-
-struct PrefixTrieNode;
-typedef PrefixTrieNode *NodeP;
-typedef PrefixTrieNode const *NodePc;
-
-// for debugging prints only
-struct TrieBackP {
- WordID w;
- NodePc from;
- TrieBackP(WordID w=0,NodePc from=0) : w(w),from(from) { }
-};
-
-FsaFeatureFunction const* print_fsa=0;
-CFG const* print_cfg=0;
-inline ostream& print_cfg_rhs(std::ostream &o,WordID w,CFG const*pcfg=print_cfg) {
- if (pcfg)
- pcfg->print_rhs_name(o,w);
- else
- CFG::static_print_rhs_name(o,w);
- return o;
-}
-
-inline std::string nt_name(WordID n,CFG const*pcfg=print_cfg) {
- if (pcfg) return pcfg->nt_name(n);
- return CFG::static_nt_name(n);
-}
-
-template <class V>
-ostream& print_by_nt(std::ostream &o,V const& v,CFG const*pcfg=print_cfg,char const* header="\nNT -> X\n") {
- o<<header;
- for (int i=0;i<v.size();++i)
- o << nt_name(i,pcfg) << " -> "<<v[i]<<"\n";
- return o;
-}
-
-template <class V>
-ostream& print_map_by_nt(std::ostream &o,V const& v,CFG const*pcfg=print_cfg,char const* header="\nNT -> X\n") {
- o<<header;
- for (typename V::const_iterator i=v.begin(),e=v.end();i!=e;++i) {
- print_cfg_rhs(o,i->first,pcfg) << " -> "<<i->second<<"\n";
- }
- return o;
-}
-
-struct PrefixTrieEdge {
- PrefixTrieEdge()
- // : dest(0),w(TD::max_wordid)
- {}
- PrefixTrieEdge(WordID w,NodeP dest)
- : dest(dest),w(w)
- {}
-// explicit PrefixTrieEdge(best_t p) : p(p),dest(0) { }
-
- best_t p;// viterbi additional prob, i.e. product over path incl. p_final = total rule prob. note: for final edge, set this.
- //DPFSA()
- // we can probably just store deltas, but for debugging remember the full p
- // best_t delta; //
- NodeP dest;
- bool is_final() const { return dest==0; }
- best_t p_dest() const;
- WordID w; // for root and and is_final(), this will be (negated) NTHandle.
-
- // for sorting most probable first in adj; actually >(p)
- inline bool operator <(PrefixTrieEdge const& o) const {
- return o.p<p;
- }
- PRINT_SELF(PrefixTrieEdge)
- void print(std::ostream &o) const {
- print_cfg_rhs(o,w);
- o<<"{"<<p<<"}->"<<dest;
- }
-};
-
-//note: ending a rule is handled with a special final edge, so that possibility can be explored in best-first order along with the rest (alternative: always finish a final rule by putting it on queue). this edge has no symbol on it.
-struct PrefixTrieNode {
- best_t p; // viterbi (max prob) of rule this node leads to - when building. telescope later onto edges for best-first.
-// bool final; // may also have successors, of course. we don't really need to track this; a null dest edge in the adj list lets us encounter the fact in best first order.
- void p_delta(int next,best_t &p) const {
- p*=adj[next].p;
- }
- void inc_adj(int &next,best_t &p) const {
- p/=adj[next].p; //TODO: cache deltas
- ++next;
- p*=adj[next].p;
- }
-
-
- typedef TrieBackP BP;
- typedef std::vector<BP> BPs;
- void back_vec(BPs &ns) const {
- IF_PRINT_PREFIX(if(backp.from) { ns.push_back(backp); backp.from->back_vec(ns); })
- }
-
- BPs back_vec() const {
- BPs ret;
- back_vec(ret);
- return ret;
- }
-
- unsigned size() const {
- unsigned a=adj.size();
- unsigned e=edge_for.size();
- return a>e?a:e;
- }
-
- void print_back_str(std::ostream &o) const {
- BPs back=back_vec();
- unsigned i=back.size();
- if (!i) {
- o<<"PrefixTrieNode@"<<(uintptr_t)this;
- return;
- }
- bool first=true;
- while (i--<=0) {
- if (!first) o<<',';
- first=false;
- WordID w=back[i].w;
- print_cfg_rhs(o,w);
- }
- }
- std::string back_str() const {
- std::ostringstream o;
- print_back_str(o);
- return o.str();
- }
-
-// best_t p_final; // additional prob beyond what we already paid. while building, this is the total prob
-// instead of storing final, we'll say that an edge with a NULL dest is a final edge. this way it gets sorted into the list of adj.
-
- // instead of completed map, we have trie start w/ lhs.
- NTHandle lhs; // nonneg. - instead of storing this in Item.
- IF_PRINT_PREFIX(BP backp;)
-
- enum { ROOT=-1 };
- explicit PrefixTrieNode(NTHandle lhs=ROOT,best_t p=1) : p(p),lhs(lhs),IF_PRINT_PREFIX(backp()) {
- //final=false;
- }
- bool is_root() const { return lhs==ROOT; } // means adj are the nonneg lhs indices, and we have the index edge_for still available
-
- // outgoing edges will be ordered highest p to worst p
-
- typedef FSA_MAP(WordID,PrefixTrieEdge) PrefixTrieEdgeFor;
-public:
- PrefixTrieEdgeFor edge_for; //TODO: move builder elsewhere? then need 2nd hash or edge include pointer to builder. just clear this later
- bool have_adj() const {
- return adj.size()>=edge_for.size();
- }
- bool no_adj() const {
- return adj.empty();
- }
-
- void index_adj() {
- index_adj(edge_for);
- }
- template <class M>
- void index_adj(M &m) {
- assert(have_adj());
- m.clear();
- for (int i=0;i<adj.size();++i) {
- PrefixTrieEdge const& e=adj[i];
- SHOWM2(DPFSA,"index_adj",i,e);
- m[e.w]=e;
- }
- }
- template <class PV>
- void index_lhs(PV &v) {
- for (int i=0,e=adj.size();i!=e;++i) {
- PrefixTrieEdge const& edge=adj[i];
- // assert(edge.p.is_1()); // actually, after done_building, e will have telescoped dest->p/p.
- NTHandle n=-edge.w;
- assert(n>=0);
-// SHOWM3(DPFSA,"index_lhs",i,edge,n);
- v[n]=edge.dest;
- }
- }
-
- template <class PV>
- void done_root(PV &v) {
- assert(is_root());
- SHOWM1(DBUILDTRIE,"done_root",OSTRF1(print_map_by_nt,edge_for));
- done_building_r(); //sets adj
- SHOWM1(DBUILDTRIE,"done_root",OSTRF1(print_by_nt,adj));
-// SHOWM1(DBUILDTRIE,done_root,adj);
-// index_adj(); // we want an index for the root node?. don't think so - index_lhs handles it. also we stopped clearing edge_for.
- index_lhs(v); // uses adj
- }
-
- // call only once.
- void done_building_r() {
- done_building();
- for (int i=0;i<adj.size();++i)
- if (adj[i].dest) // skip final edge
- adj[i].dest->done_building_r();
- }
-
- // for done_building; compute incremental (telescoped) edge p
- PrefixTrieEdge /*const&*/ operator()(PrefixTrieEdgeFor::value_type & pair) const {
- PrefixTrieEdge &e=pair.second;//const_cast<PrefixTrieEdge&>(pair.second);
- e.p=e.p_dest()/p;
- return e;
- }
-
- // call only once.
- void done_building() {
- SHOWM3(DBUILDTRIE,"done_building",edge_for.size(),adj.size(),1);
-#if 1
- adj.reinit_map(edge_for,*this);
-#else
- adj.reinit(edge_for.size());
- SHOWM3(DBUILDTRIE,"done_building_reinit",edge_for.size(),adj.size(),2);
- Adj::iterator o=adj.begin();
- for (PrefixTrieEdgeFor::iterator i=edge_for.begin(),e=edge_for.end();i!=e;++i) {
- SHOWM3(DBUILDTRIE,"edge_for",o-adj.begin(),i->first,i->second);
- PrefixTrieEdge &edge=i->second;
- edge.p=(edge.dest->p)/p;
- *o++=edge;
-// (*this)(*i);
- }
-#endif
- SHOWM1(DBUILDTRIE,"done building adj",prange(adj.begin(),adj.end(),true));
- assert(adj.size()==edge_for.size());
-// if (final) p_final/=p;
- std::sort(adj.begin(),adj.end());
- //TODO: store adjacent differences on edges (compared to
- }
-
- typedef ValueArray<PrefixTrieEdge> Adj;
-// typedef vector<PrefixTrieEdge> Adj;
- Adj adj;
-
- typedef WordID W;
-
- // let's compute p_min so that every rule reachable from the created node has p at least this low.
- NodeP improve_edge(PrefixTrieEdge const& e,best_t rulep) {
- NodeP d=e.dest;
- maybe_improve(d->p,rulep);
- return d;
- }
-
- inline NodeP build(W w,best_t rulep) {
- return build(lhs,w,rulep);
- }
- inline NodeP build_lhs(NTHandle n,best_t rulep) {
- return build(n,-n,rulep);
- }
-
- NodeP build(NTHandle lhs_,W w,best_t rulep) {
- PrefixTrieEdgeFor::iterator i=edge_for.find(w);
- if (i!=edge_for.end())
- return improve_edge(i->second,rulep);
- NodeP r=new PrefixTrieNode(lhs_,rulep);
- IF_PRINT_PREFIX(r->backp=BP(w,this));
-// edge_for.insert(i,PrefixTrieEdgeFor::value_type(w,PrefixTrieEdge(w,r)));
- add(edge_for,w,PrefixTrieEdge(w,r));
- SHOWM4(DBUILDTRIE,"built node",this,w,*r,r);
- return r;
- }
-
- void set_final(NTHandle lhs_,best_t pf) {
- assert(no_adj());
-// final=true;
- PrefixTrieEdge &e=edge_for[null_wordid];
- e.p=pf;
- e.dest=0;
- e.w=lhs_;
- maybe_improve(p,pf);
- }
-
-private:
- void destroy_children() {
- assert(adj.size()>=edge_for.size());
- for (int i=0,e=adj.size();i<e;++i) {
- NodeP c=adj[i].dest;
- if (c) { // final state has no end
- delete c;
- }
- }
- }
-public:
- ~PrefixTrieNode() {
- destroy_children();
- }
- void print(std::ostream &o) const {
- o << "Node"<<this<< ": "<<lhs << "->" << p;
- o << ',' << size() << ',';
- print_back_str(o);
- }
- PRINT_SELF(PrefixTrieNode)
-};
-
-inline best_t PrefixTrieEdge::p_dest() const {
- return dest ? dest->p : p; // for final edge, p was set (no sentinel node)
-}
-
-
-//Trie starts with lhs (nonneg index), then continues w/ rhs (mixed >0 word, else NT)
-// trie ends with final edge, which points to a per-lhs prefix node
-struct PrefixTrie {
- void print(std::ostream &o) const {
- o << cfgp << ' ' << root;
- }
- PRINT_SELF(PrefixTrie);
- CFG *cfgp;
- Rules const* rulesp;
- Rules const& rules() const { return *rulesp; }
- CFG const& cfg() const { return *cfgp; }
- PrefixTrieNode root;
- typedef std::vector<NodeP> LhsToTrie; // will have to check lhs2[lhs].p for best cost of some rule with that lhs, then use edge deltas after? they're just caching a very cheap computation, really
- LhsToTrie lhs2; // no reason to use a map or hash table; every NT in the CFG will have some rule rhses. lhs_to_trie[i]=root.edge_for[i], i.e. we still have a root trie node conceptually, we just access through this since it's faster.
- typedef LhsToTrie LhsToComplete;
- LhsToComplete lhs2complete; // the sentinel "we're completing" node (dot at end) for that lhs. special case of suffix-set=same trie minimization (aka right branching binarization) // these will be used to track kbest completions, along with a l state (r state will be in the list)
- PrefixTrie(CFG &cfg) : cfgp(&cfg),rulesp(&cfg.rules),lhs2(cfg.nts.size(),0),lhs2complete(cfg.nts.size()) {
-// cfg.SortLocalBestFirst(); // instead we'll sort in done_building_r
- print_cfg=cfgp;
- SHOWM2(DBUILDTRIE,"PrefixTrie()",rulesp->size(),lhs2.size());
- cfg.VisitRuleIds(*this);
- root.done_root(lhs2);
- SHOWM3(DBUILDTRIE,"done w/ PrefixTrie: ",root,root.adj.size(),lhs2.size());
- DBUILDTRIE(print_by_nt(cerr,lhs2,cfgp));
- SHOWM1(DBUILDTRIE,"lhs2",OSTRF2(print_by_nt,lhs2,cfgp));
- }
-
- void operator()(int ri) {
- Rule const& r=rules()[ri];
- NTHandle lhs=r.lhs;
- best_t p=r.p;
-// NodeP n=const_cast<PrefixTrieNode&>(root).build_lhs(lhs,p);
- NodeP n=root.build_lhs(lhs,p);
- SHOWM4(DBUILDTRIE,"Prefixtrie rule id, root",ri,root,p,*n);
- for (RHS::const_iterator i=r.rhs.begin(),e=r.rhs.end();;++i) {
- SHOWM2(DBUILDTRIE,"PrefixTrie build or final",i-r.rhs.begin(),*n);
- if (i==e) {
- n->set_final(lhs,p);
- break;
- }
- n=n->build(*i,p);
- SHOWM2(DBUILDTRIE,"PrefixTrie built",*i,*n);
- }
-// root.build(lhs,r.p)->build(r.rhs,r.p);
- }
- inline NodeP lhs2_ex(NTHandle n) const {
- NodeP r=lhs2[n];
- if (!r) throw std::runtime_error("PrefixTrie: no CFG rule w/ lhs "+cfgp->nt_name(n));
- return r;
- }
-private:
- PrefixTrie(PrefixTrie const& o);
-};
-
-
-
-typedef std::size_t ItemHash;
-
-
-struct ItemKey {
- explicit ItemKey(NodeP start,Bytes const& start_state) : dot(start),q(start_state),r(start_state) { }
- explicit ItemKey(NodeP dot) : dot(dot) { }
- NodeP dot; // dot is a function of the stuff already recognized, and gives a set of suffixes y to complete to finish a rhs for lhs() -> dot y. for a lhs A -> . *, this will point to lh2[A]
- Bytes q,r; // (q->r are the fsa states; if r is empty it means
- bool operator==(ItemKey const& o) const {
- return dot==o.dot && q==o.q && r==o.r;
- }
- inline ItemHash hash() const {
- ItemHash h=GOLDEN_MEAN_FRACTION*(ItemHash)(dot-NULL); // i.e. lower order bits of ptr are nonrandom
- using namespace boost;
- hash_combine(h,q);
- hash_combine(h,r);
- return h;
- }
- template<class O>
- void print(O &o) const {
- o<<"lhs="<<lhs();
- if (dot)
- dot->print_back_str(o);
- if (print_fsa) {
- o<<'/';
- print_fsa->print_state(o,&q[0]);
- o<<"->";
- print_fsa->print_state(o,&r[0]);
- }
- }
- NTHandle lhs() const { return dot->lhs; }
- PRINT_SELF(ItemKey)
-};
-inline ItemHash hash_value(ItemKey const& x) {
- return x.hash();
-}
-ItemKey null_item((PrefixTrieNode*)0);
-
-struct Item;
-typedef Item *ItemP;
-
-/* we use a single type of item so it can live in a single best-first queue. we hold them by pointer so they can have mutable state, e.g. priority/location, but also lists of predictions and kbest completions (i.e. completions[L,r] = L -> * (r,s), by 1best for each possible s. we may discover more s later. we could use different subtypes since we hold by pointer, but for now everything will be packed as variants of Item */
-#undef INIT_LOCATION
-#if D_ARY_TRACK_OUT_OF_HEAP
-# define INIT_LOCATION , location(D_ARY_HEAP_NULL_INDEX)
-#elif !defined(NDEBUG) || SAFE_VALGRIND
- // avoid spurious valgrind warning - FIXME: still complains???
-# define INIT_LOCATION , location()
-#else
-# define INIT_LOCATION
-#endif
-
-// these should go in a global best-first queue
-struct ItemPrio {
- // NOTE: sum = viterbi (max)
- ItemPrio() : priority(init_0()),inner(init_0()) { }
- explicit ItemPrio(best_t priority) : priority(priority),inner(init_0()) { }
- best_t priority; // includes inner prob. (forward)
- /* The forward probability alpha_i(X[k]->x.y) is the sum of the probabilities of all
- constrained paths of length i that end in state X[k]->x.y*/
- best_t inner;
- /* The inner probability beta_i(X[k]->x.y) is the sum of the probabilities of all
- paths of length i-k that start in state X[k,k]->.xy and end in X[k,i]->x.y, and generate the input symbols x[k,...,i-1] */
- template<class O>
- void print(O &o) const {
- o<<priority; // TODO: show/use inner?
- }
- typedef ItemPrio self_type;
- SELF_TYPE_PRINT
-};
-
-#define ITEM_TYPE(X,t) \
- X(t,ADJ,=-1) \
-
-#define ITEM_TYPE_TYPE ItemType
-
-DECLARE_NAMED_ENUM(ITEM_TYPE)
-DEFINE_NAMED_ENUM(ITEM_TYPE)
-
-struct Item : ItemPrio,ItemKey {
-/* explicit Item(NodeP dot,best_t prio,int next) : ItemPrio(prio),ItemKey(dot),trienext(next),from(0)
- INIT_LOCATION
- { }*/
-// ItemType t;
- // lazy queueing of succesors item:
- bool is_trie_adj() const {
- return trienext>=0;
- }
- explicit Item(FFState const& state,NodeP dot,best_t prio,int next=0) : ItemPrio(prio),ItemKey(dot,state),trienext(next),from(0)
- INIT_LOCATION
- {
-// t=ADJ;
-// if (dot->adj.size())
- dot->p_delta(next,priority);
-// SHOWM1(DFSA,"Item(state,dot,prio)",prio);
- }
- typedef std::queue<ItemP> Predicted;
-// Predicted predicted; // this is empty, unless this is a predicted L -> .asdf item, or a to-complete L -> asdf .
- int trienext; // index of dot->adj to complete (if dest==0), or predict (if NT), or scan (if word). note: we could store pointer inside adj since it and trie are @ fixed addrs. less pointer arith, more space.
- ItemP from; //backpointer - 0 for L -> . asdf for the rest; L -> a .sdf, it's the L -> .asdf item.
- ItemP predicted_from() const {
- ItemP p=(ItemP)this;
- while(p->from) p=p->from;
- return p;
- }
- template<class O>
- void print(O &o) const {
- o<< '[';
- o<<this<<": ";
- ItemKey::print(o);
- o<<' ';
- ItemPrio::print(o);
- o<<" next="<<trienext;
- o<< ']';
- }
- PRINT_SELF(Item)
- unsigned location;
-};
-
-struct GetItemKey {
- typedef Item argument_type;
- typedef ItemKey result_type;
- result_type const& operator()(Item const& i) const { return i; }
- template <class T>
- T const& operator()(T const& t) const { return t; }
-};
-
-/* here's what i imagine (best first):
- all of these are looked up in a chart which includes the fsa states as part of the identity
-
- perhaps some items are ephemeral and never reused (e.g. edge items of a cube, where we delay traversing trie based on probabilities), but in all ohter cases we make entirely new objects derived from the original one (memoizing). let's ignore lazier edge items for now and always push all successors onto heap.
-
- initial item (predicted): GOAL_NT -> . * (trie root for that lhs), start, start (fsa start states). has a list of
-
- completing item ( L -> * . needs to queue all the completions immediately. when predicting before a completion happens, add to prediction list. after it happens, immediately use the completed bests. this is confusing to me: the completions for an original NT w/ a given r state may end up in several different ones. we don't only care about the 1 best cost r item but all the different r.
-
- the prediction's left/right uses the predictor's right
-
- */
-template <class FsaFF=FsaFeatureFunction>
-struct Chart {
- //typedef HASH_MAP<Item,ItemP,boost::hash<Item> > Items;
- //typedef Items::iterator FindItem;
- //typedef std::pair<FindItem,bool> InsertItem;
-// Items items;
- CFG &cfg; // TODO: remove this from Chart
- SentenceMetadata const& smeta;
- FsaFF const& fsa;
- NTHandle goal_nt;
- PrefixTrie trie;
- typedef Agenda<Item,BetterP,GetItemKey> A;
- A a;
-
- /* had to stop working on this for now - it's garbage/useless in this form - see NOTES.earley */
-
- // p_partial is priority*p(rule) - excluding the FSA model score, and predicted
- void succ(Item const& from,int adji,best_t p_partial) {
- PrefixTrieEdge const& te=from.dot->adj[adji];
- NodeP dest=te.dest;
- if (te.is_final()) {
- // complete
- return;
- }
- WordID w=te.w;
- if (w<0) {
- NTHandle lhs=-w;
- } else {
-
- }
- }
-
- void extend1() {
- BetterP better;
- Item &t=*a.top();
- best_t tp=t.priority;
- if (t.is_trie_adj()) {
- best_t pstop=a.second_best(); // remember; best_t a<b means a better than (higher prob) than b
-// NodeP d=t.dot;
- PrefixTrieNode::Adj const& adj=t.dot->adj;
- int n=t.trienext,m=adj.size();
- SHOWM3(DFSA,"popped",t,tp,pstop);
- for (;n<m;++n) { // cube corner
- PrefixTrieEdge const& te=adj[n];
- SHOWM3(DFSA,"maybe try trie next",n,te.p,pstop);
- if (better(te.p,pstop)) { // can get some improvement
- SHOWM2(DFSA,"trying adj ",m,te);
- } else {
- goto done;
- }
- }
- a.pop();
- done:;
- }
- }
-
- void best_first(unsigned kbest=1) {
- assert(kbest==1); //TODO: k-best via best-first requires revisiting best things again and adjusting desc. tricky.
- while(!a.empty()) {
- extend1();
- }
- }
-
- Chart(CFG &cfg,SentenceMetadata const& smeta,FsaFF const& fsa,unsigned reserve=FSA_AGENDA_RESERVE)
- : cfg(cfg),smeta(smeta),fsa(fsa),trie(cfg),a(reserve) {
- assert(fsa.state_bytes());
- print_fsa=&fsa;
- goal_nt=cfg.goal_nt;
- best_t prio=init_1();
- SHOW1(DFSA,prio);
- a.add(a.construct(fsa.start,trie.lhs2_ex(goal_nt),prio));
- }
-};
-
-
-}//anon ns
-
-
-DEFINE_NAMED_ENUM(FSA_BY)
-
-template <class FsaFF=FsaFeatureFunction>
-struct ApplyFsa {
- ApplyFsa(HgCFG &i,
- const SentenceMetadata& smeta,
- const FsaFeatureFunction& fsa,
- DenseWeightVector const& weights,
- ApplyFsaBy const& by,
- Hypergraph* oh
- )
- :hgcfg(i),smeta(smeta),fsa(fsa),weights(weights),by(by),oh(oh)
- {
- stateless=!fsa.state_bytes();
- }
- void Compute() {
- if (by.IsBottomUp() || stateless)
- ApplyBottomUp();
- else
- ApplyEarley();
- }
- void ApplyBottomUp();
- void ApplyEarley();
- CFG const& GetCFG();
-private:
- CFG cfg;
- HgCFG &hgcfg;
- SentenceMetadata const& smeta;
- FsaFF const& fsa;
-// WeightVector weight_vector;
- DenseWeightVector weights;
- ApplyFsaBy by;
- Hypergraph* oh;
- std::string cfg_out;
- bool stateless;
-};
-
-template <class F>
-void ApplyFsa<F>::ApplyBottomUp()
-{
- assert(by.IsBottomUp());
- FeatureFunctionFromFsa<FsaFeatureFunctionFwd> buff(&fsa);
- buff.Init(); // mandatory to call this (normally factory would do it)
- vector<const FeatureFunction*> ffs(1,&buff);
- ModelSet models(weights, ffs);
- IntersectionConfiguration i(stateless ? BU_FULL : by.BottomUpAlgorithm(),by.pop_limit);
- ApplyModelSet(hgcfg.ih,smeta,models,i,oh);
-}
-
-template <class F>
-void ApplyFsa<F>::ApplyEarley()
-{
- hgcfg.GiveCFG(cfg);
- print_cfg=&cfg;
- print_fsa=&fsa;
- Chart<F> chart(cfg,smeta,fsa);
- // don't need to uniq - option to do that already exists in cfg_options
- //TODO:
- chart.best_first();
- *oh=hgcfg.ih;
-}
-
-
-void ApplyFsaModels(HgCFG &i,
- const SentenceMetadata& smeta,
- const FsaFeatureFunction& fsa,
- DenseWeightVector const& weight_vector,
- ApplyFsaBy const& by,
- Hypergraph* oh)
-{
- ApplyFsa<FsaFeatureFunction> a(i,smeta,fsa,weight_vector,by,oh);
- a.Compute();
-}
-
-/*
-namespace {
-char const* anames[]={
- "BU_CUBE",
- "BU_FULL",
- "EARLEY",
- 0
-};
-}
-*/
-
-//TODO: named enum type in boost?
-
-std::string ApplyFsaBy::name() const {
-// return anames[algorithm];
- return GetName(algorithm);
-}
-
-std::string ApplyFsaBy::all_names() {
- return FsaByNames(" ");
- /*
- std::ostringstream o;
- for (int i=0;i<N_ALGORITHMS;++i) {
- assert(anames[i]);
- if (i) o<<' ';
- o<<anames[i];
- }
- return o.str();
- */
-}
-
-ApplyFsaBy::ApplyFsaBy(std::string const& n, int pop_limit) : pop_limit(pop_limit) {
- std::string uname=toupper(n);
- algorithm=GetFsaBy(uname);
-/*anames=0;
- while(anames[algorithm] && anames[algorithm] != uname) ++algorithm;
- if (!anames[algorithm])
- throw std::runtime_error("Unknown ApplyFsaBy type: "+n+" - legal types: "+all_names());
-*/
-}
-
-ApplyFsaBy::ApplyFsaBy(FsaBy i, int pop_limit) : pop_limit(pop_limit) {
-/* if (i<0 || i>=N_ALGORITHMS)
- throw std::runtime_error("Unknown ApplyFsaBy type id: "+itos(i)+" - legal types: "+all_names());
-*/
- GetName(i); // checks validity
- algorithm=i;
-}
-
-int ApplyFsaBy::BottomUpAlgorithm() const {
- assert(IsBottomUp());
- return algorithm==BU_CUBE ?
- IntersectionConfiguration::CUBE
- :IntersectionConfiguration::FULL;
-}
-
-void ApplyFsaModels(Hypergraph const& ih,
- const SentenceMetadata& smeta,
- const FsaFeatureFunction& fsa,
- DenseWeightVector const& weights, // pre: in is weighted by these (except with fsa featval=0 before this)
- ApplyFsaBy const& cfg,
- Hypergraph* out)
-{
- HgCFG i(ih);
- ApplyFsaModels(i,smeta,fsa,weights,cfg,out);
-}
diff --git a/decoder/apply_models.cc b/decoder/apply_models.cc
index 9390c809..40fd27e4 100644
--- a/decoder/apply_models.cc
+++ b/decoder/apply_models.cc
@@ -17,6 +17,10 @@
#include "hg.h"
#include "ff.h"
+#define NORMAL_CP 1
+#define FAST_CP 2
+#define FAST_CP_2 3
+
using namespace std;
using namespace std::tr1;
@@ -164,13 +168,15 @@ public:
const SentenceMetadata& sm,
const Hypergraph& i,
int pop_limit,
- Hypergraph* o) :
+ Hypergraph* o,
+ int s = NORMAL_CP ) :
models(m),
smeta(sm),
in(i),
out(*o),
D(in.nodes_.size()),
- pop_limit_(pop_limit) {
+ pop_limit_(pop_limit),
+ strategy_(s){
if (!SILENT) cerr << " Applying feature functions (cube pruning, pop_limit = " << pop_limit_ << ')' << endl;
node_states_.reserve(kRESERVE_NUM_NODES);
}
@@ -184,9 +190,21 @@ public:
if (num_nodes > 100) every = 10;
assert(in.nodes_[pregoal].out_edges_.size() == 1);
if (!SILENT) cerr << " ";
+ int has = 0;
for (int i = 0; i < in.nodes_.size(); ++i) {
- if (!SILENT && i % every == 0) cerr << '.';
- KBest(i, i == goal_id);
+ if (!SILENT) {
+ int needs = (50 * i / in.nodes_.size());
+ while (has < needs) { cerr << '.'; ++has; }
+ }
+ if (strategy_==NORMAL_CP){
+ KBest(i, i == goal_id);
+ }
+ if (strategy_==FAST_CP){
+ KBestFast(i, i == goal_id);
+ }
+ if (strategy_==FAST_CP_2){
+ KBestFast2(i, i == goal_id);
+ }
}
if (!SILENT) {
cerr << endl;
@@ -258,8 +276,7 @@ public:
make_heap(cand.begin(), cand.end(), HeapCandCompare());
State2Node state2node; // "buf" in Figure 2
int pops = 0;
- int pop_limit_eff=max(1,int(v.promise*pop_limit_));
- while(!cand.empty() && pops < pop_limit_eff) {
+ while(!cand.empty() && pops < pop_limit_) {
pop_heap(cand.begin(), cand.end(), HeapCandCompare());
Candidate* item = cand.back();
cand.pop_back();
@@ -283,6 +300,114 @@ public:
delete freelist[i];
}
+ void KBestFast(const int vert_index, const bool is_goal) {
+ // cerr << "KBest(" << vert_index << ")\n";
+ CandidateList& D_v = D[vert_index];
+ assert(D_v.empty());
+ const Hypergraph::Node& v = in.nodes_[vert_index];
+ // cerr << " has " << v.in_edges_.size() << " in-coming edges\n";
+ const vector<int>& in_edges = v.in_edges_;
+ CandidateHeap cand;
+ CandidateList freelist;
+ cand.reserve(in_edges.size());
+ //init with j<0,0> for all rules-edges that lead to node-(NT-span)
+ for (int i = 0; i < in_edges.size(); ++i) {
+ const Hypergraph::Edge& edge = in.edges_[in_edges[i]];
+ const JVector j(edge.tail_nodes_.size(), 0);
+ cand.push_back(new Candidate(edge, j, out, D, node_states_, smeta, models, is_goal));
+ }
+ // cerr << " making heap of " << cand.size() << " candidates\n";
+ make_heap(cand.begin(), cand.end(), HeapCandCompare());
+ State2Node state2node; // "buf" in Figure 2
+ int pops = 0;
+ while(!cand.empty() && pops < pop_limit_) {
+ pop_heap(cand.begin(), cand.end(), HeapCandCompare());
+ Candidate* item = cand.back();
+ cand.pop_back();
+ // cerr << "POPPED: " << *item << endl;
+
+ PushSuccFast(*item, is_goal, &cand);
+ IncorporateIntoPlusLMForest(item, &state2node, &freelist);
+ ++pops;
+ }
+ D_v.resize(state2node.size());
+ int c = 0;
+ for (State2Node::iterator i = state2node.begin(); i != state2node.end(); ++i){
+ D_v[c++] = i->second;
+ // cerr << "MERGED: " << *i->second << endl;
+ }
+ //cerr <<"Node id: "<< vert_index<< endl;
+ //#ifdef MEASURE_CA
+ // cerr << "countInProcess (pop/tot): node id: " << vert_index << " (" << count_in_process_pop << "/" << count_in_process_tot << ")"<<endl;
+ // cerr << "countAtEnd (pop/tot): node id: " << vert_index << " (" << count_at_end_pop << "/" << count_at_end_tot << ")"<<endl;
+ //#endif
+ sort(D_v.begin(), D_v.end(), EstProbSorter());
+
+ // cerr << " expanded to " << D_v.size() << " nodes\n";
+
+ for (int i = 0; i < cand.size(); ++i)
+ delete cand[i];
+ // freelist is necessary since even after an item merged, it still stays in
+ // the unique set so it can't be deleted til now
+ for (int i = 0; i < freelist.size(); ++i)
+ delete freelist[i];
+ }
+
+ void KBestFast2(const int vert_index, const bool is_goal) {
+ // cerr << "KBest(" << vert_index << ")\n";
+ CandidateList& D_v = D[vert_index];
+ assert(D_v.empty());
+ const Hypergraph::Node& v = in.nodes_[vert_index];
+ // cerr << " has " << v.in_edges_.size() << " in-coming edges\n";
+ const vector<int>& in_edges = v.in_edges_;
+ CandidateHeap cand;
+ CandidateList freelist;
+ cand.reserve(in_edges.size());
+ UniqueCandidateSet unique_accepted;
+ //init with j<0,0> for all rules-edges that lead to node-(NT-span)
+ for (int i = 0; i < in_edges.size(); ++i) {
+ const Hypergraph::Edge& edge = in.edges_[in_edges[i]];
+ const JVector j(edge.tail_nodes_.size(), 0);
+ cand.push_back(new Candidate(edge, j, out, D, node_states_, smeta, models, is_goal));
+ }
+ // cerr << " making heap of " << cand.size() << " candidates\n";
+ make_heap(cand.begin(), cand.end(), HeapCandCompare());
+ State2Node state2node; // "buf" in Figure 2
+ int pops = 0;
+ while(!cand.empty() && pops < pop_limit_) {
+ pop_heap(cand.begin(), cand.end(), HeapCandCompare());
+ Candidate* item = cand.back();
+ cand.pop_back();
+ assert(unique_accepted.insert(item).second); // these should all be unique!
+ // cerr << "POPPED: " << *item << endl;
+
+ PushSuccFast2(*item, is_goal, &cand, &unique_accepted);
+ IncorporateIntoPlusLMForest(item, &state2node, &freelist);
+ ++pops;
+ }
+ D_v.resize(state2node.size());
+ int c = 0;
+ for (State2Node::iterator i = state2node.begin(); i != state2node.end(); ++i){
+ D_v[c++] = i->second;
+ // cerr << "MERGED: " << *i->second << endl;
+ }
+ //cerr <<"Node id: "<< vert_index<< endl;
+ //#ifdef MEASURE_CA
+ // cerr << "countInProcess (pop/tot): node id: " << vert_index << " (" << count_in_process_pop << "/" << count_in_process_tot << ")"<<endl;
+ // cerr << "countAtEnd (pop/tot): node id: " << vert_index << " (" << count_at_end_pop << "/" << count_at_end_tot << ")"<<endl;
+ //#endif
+ sort(D_v.begin(), D_v.end(), EstProbSorter());
+
+ // cerr << " expanded to " << D_v.size() << " nodes\n";
+
+ for (int i = 0; i < cand.size(); ++i)
+ delete cand[i];
+ // freelist is necessary since even after an item merged, it still stays in
+ // the unique set so it can't be deleted til now
+ for (int i = 0; i < freelist.size(); ++i)
+ delete freelist[i];
+ }
+
void PushSucc(const Candidate& item, const bool is_goal, CandidateHeap* pcand, UniqueCandidateSet* cs) {
CandidateHeap& cand = *pcand;
for (int i = 0; i < item.j_.size(); ++i) {
@@ -300,6 +425,54 @@ public:
}
}
+ //PushSucc following unique ancestor generation function
+ void PushSuccFast(const Candidate& item, const bool is_goal, CandidateHeap* pcand){
+ CandidateHeap& cand = *pcand;
+ for (int i = 0; i < item.j_.size(); ++i) {
+ JVector j = item.j_;
+ ++j[i];
+ if (j[i] < D[item.in_edge_->tail_nodes_[i]].size()) {
+ Candidate* new_cand = new Candidate(*item.in_edge_, j, out, D, node_states_, smeta, models, is_goal);
+ cand.push_back(new_cand);
+ push_heap(cand.begin(), cand.end(), HeapCandCompare());
+ }
+ if(item.j_[i]!=0){
+ return;
+ }
+ }
+ }
+
+ //PushSucc only if all ancest Cand are added
+ void PushSuccFast2(const Candidate& item, const bool is_goal, CandidateHeap* pcand, UniqueCandidateSet* ps){
+ CandidateHeap& cand = *pcand;
+ for (int i = 0; i < item.j_.size(); ++i) {
+ JVector j = item.j_;
+ ++j[i];
+ if (j[i] < D[item.in_edge_->tail_nodes_[i]].size()) {
+ Candidate query_unique(*item.in_edge_, j);
+ if (HasAllAncestors(&query_unique,ps)) {
+ Candidate* new_cand = new Candidate(*item.in_edge_, j, out, D, node_states_, smeta, models, is_goal);
+ cand.push_back(new_cand);
+ push_heap(cand.begin(), cand.end(), HeapCandCompare());
+ }
+ }
+ }
+ }
+
+ bool HasAllAncestors(const Candidate* item, UniqueCandidateSet* cs){
+ for (int i = 0; i < item->j_.size(); ++i) {
+ JVector j = item->j_;
+ --j[i];
+ if (j[i] >=0) {
+ Candidate query_unique(*item->in_edge_, j);
+ if (cs->count(&query_unique) == 0) {
+ return false;
+ }
+ }
+ }
+ return true;
+ }
+
const ModelSet& models;
const SentenceMetadata& smeta;
const Hypergraph& in;
@@ -311,6 +484,7 @@ public:
FFStates node_states_; // for each node in the out-HG what is
// its q function value?
const int pop_limit_;
+ const int strategy_; //switch Cube Pruning strategy: 1 normal, 2 fast (alg 2), 3 fast_2 (alg 3). (see: Gesmundo A., Henderson J,. Faster Cube Pruning, IWSLT 2010)
};
struct NoPruningRescorer {
@@ -412,15 +586,28 @@ void ApplyModelSet(const Hypergraph& in,
if (models.stateless() || config.algorithm == IntersectionConfiguration::FULL) {
NoPruningRescorer ma(models, smeta, in, out); // avoid overhead of best-first when no state
ma.Apply();
- } else if (config.algorithm == IntersectionConfiguration::CUBE) {
+ } else if (config.algorithm == IntersectionConfiguration::CUBE
+ || config.algorithm == IntersectionConfiguration::FAST_CUBE_PRUNING
+ || config.algorithm == IntersectionConfiguration::FAST_CUBE_PRUNING_2) {
int pl = config.pop_limit;
const int max_pl_for_large=50;
if (pl > max_pl_for_large && in.nodes_.size() > 80000) {
pl = max_pl_for_large;
cerr << " Note: reducing pop_limit to " << pl << " for very large forest\n";
}
- CubePruningRescorer ma(models, smeta, in, pl, out);
- ma.Apply();
+ if (config.algorithm == IntersectionConfiguration::CUBE) {
+ CubePruningRescorer ma(models, smeta, in, pl, out);
+ ma.Apply();
+ }
+ else if (config.algorithm == IntersectionConfiguration::FAST_CUBE_PRUNING){
+ CubePruningRescorer ma(models, smeta, in, pl, out, FAST_CP);
+ ma.Apply();
+ }
+ else if (config.algorithm == IntersectionConfiguration::FAST_CUBE_PRUNING_2){
+ CubePruningRescorer ma(models, smeta, in, pl, out, FAST_CP_2);
+ ma.Apply();
+ }
+
} else {
cerr << "Don't understand intersection algorithm " << config.algorithm << endl;
exit(1);
diff --git a/decoder/apply_models.h b/decoder/apply_models.h
index a85694aa..19a4c7be 100644
--- a/decoder/apply_models.h
+++ b/decoder/apply_models.h
@@ -13,6 +13,8 @@ struct IntersectionConfiguration {
enum {
FULL,
CUBE,
+ FAST_CUBE_PRUNING,
+ FAST_CUBE_PRUNING_2,
N_ALGORITHMS
};
@@ -25,7 +27,9 @@ enum {
inline std::ostream& operator<<(std::ostream& os, const IntersectionConfiguration& c) {
if (c.algorithm == 0) { os << "FULL"; }
else if (c.algorithm == 1) { os << "CUBE:k=" << c.pop_limit; }
- else if (c.algorithm == 2) { os << "N_ALGORITHMS"; }
+ else if (c.algorithm == 2) { os << "FAST_CUBE_PRUNING"; }
+ else if (c.algorithm == 3) { os << "FAST_CUBE_PRUNING_2"; }
+ else if (c.algorithm == 4) { os << "N_ALGORITHMS"; }
else os << "OTHER";
return os;
}
diff --git a/decoder/cdec-fsa.ini b/decoder/cdec-fsa.ini
deleted file mode 100755
index 05aaefd4..00000000
--- a/decoder/cdec-fsa.ini
+++ /dev/null
@@ -1,10 +0,0 @@
-cubepruning_pop_limit=200
-feature_function=WordPenalty
-feature_function=ArityPenalty
-feature_function=WordPenaltyFsa
-#feature_function=LongerThanPrev
-feature_function=ShorterThanPrev debug
-add_pass_through_rules=true
-formalism=scfg
-grammar=mt09.grammar.gz
-weights=weights-fsa
diff --git a/decoder/cdec.cc b/decoder/cdec.cc
index 5c40f56e..c671af57 100644
--- a/decoder/cdec.cc
+++ b/decoder/cdec.cc
@@ -19,11 +19,19 @@ int main(int argc, char** argv) {
assert(*in);
string buf;
+#ifdef CP_TIME
+ clock_t time_cp(0);//, end_cp;
+#endif
while(*in) {
getline(*in, buf);
if (buf.empty()) continue;
decoder.Decode(buf);
}
+#ifdef CP_TIME
+ cerr << "Time required for Cube Pruning execution: "
+ << CpTime::Get()
+ << " seconds." << "\n\n";
+#endif
if (show_feature_dictionary) {
int num = FD::NumFeats();
for (int i = 1; i < num; ++i) {
diff --git a/decoder/cdec_ff.cc b/decoder/cdec_ff.cc
index 588842f1..4ce5749e 100644
--- a/decoder/cdec_ff.cc
+++ b/decoder/cdec_ff.cc
@@ -12,8 +12,7 @@
#include "ff_rules.h"
#include "ff_ruleshape.h"
#include "ff_bleu.h"
-#include "ff_lm_fsa.h"
-#include "ff_sample_fsa.h"
+#include "ff_source_syntax.h"
#include "ff_register.h"
#include "ff_charset.h"
#include "ff_wordset.h"
@@ -30,15 +29,6 @@ void register_feature_functions() {
}
registered = true;
- //TODO: these are worthless example target FSA ffs. remove later
- RegisterFsaImpl<SameFirstLetter>(true);
- RegisterFsaImpl<LongerThanPrev>(true);
- RegisterFsaImpl<ShorterThanPrev>(true);
-// ff_registry.Register("LanguageModelFsaDynamic",new FFFactory<FeatureFunctionFromFsa<FsaFeatureFunctionDynamic<LanguageModelFsa> > >); // to test correctness of FsaFeatureFunctionDynamic erasure
- RegisterFsaDynToFF<LanguageModelFsa>();
- RegisterFsaImpl<LanguageModelFsa>(true); // same as LM but using fsa wrapper
- RegisterFsaDynToFF<SameFirstLetter>();
-
RegisterFF<LanguageModel>();
RegisterFF<WordPenalty>();
@@ -46,8 +36,6 @@ void register_feature_functions() {
RegisterFF<ArityPenalty>();
RegisterFF<BLEUModel>();
- ff_registry.Register(new FFFactory<WordPenaltyFromFsa>); // same as WordPenalty, but implemented using ff_fsa
-
//TODO: use for all features the new Register which requires static FF::usage(false,false) give name
#ifdef HAVE_RANDLM
ff_registry.Register("RandLM", new FFFactory<LanguageModelRandLM>);
@@ -55,6 +43,8 @@ void register_feature_functions() {
ff_registry.Register("SpanFeatures", new FFFactory<SpanFeatures>());
ff_registry.Register("NgramFeatures", new FFFactory<NgramDetector>());
ff_registry.Register("RuleIdentityFeatures", new FFFactory<RuleIdentityFeatures>());
+ ff_registry.Register("SourceSyntaxFeatures", new FFFactory<SourceSyntaxFeatures>);
+ ff_registry.Register("SourceSpanSizeFeatures", new FFFactory<SourceSpanSizeFeatures>);
ff_registry.Register("RuleNgramFeatures", new FFFactory<RuleNgramFeatures>());
ff_registry.Register("CMR2008ReorderingFeatures", new FFFactory<CMR2008ReorderingFeatures>());
ff_registry.Register("KLanguageModel", new KLanguageModelFactory());
diff --git a/decoder/cfg.cc b/decoder/cfg.cc
index 651978d2..cd7e66e9 100755
--- a/decoder/cfg.cc
+++ b/decoder/cfg.cc
@@ -639,7 +639,7 @@ void CFG::Print(std::ostream &o,CFGFormat const& f) const {
o << '['<<f.goal_nt_name <<']';
WordID rhs=-goal_nt;
f.print_rhs(o,*this,&rhs,&rhs+1);
- if (pushed_inside!=1)
+ if (pushed_inside!=prob_t::One())
f.print_features(o,pushed_inside);
o<<'\n';
}
diff --git a/decoder/cfg_format.h b/decoder/cfg_format.h
index c6a594b8..2f40d483 100755
--- a/decoder/cfg_format.h
+++ b/decoder/cfg_format.h
@@ -101,7 +101,7 @@ struct CFGFormat {
}
void print_features(std::ostream &o,prob_t p,FeatureVector const& fv=FeatureVector()) const {
- bool logp=(logprob_feat && p!=1);
+ bool logp=(logprob_feat && p!=prob_t::One());
if (features || logp) {
o << partsep;
if (logp)
diff --git a/decoder/decoder.cc b/decoder/decoder.cc
index 55d9f1d7..b93925d1 100644
--- a/decoder/decoder.cc
+++ b/decoder/decoder.cc
@@ -46,6 +46,13 @@
#include "cfg_options.h"
#endif
+#ifdef CP_TIME
+ clock_t CpTime::time_;
+ void CpTime::Add(clock_t x){time_+=x;}
+ void CpTime::Sub(clock_t x){time_-=x;}
+ double CpTime::Get(){return (double)(time_)/CLOCKS_PER_SEC;}
+#endif
+
static const double kMINUS_EPSILON = -1e-6; // don't be too strict
using namespace std;
@@ -152,8 +159,7 @@ struct RescoringPass {
shared_ptr<ModelSet> models;
shared_ptr<IntersectionConfiguration> inter_conf;
vector<const FeatureFunction*> ffs;
- shared_ptr<Weights> w; // null == use previous weights
- vector<double> weight_vector;
+ shared_ptr<vector<weight_t> > weight_vector;
int fid_summary; // 0 == no summary feature
double density_prune; // 0 == don't density prune
double beam_prune; // 0 == don't beam prune
@@ -162,7 +168,7 @@ struct RescoringPass {
ostream& operator<<(ostream& os, const RescoringPass& rp) {
os << "[num_fn=" << rp.ffs.size();
if (rp.inter_conf) { os << " int_alg=" << *rp.inter_conf; }
- if (rp.w) os << " new_weights";
+ //if (rp.weight_vector.size() > 0) os << " new_weights";
if (rp.fid_summary) os << " summary_feature=" << FD::Convert(rp.fid_summary);
if (rp.density_prune) os << " density_prune=" << rp.density_prune;
if (rp.beam_prune) os << " beam_prune=" << rp.beam_prune;
@@ -174,13 +180,8 @@ struct DecoderImpl {
DecoderImpl(po::variables_map& conf, int argc, char** argv, istream* cfg);
~DecoderImpl();
bool Decode(const string& input, DecoderObserver*);
- void SetWeights(const vector<double>& weights) {
- init_weights = weights;
- for (int i = 0; i < rescoring_passes.size(); ++i) {
- if (rescoring_passes[i].models)
- rescoring_passes[i].models->SetWeights(weights);
- rescoring_passes[i].weight_vector = weights;
- }
+ vector<weight_t>& CurrentWeightVector() {
+ return (rescoring_passes.empty() ? *init_weights : *rescoring_passes.back().weight_vector);
}
void SetId(int next_sent_id) { sent_id = next_sent_id - 1; }
@@ -293,8 +294,7 @@ struct DecoderImpl {
OracleBleu oracle;
string formalism;
shared_ptr<Translator> translator;
- Weights w_init_weights; // used with initial parse
- vector<double> init_weights; // weights used with initial parse
+ shared_ptr<vector<weight_t> > init_weights; // weights used with initial parse
vector<shared_ptr<FeatureFunction> > pffs;
#ifdef FSA_RESCORING
CFGOptions cfg_options;
@@ -321,10 +321,11 @@ struct DecoderImpl {
bool write_gradient; // TODO Observer
bool feature_expectations; // TODO Observer
bool output_training_vector; // TODO Observer
+ bool remove_intersected_rule_annotations;
static void ConvertSV(const SparseVector<prob_t>& src, SparseVector<double>* trg) {
for (SparseVector<prob_t>::const_iterator it = src.begin(); it != src.end(); ++it)
- trg->set_value(it->first, it->second);
+ trg->set_value(it->first, it->second.as_float());
}
};
@@ -354,10 +355,13 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream
("grammar,g",po::value<vector<string> >()->composing(),"Either SCFG grammar file(s) or phrase tables file(s)")
("per_sentence_grammar_file", po::value<string>(), "Optional (and possibly not implemented) per sentence grammar file enables all per sentence grammars to be stored in a single large file and accessed by offset")
("list_feature_functions,L","List available feature functions")
+#ifdef HAVE_CMPH
+ ("cmph_perfect_feature_hash,h", po::value<string>(), "Load perfect hash function for features")
+#endif
("weights,w",po::value<string>(),"Feature weights file (initial forest / pass 1)")
("feature_function,F",po::value<vector<string> >()->composing(), "Pass 1 additional feature function(s) (-L for list)")
- ("intersection_strategy,I",po::value<string>()->default_value("cube_pruning"), "Pass 1 intersection strategy for incorporating finite-state features; values include Cube_pruning, Full")
+ ("intersection_strategy,I",po::value<string>()->default_value("cube_pruning"), "Pass 1 intersection strategy for incorporating finite-state features; values include Cube_pruning, Full, Fast_cube_pruning, Fast_cube_pruning_2")
("summary_feature", po::value<string>(), "Compute a 'summary feature' at the end of the pass (before any pruning) with name=arg and value=inside-outside/Z")
("summary_feature_type", po::value<string>()->default_value("node_risk"), "Summary feature types: node_risk, edge_risk, edge_prob")
("density_prune", po::value<double>(), "Pass 1 pruning: keep no more than this many times the number of edges used in the best derivation tree (>=1.0)")
@@ -416,6 +420,7 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream
("csplit_output_plf", "(Compound splitter) Output lattice in PLF format")
("csplit_preserve_full_word", "(Compound splitter) Always include the unsegmented form in the output lattice")
("extract_rules", po::value<string>(), "Extract the rules used in translation (de-duped) to this file")
+ ("show_derivations", po::value<string>(), "Directory to print the derivation structures to")
("graphviz","Show (constrained) translation forest in GraphViz format")
("max_translation_beam,x", po::value<int>(), "Beam approximation to get max translation from the chart")
("max_translation_sample,X", po::value<int>(), "Sample the max translation from the chart")
@@ -425,7 +430,9 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream
("feature_expectations","Write feature expectations for all features in chart (**OBJ** will be the partition)")
("vector_format",po::value<string>()->default_value("b64"), "Sparse vector serialization format for feature expectations or gradients, includes (text or b64)")
("combine_size,C",po::value<int>()->default_value(1), "When option -G is used, process this many sentence pairs before writing the gradient (1=emit after every sentence pair)")
- ("forest_output,O",po::value<string>(),"Directory to write forests to");
+ ("forest_output,O",po::value<string>(),"Directory to write forests to")
+ ("remove_intersected_rule_annotations", "After forced decoding is completed, remove nonterminal annotations (i.e., the source side spans)");
+
// ob.AddOptions(&opts);
#ifdef FSA_RESCORING
po::options_description cfgo(cfg_options.description());
@@ -434,7 +441,7 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream
po::options_description clo("Command line options");
clo.add_options()
("config,c", po::value<vector<string> >(&cfg_files), "Configuration file(s) - latest has priority")
- ("help,h", "Print this help message and exit")
+ ("help,?", "Print this help message and exit")
("usage,u", po::value<string>(), "Describe a feature function type")
("compgen", "Print just option names suitable for bash command line completion builtin 'compgen'")
;
@@ -543,13 +550,18 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream
exit(1);
}
- // load initial feature weights (and possibly freeze feature set)
- if (conf.count("weights")) {
- w_init_weights.InitFromFile(str("weights",conf));
- w_init_weights.InitVector(&init_weights);
- init_weights.resize(FD::NumFeats());
+ // load perfect hash function for features
+ if (conf.count("cmph_perfect_feature_hash")) {
+ cerr << "Loading perfect hash function from " << conf["cmph_perfect_feature_hash"].as<string>() << " ...\n";
+ FD::EnableHash(conf["cmph_perfect_feature_hash"].as<string>());
+ cerr << " " << FD::NumFeats() << " features in map\n";
}
+ // load initial feature weights (and possibly freeze feature set)
+ init_weights.reset(new vector<weight_t>);
+ if (conf.count("weights"))
+ Weights::InitFromFile(str("weights",conf), init_weights.get());
+
// cube pruning pop-limit: we may want to configure this on a per-pass basis
pop_limit = conf["cubepruning_pop_limit"].as<int>();
@@ -568,9 +580,8 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream
RescoringPass& rp = rescoring_passes.back();
// only configure new weights if pass > 0, otherwise we reuse the initial chart weights
if (nth_pass_condition && conf.count(ws)) {
- rp.w.reset(new Weights);
- rp.w->InitFromFile(str(ws.c_str(), conf));
- rp.w->InitVector(&rp.weight_vector);
+ rp.weight_vector.reset(new vector<weight_t>());
+ Weights::InitFromFile(str(ws.c_str(), conf), rp.weight_vector.get());
}
bool has_stateful = false;
if (conf.count(ff)) {
@@ -595,6 +606,14 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream
if (LowercaseString(str(isn.c_str(),conf)) == "full") {
palg = 0;
}
+ if (LowercaseString(conf["intersection_strategy"].as<string>()) == "fast_cube_pruning") {
+ palg = 2;
+ cerr << "Using Fast Cube Pruning intersection (see Algorithm 2 described in: Gesmundo A., Henderson J,. Faster Cube Pruning, IWSLT 2010).\n";
+ }
+ if (LowercaseString(conf["intersection_strategy"].as<string>()) == "fast_cube_pruning_2") {
+ palg = 3;
+ cerr << "Using Fast Cube Pruning 2 intersection (see Algorithm 3 described in: Gesmundo A., Henderson J,. Faster Cube Pruning, IWSLT 2010).\n";
+ }
rp.inter_conf.reset(new IntersectionConfiguration(palg, pop_limit));
} else {
break; // TODO alert user if there are any future configurations
@@ -602,11 +621,15 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream
}
// set up weight vectors since later phases may reuse weights from earlier phases
- const vector<double>* prev = &init_weights;
+ shared_ptr<vector<weight_t> > prev_weights = init_weights;
for (int pass = 0; pass < rescoring_passes.size(); ++pass) {
RescoringPass& rp = rescoring_passes[pass];
- if (!rp.w) { rp.weight_vector = *prev; } else { prev = &rp.weight_vector; }
- rp.models.reset(new ModelSet(rp.weight_vector, rp.ffs));
+ if (!rp.weight_vector) {
+ rp.weight_vector = prev_weights;
+ } else {
+ prev_weights = rp.weight_vector;
+ }
+ rp.models.reset(new ModelSet(*rp.weight_vector, rp.ffs));
string ps = "Pass1 "; ps[4] += pass;
if (!SILENT) show_models(conf,*rp.models,ps.c_str());
}
@@ -657,7 +680,7 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream
}
if (!fsa_ffs.empty()) {
cerr<<"FSA: ";
- show_all_features(fsa_ffs,init_weights,cerr,cerr,true,true);
+ show_all_features(fsa_ffs,*init_weights,cerr,cerr,true,true);
}
#endif
@@ -677,6 +700,8 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream
kbest = conf.count("k_best");
unique_kbest = conf.count("unique_k_best");
get_oracle_forest = conf.count("get_oracle_forest");
+ oracle.show_derivation=conf.count("show_derivations");
+ remove_intersected_rule_annotations = conf.count("remove_intersected_rule_annotations");
#ifdef FSA_RESCORING
cfg_options.Validate();
@@ -703,7 +728,8 @@ bool Decoder::Decode(const string& input, DecoderObserver* o) {
if (del) delete o;
return res;
}
-void Decoder::SetWeights(const vector<double>& weights) { pimpl_->SetWeights(weights); }
+vector<weight_t>& Decoder::CurrentWeightVector() { return pimpl_->CurrentWeightVector(); }
+const vector<weight_t>& Decoder::CurrentWeightVector() const { return pimpl_->CurrentWeightVector(); }
void Decoder::SetSupplementalGrammar(const std::string& grammar_string) {
assert(pimpl_->translator->GetDecoderType() == "SCFG");
static_cast<SCFGTranslator&>(*pimpl_->translator).SetSupplementalGrammar(grammar_string);
@@ -748,7 +774,7 @@ bool DecoderImpl::Decode(const string& input, DecoderObserver* o) {
translator->ProcessMarkupHints(smeta.sgml_);
Timer t("Translation");
const bool translation_successful =
- translator->Translate(to_translate, &smeta, init_weights, &forest);
+ translator->Translate(to_translate, &smeta, *init_weights, &forest);
translator->SentenceComplete();
if (!translation_successful) {
@@ -766,10 +792,15 @@ bool DecoderImpl::Decode(const string& input, DecoderObserver* o) {
const bool show_tree_structure=conf.count("show_tree_structure");
if (!SILENT) forest_stats(forest," Init. forest",show_tree_structure,oracle.show_derivation);
if (conf.count("show_expected_length")) {
- const PRPair<double, double> res =
- Inside<PRPair<double, double>,
- PRWeightFunction<double, EdgeProb, double, ELengthWeightFunction> >(forest);
- cerr << " Expected length (words): " << res.r / res.p << "\t" << res << endl;
+ const PRPair<prob_t, prob_t> res =
+ Inside<PRPair<prob_t, prob_t>,
+ PRWeightFunction<prob_t, EdgeProb, prob_t, ELengthWeightFunction> >(forest);
+ cerr << " Expected length (words): " << (res.r / res.p).as_float() << "\t" << res << endl;
+ }
+
+ if (conf.count("show_partition")) {
+ const prob_t z = Inside<prob_t, EdgeProb>(forest);
+ cerr << " Partition log(Z): " << log(z) << endl;
}
SummaryFeature summary_feature_type = kNODE_RISK;
@@ -786,7 +817,7 @@ bool DecoderImpl::Decode(const string& input, DecoderObserver* o) {
for (int pass = 0; pass < rescoring_passes.size(); ++pass) {
const RescoringPass& rp = rescoring_passes[pass];
- const vector<double>& cur_weights = rp.weight_vector;
+ const vector<weight_t>& cur_weights = *rp.weight_vector;
if (!SILENT) cerr << endl << " RESCORING PASS #" << (pass+1) << " " << rp << endl;
#ifdef FSA_RESCORING
cfg_options.maybe_output_source(forest);
@@ -799,11 +830,17 @@ bool DecoderImpl::Decode(const string& input, DecoderObserver* o) {
Timer t("Forest rescoring:");
rp.models->PrepareForInput(smeta);
Hypergraph rescored_forest;
+#ifdef CP_TIME
+ CpTime::Sub(clock());
+#endif
ApplyModelSet(forest,
smeta,
*rp.models,
*rp.inter_conf,
&rescored_forest);
+#ifdef CP_TIME
+ CpTime::Add(clock());
+#endif
forest.swap(rescored_forest);
forest.Reweight(cur_weights);
if (!SILENT) forest_stats(forest," " + passtr +" forest",show_tree_structure,oracle.show_derivation);
@@ -901,7 +938,7 @@ bool DecoderImpl::Decode(const string& input, DecoderObserver* o) {
#endif
}
- const vector<double>& last_weights = (rescoring_passes.empty() ? init_weights : rescoring_passes.back().weight_vector);
+ const vector<double>& last_weights = (rescoring_passes.empty() ? *init_weights : *rescoring_passes.back().weight_vector);
// Oracle Rescoring
if(get_oracle_forest) {
@@ -942,7 +979,8 @@ bool DecoderImpl::Decode(const string& input, DecoderObserver* o) {
} else {
if (kbest && !has_ref) {
//TODO: does this work properly?
- oracle.DumpKBest(sent_id, forest, conf["k_best"].as<int>(), unique_kbest,"-");
+ const string deriv_fname = conf.count("show_derivations") ? str("show_derivations",conf) : "-";
+ oracle.DumpKBest(sent_id, forest, conf["k_best"].as<int>(), unique_kbest,"-", deriv_fname);
} else if (csplit_output_plf) {
cout << HypergraphIO::AsPLF(forest, false) << endl;
} else {
@@ -989,6 +1027,12 @@ bool DecoderImpl::Decode(const string& input, DecoderObserver* o) {
// if (!SILENT) cerr << " USING UNIFORM WEIGHTS\n";
// for (int i = 0; i < forest.edges_.size(); ++i)
// forest.edges_[i].edge_prob_=prob_t::One(); }
+ if (remove_intersected_rule_annotations) {
+ for (unsigned i = 0; i < forest.edges_.size(); ++i)
+ if (forest.edges_[i].rule_ &&
+ forest.edges_[i].rule_->parent_rule_)
+ forest.edges_[i].rule_ = forest.edges_[i].rule_->parent_rule_;
+ }
forest.Reweight(last_weights);
if (!SILENT) forest_stats(forest," Constr. forest",show_tree_structure,oracle.show_derivation);
if (!SILENT) cerr << " Constr. VitTree: " << ViterbiFTree(forest) << endl;
@@ -1059,8 +1103,10 @@ bool DecoderImpl::Decode(const string& input, DecoderObserver* o) {
}
}
if (conf.count("graphviz")) forest.PrintGraphviz();
- if (kbest)
- oracle.DumpKBest(sent_id, forest, conf["k_best"].as<int>(), unique_kbest,"-");
+ if (kbest) {
+ const string deriv_fname = conf.count("show_derivations") ? str("show_derivations",conf) : "-";
+ oracle.DumpKBest(sent_id, forest, conf["k_best"].as<int>(), unique_kbest,"-", deriv_fname);
+ }
if (conf.count("show_conditional_prob")) {
const prob_t ref_z = Inside<prob_t, EdgeProb>(forest);
cout << (log(ref_z) - log(first_z)) << endl << flush;
diff --git a/decoder/decoder.h b/decoder/decoder.h
index 236eacd5..6b2f7b16 100644
--- a/decoder/decoder.h
+++ b/decoder/decoder.h
@@ -7,7 +7,21 @@
#include <boost/shared_ptr.hpp>
#include <boost/program_options/variables_map.hpp>
-#include "grammar.h"
+#include "weights.h" // weight_t
+
+#undef CP_TIME
+//#define CP_TIME
+#ifdef CP_TIME
+#include <time.h>
+struct CpTime{
+public:
+ static void Add(clock_t x);
+ static void Sub(clock_t x);
+ static double Get();
+private:
+ static clock_t time_;
+};
+#endif
class SentenceMetadata;
struct Hypergraph;
@@ -27,7 +41,12 @@ struct Decoder {
Decoder(int argc, char** argv);
Decoder(std::istream* config_file);
bool Decode(const std::string& input, DecoderObserver* observer = NULL);
- void SetWeights(const std::vector<double>& weights);
+
+ // access this to either *read* or *write* to the decoder's last
+ // weight vector (i.e., the weights of the finest past)
+ std::vector<weight_t>& CurrentWeightVector();
+ const std::vector<weight_t>& CurrentWeightVector() const;
+
void SetId(int id);
~Decoder();
const boost::program_options::variables_map& GetConf() const { return conf; }
diff --git a/decoder/feature_accum.h b/decoder/feature_accum.h
deleted file mode 100755
index 4b8338eb..00000000
--- a/decoder/feature_accum.h
+++ /dev/null
@@ -1,129 +0,0 @@
-#ifndef FEATURE_ACCUM_H
-#define FEATURE_ACCUM_H
-
-#include "ff.h"
-#include "sparse_vector.h"
-#include "value_array.h"
-
-struct SparseFeatureAccumulator : public FeatureVector {
- typedef FeatureVector State;
- SparseFeatureAccumulator() { assert(!"this code is disabled"); }
- template <class FF>
- FeatureVector const& describe(FF const& ) { return *this; }
- void Store(FeatureVector *fv) const {
-//NO fv->set_from(*this);
- }
- template <class FF>
- void Store(FF const& /* ff */,FeatureVector *fv) const {
-//NO fv->set_from(*this);
- }
- template <class FF>
- void Add(FF const& /* ff */,FeatureVector const& fv) {
- (*this)+=fv;
- }
- void Add(FeatureVector const& fv) {
- (*this)+=fv;
- }
- /*
- SparseFeatureAccumulator(FeatureVector const& fv) : State(fv) {}
- FeatureAccumulator(Features const& fids) {}
- FeatureAccumulator(Features const& fids,FeatureVector const& fv) : State(fv) {}
- void Add(Features const& fids,FeatureVector const& fv) {
- *this += fv;
- }
- */
- void Add(int i,Featval v) {
-//NO (*this)[i]+=v;
- }
- void Add(Features const& fids,int i,Featval v) {
-//NO (*this)[i]+=v;
- }
-};
-
-struct SingleFeatureAccumulator {
- typedef Featval State;
- typedef SingleFeatureAccumulator Self;
- State v;
- /*
- void operator +=(State const& o) {
- v+=o;
- }
- */
- void operator +=(Self const& s) {
- v+=s.v;
- }
- SingleFeatureAccumulator() : v() {}
- template <class FF>
- State const& describe(FF const& ) const { return v; }
-
- template <class FF>
- void Store(FF const& ff,FeatureVector *fv) const {
- fv->set_value(ff.fid_,v);
- }
- void Store(Features const& fids,FeatureVector *fv) const {
- assert(fids.size()==1);
- fv->set_value(fids[0],v);
- }
- /*
- SingleFeatureAccumulator(Features const& fids) { assert(fids.size()==1); }
- SingleFeatureAccumulator(Features const& fids,FeatureVector const& fv)
- {
- assert(fids.size()==1);
- v=fv.get_singleton();
- }
- */
-
- template <class FF>
- void Add(FF const& ff,FeatureVector const& fv) {
- v+=fv.get(ff.fid_);
- }
- void Add(FeatureVector const& fv) {
- v+=fv.get_singleton();
- }
-
- void Add(Features const& fids,FeatureVector const& fv) {
- v += fv.get(fids[0]);
- }
- void Add(Featval dv) {
- v+=dv;
- }
- void Add(int,Featval dv) {
- v+=dv;
- }
- void Add(FeatureVector const& fids,int i,Featval dv) {
- assert(fids.size()==1 && i==0);
- v+=dv;
- }
-};
-
-
-#if 0
-// omitting this so we can default construct an accum. might be worth resurrecting in the future
-struct ArrayFeatureAccumulator : public ValueArray<Featval> {
- typedef ValueArray<Featval> State;
- template <class Fsa>
- ArrayFeatureAccumulator(Fsa const& fsa) : State(fsa.features_.size()) { }
- ArrayFeatureAccumulator(Features const& fids) : State(fids.size()) { }
- ArrayFeatureAccumulator(Features const& fids) : State(fids.size()) { }
- ArrayFeatureAccumulator(Features const& fids,FeatureVector const& fv) : State(fids.size()) {
- for (int i=0,e=i<fids.size();i<e;++i)
- (*this)[i]=fv.get(i);
- }
- State const& describe(Features const& fids) const { return *this; }
- void Store(Features const& fids,FeatureVector *fv) const {
- assert(fids.size()==size());
- for (int i=0,e=i<fids.size();i<e;++i)
- fv->set_value(fids[i],(*this)[i]);
- }
- void Add(Features const& fids,FeatureVector const& fv) {
- for (int i=0,e=i<fids.size();i<e;++i)
- (*this)[i]+=fv.get(i);
- }
- void Add(FeatureVector const& fids,int i,Featval v) {
- (*this)[i]+=v;
- }
-};
-#endif
-
-
-#endif
diff --git a/decoder/ff_factory.h b/decoder/ff_factory.h
index 92334396..5eb68c8b 100644
--- a/decoder/ff_factory.h
+++ b/decoder/ff_factory.h
@@ -20,8 +20,6 @@
#include <boost/shared_ptr.hpp>
-#include "ff_fsa_dynamic.h"
-
class FeatureFunction;
class FsaFeatureFunction;
diff --git a/decoder/ff_from_fsa.h b/decoder/ff_from_fsa.h
deleted file mode 100755
index f8d79e03..00000000
--- a/decoder/ff_from_fsa.h
+++ /dev/null
@@ -1,304 +0,0 @@
-#ifndef FF_FROM_FSA_H
-#define FF_FROM_FSA_H
-
-#include "ff_fsa.h"
-
-#ifndef TD__none
-// replacing dependency on SRILM
-#define TD__none -1
-#endif
-
-#ifndef FSA_FF_DEBUG
-# define FSA_FF_DEBUG 0
-#endif
-#if FSA_FF_DEBUG
-# define FSAFFDBG(e,x) FSADBGif(debug(),e,x)
-# define FSAFFDBGnl(e) FSADBGif_nl(debug(),e)
-#else
-# define FSAFFDBG(e,x)
-# define FSAFFDBGnl(e)
-#endif
-
-/* regular bottom up scorer from Fsa feature
- uses guarantee about markov order=N to score ASAP
- encoding of state: if less than N-1 (ctxlen) words
-
- usage:
- typedef FeatureFunctionFromFsa<LanguageModelFsa> LanguageModelFromFsa;
-*/
-
-template <class Impl>
-class FeatureFunctionFromFsa : public FeatureFunction {
- typedef void const* SP;
- typedef WordID *W;
- typedef WordID const* WP;
-public:
- template <class I>
- FeatureFunctionFromFsa(I const& param) : ff(param) {
- debug_=true; // because factory won't set until after we construct.
- }
- template <class I>
- FeatureFunctionFromFsa(I & param) : ff(param) {
- debug_=true; // because factory won't set until after we construct.
- }
-
- static std::string usage(bool args,bool verbose) {
- return Impl::usage(args,verbose);
- }
- void init_name_debug(std::string const& n,bool debug) {
- FeatureFunction::init_name_debug(n,debug);
- ff.init_name_debug(n,debug);
- }
-
- // this should override
- Features features() const {
- DBGINIT("FeatureFunctionFromFsa features() name="<<ff.name()<<" features="<<FD::Convert(ff.features()));
- return ff.features();
- }
-
- // Log because it potentially stores info in edge. otherwise the same as regular TraversalFeatures.
- void TraversalFeaturesLog(const SentenceMetadata& smeta,
- Hypergraph::Edge& edge,
- const std::vector<const void*>& ant_contexts,
- FeatureVector* features,
- FeatureVector* estimated_features,
- void* out_state) const
- {
- TRule const& rule=*edge.rule_;
- Sentence const& e = rule.e(); // items in target side of rule
- typename Impl::Accum accum,h_accum;
- if (!ssz) { // special case for no state - but still build up longer phrases to score in case FSA overrides ScanPhraseAccum
- if (Impl::simple_phrase_score) {
- // save the effort of building up the contiguous rule phrases - probably can just use the else branch, now that phrases aren't copied but are scanned off e directly.
- for (int j=0,ee=e.size();j<ee;++j) {
- if (e[j]>=1) // token
- ff.ScanAccum(smeta,edge,(WordID)e[j],NULL,NULL,&accum);
- FSAFFDBG(edge," "<<TD::Convert(e[j]));
- }
- } else {
-#undef RHS_WORD
-#define RHS_WORD(j) (e[j]>=1)
- for (int j=0,ee=e.size();;++j) { // items in target side of rule
- for(;;++j) {
- if (j>=ee) goto rhs_done; // j may go 1 past ee due to k possibly getting to end
- if (RHS_WORD(j)) break;
- }
- // word @j
- int k=j;
- while(k<ee) if (!RHS_WORD(++k)) break;
- //end or nonword @k - [j,k) is phrase
- FSAFFDBG(edge," ["<<TD::GetString(&e[j],&e[k])<<']');
- ff.ScanPhraseAccum(smeta,edge,&e[j],&e[k],0,0,&accum);
- j=k;
- }
- }
- rhs_done:
- accum.Store(ff,features);
- FSAFFDBG(edge,"="<<accum.describe(ff));
- FSAFFDBGnl(edge);
- return;
- }
-
- // bear with me, because this is hard to understand. reminder: ant_contexts and out_state are left-words first (up to M, TD__none padded). if all M words are present, then FSA state follows. otherwise 0 bytes to keep memcmp/hash happy.
-
-//why do we compute heuristic in so many places? well, because that's how we know what state we should score words in once we're full on our left context (because of markov order bound, we know the score will be the same no matter what came before that left context)
- // these left_* refer to our output (out_state):
- W left_begin=(W)out_state;
- W left_out=left_begin; // [left,fsa_state) = left ctx words. if left words aren't full, then null wordid
- WP left_full=left_end_full(out_state);
- FsaScanner<Impl> fsa(ff,smeta,edge);
- /* fsa holds our current state once we've seen our first M rule or child left-context words. that state scores up the rest of the words at the time, and is replaced by the right state of any full child. at the end, if we've got at least M left words in all, it becomes our right state (otherwise, we don't bother storing the partial state, which might seem useful any time we're built on by a rule that has our variable in the initial position - but without also storing the heuristic for that case, we just end up rescanning from scratch anyway to produce the heuristic. so we just store all 0 bytes if we have less than M left words at the end. */
- for (int j = 0,ee=e.size(); j < ee; ++j) { // items in target side of rule
- s_rhs_next:
- if (!RHS_WORD(j)) { // variable
- // variables a* are referring to this child derivation state.
- SP a = ant_contexts[-e[j]];
- WP al=(WP)a,ale=left_end(a); // the child left words
- int anw=ale-al;
- FSAFFDBG(edge,' '<<describe_state(a));
-// anw left words in child. full if == M. we will use them to fill our left words, and then score the rest fully, knowing what state we're in based on h_state -> our left words -> any number of interior words which are scored then hidden
- if (left_out+anw<left_full) { // still short of M after adding - nothing to score (not even our heuristic)
- wordcpy(left_out,al,anw);
- left_out+=anw;
- } else if (left_out<left_full) { // we had less than M before, and will have a tleast M after adding. so score heuristic and the rest M+1,... score inside.
- int ntofill=left_full-left_out;
- assert(ntofill==M-(left_out-left_begin));
- wordcpy(left_out,al,ntofill);
- left_out=(W)left_full;
- // heuristic known now
- fsa.reset(ff.heuristic_start_state());
- fsa.scan(left_begin,left_full,&h_accum); // save heuristic (happens once only)
- fsa.scan(al+ntofill,ale,&accum); // because of markov order, fully filled left words scored starting at h_start put us in the right state to score the extra words (which are forgotten)
- al+=ntofill; // we used up the first ntofill words of al to end up in some known state via exactly M words total (M-ntofill were there beforehand). now we can scan the remaining al words of this child
- } else { // more to score / state to update (left already full)
- fsa.scan(al,ale,&accum);
- }
- if (anw==M)
- fsa.reset(fsa_state(a));
- // if child had full state already, we must assume there was a gap and use its right state (note: if the child derivation was exactly M words, then we still use its state even though it will be equal to our current; there's no way to distinguish between such an M word item and an e.g. 2*M+k word item, although it's extremely unlikely that you'd have a >M word item that happens to have the same left and right boundary words).
- assert(anw<=M); // of course, we never store more than M left words in an item.
- } else { // single word
- WordID ew=e[j];
- // some redundancy: non-vectorized version of above handling of left words of child item
- if (left_out<left_full) {
- *left_out++=ew;
- if (left_out==left_full) { // handle heuristic, once only, establish state
- fsa.reset(ff.heuristic_start_state());
- fsa.scan(left_begin,left_full,&h_accum); // save heuristic (happens only once)
- }
- } else {
- if (Impl::simple_phrase_score) {
- fsa.scan(ew,&accum); // single word scan isn't optimal if phrase is different
- FSAFFDBG(edge,' '<<TD::Convert(ew));
- } else {
- int k=j;
- while(k<ee) if (!RHS_WORD(++k)) break;
- FSAFFDBG(edge," rule-phrase["<<TD::GetString(&e[j],&e[k])<<']');
- fsa.scan(&e[j],&e[k],&accum);
- if (k==ee) goto s_rhs_done;
- j=k;
- goto s_rhs_next;
- }
- }
- }
- }
-#undef RHS_WORD
- s_rhs_done:
- void *out_fsa_state=fsa_state(out_state);
- if (left_out<left_full) { // finally: partial heuristic for unfilled items
-// fsa.reset(ff.heuristic_start_state()); fsa.scan(left_begin,left_out,&h_accum);
- ff.ScanPhraseAccumOnly(smeta,edge,left_begin,left_out,ff.heuristic_start_state(),&h_accum);
- do { *left_out++=TD__none; } while(left_out<left_full); // none-terminate so left_end(out_state) will know how many words
- ff.state_zero(out_fsa_state); // so we compare / hash correctly. don't know state yet because left context isn't full
- } else // or else store final right-state. heuristic was already assigned
- ff.state_copy(out_fsa_state,fsa.cs);
- accum.Store(ff,features);
- h_accum.Store(ff,estimated_features);
- FSAFFDBG(edge," = " << describe_state(out_state)<<" "<<name<<"="<<accum.describe(ff)<<" h="<<h_accum.describe(ff)<<")");
- FSAFFDBGnl(edge);
- }
-
- void print_state(std::ostream &o,void const*ant) const {
- WP l=(WP)ant,le=left_end(ant),lf=left_end_full(ant);
- o<<'['<<Sentence(l,le);
- if (le==lf) {
- o<<" : ";
- ff.print_state(o,lf);
- }
- o << ']';
- }
-
- std::string describe_state(void const*ant) const {
- std::ostringstream o;
- print_state(o,ant);
- return o.str();
- }
-
- //FIXME: it's assumed that the final rule is just a unary no-target-terminal rewrite (same as ff_lm)
- virtual void FinalTraversalFeatures(const SentenceMetadata& smeta,
- Hypergraph::Edge& edge,
- const void* residual_state,
- FeatureVector* final_features) const
- {
- Sentence const& ends=ff.end_phrase();
- typename Impl::Accum accum;
- if (!ssz) {
- FSAFFDBG(edge," (final,0state,end="<<ends<<")");
- ff.ScanPhraseAccumOnly(smeta,edge,begin(ends),end(ends),0,&accum);
- } else {
- SP ss=ff.start_state();
- WP l=(WP)residual_state,lend=left_end(residual_state);
- SP rst=fsa_state(residual_state);
- FSAFFDBG(edge," (final");// "<<name);//<< " before="<<*final_features);
- if (lend==rst) { // implying we have an fsa state
- ff.ScanPhraseAccumOnly(smeta,edge,l,lend,ss,&accum); // e.g. <s> score(full left unscored phrase)
- FSAFFDBG(edge," start="<<ff.describe_state(ss)<<"->{"<<Sentence(l,lend)<<"}");
- ff.ScanPhraseAccumOnly(smeta,edge,begin(ends),end(ends),rst,&accum); // e.g. [ctx for last M words] score("</s>")
- FSAFFDBG(edge," end="<<ff.describe_state(rst)<<"->{"<<ends<<"}");
- } else { // all we have is a single short phrase < M words before adding ends
- int nl=lend-l;
- Sentence whole(ends.size()+nl);
- WordID *wb=begin(whole);
- wordcpy(wb,l,nl);
- wordcpy(wb+nl,begin(ends),ends.size());
- FSAFFDBG(edge," whole={"<<whole<<"}");
- // whole = left-words + end-phrase
- ff.ScanPhraseAccumOnly(smeta,edge,wb,end(whole),ss,&accum);
- }
- }
- FSAFFDBG(edge,' '<<name<<"="<<accum.describe(ff));
- FSAFFDBGnl(edge);
- accum.Store(ff,final_features);
- }
-
- bool rule_feature() const {
- return StateSize()==0; // Fsa features don't get info about span
- }
-
- static void test() {
- WordID w1[1],w1b[1],w2[2];
- w1[0]=w2[0]=TD::Convert("hi");
- w2[1]=w1b[0]=TD__none;
- assert(left_end(w1,w1+1)==w1+1);
- assert(left_end(w1b,w1b+1)==w1b);
- assert(left_end(w2,w2+2)==w2+1);
- }
-
- // override from FeatureFunction; should be called by factory after constructor. we'll also call in our own ctor
- void Init() {
- ff.Init();
- ff.sync();
- DBGINIT("base (single feature) FsaFeatureFunctionBase::Init name="<<name_<<" features="<<FD::Convert(features()));
-// FeatureFunction::name_=Impl::usage(false,false); // already achieved by ff_factory.cc
- M=ff.markov_order();
- ssz=ff.state_bytes();
- state_offset=sizeof(WordID)*M;
- SetStateSize(ssz+state_offset);
- assert(!ssz == !M); // no fsa state <=> markov order 0
- }
-
-private:
- Impl ff;
- int M; // markov order (ctx len)
- FeatureFunctionFromFsa(); // not allowed.
-
- int state_offset; // NOTE: in bytes (add to char* only). store left-words first, then fsa state
- int ssz; // bytes in fsa state
- /*
- state layout: left WordIds, followed by fsa state
- left words have never been scored. last ones remaining will be scored on FinalTraversalFeatures only.
- right state is unknown until we have all M left words (less than M means TD__none will pad out right end). unk right state will be zeroed out for proper hash/equal recombination.
- */
-
- static inline WordID const* left_end(WordID const* left, WordID const* e) {
- for (;e>left;--e)
- if (e[-1]!=TD__none) break;
- //post: [left,e] are the seen left words
- return e;
- }
- inline WP left_end(SP ant) const {
- return left_end((WP)ant,(WP)fsa_state(ant));
- }
- inline WP left_end_full(SP ant) const {
- return (WP)fsa_state(ant);
- }
- inline SP fsa_state(SP ant) const {
- return ((char const*)ant+state_offset);
- }
- inline void *fsa_state(void * ant) const {
- return ((char *)ant+state_offset);
- }
-};
-
-#ifdef TEST_FSA
-# include "tdict.cc"
-# include "ff_sample_fsa.h"
-int main() {
- std::cerr<<"Testing left_end...\n";
- std::cerr<<"sizeof(FeatureVector)="<<sizeof(FeatureVector)<<"\n";
- WordPenaltyFromFsa::test();
- return 0;
-}
-#endif
-
-#endif
diff --git a/decoder/ff_fsa.h b/decoder/ff_fsa.h
deleted file mode 100755
index 18e90bf1..00000000
--- a/decoder/ff_fsa.h
+++ /dev/null
@@ -1,401 +0,0 @@
-#ifndef FF_FSA_H
-#define FF_FSA_H
-
-/*
- features whose score is just some PFSA over target string. however, PFSA can use edge and smeta info (e.g. spans on edge) - not usually useful.
-
-//SEE ALSO: ff_fsa_dynamic.h, ff_from_fsa.h
-
- state is some fixed width byte array. could actually be a void *, WordID sequence, whatever.
-
- TODO: specify Scan return code or feature value = -inf for failure state (e.g. for hard intersection with desired target lattice?)
-
- TODO: maybe ff that wants to know about SentenceMetadata should store a ref to
- it permanently rather than get passed it for every operation. we're never
- decoding more than 1 sentence at once and it's annoying to pass it. same
- could apply for result edge as well since so far i only use it for logging
- when USE_INFO_EDGE 1 - would make the most sense if the same change happened
- to ff.h at the same time.
-
- TODO: there are a confusing array of default-implemented supposedly slightly more efficient overrides enabled; however, the two key differences are: do you score a phrase, or just word at a time (the latter constraining you to obey markov_order() everywhere. you have to implement the word case no matter what.
-
- TODO: considerable simplification of implementation if Scan implementors are required to update state in place (using temporary copy if they need it), or e.g. using memmove (copy from end to beginning) to rotate state right.
-
- TODO: at what sizes is memcpy/memmove better than looping over 2-3 ints and assigning?
-
- TODO: fsa ff scores phrases not just words
- TODO: fsa feature aggregator that presents itself as a single fsa; benefit: when wrapped in ff_from_fsa, only one set of left words is stored. downside: compared to separate ff, the inside portion of lower-order models is incorporated later. however, the full heuristic is already available and exact for those words. so don't sweat it.
-
- TODO: state (+ possibly span-specific) custom heuristic, e.g. in "longer than previous word" model, you can expect a higher outside if your state is a word of 2 letters. this is on top of the nice heuristic for the unscored words, of course. in ngrams, the avg prob will be about the same, but if the words possible for a source span are summarized, maybe it's possible to predict. probably not worth the effort.
-*/
-
-#define FSA_DEBUG 0
-
-#if USE_INFO_EDGE
-#define FSA_DEBUG_CERR 0
-#else
-#define FSA_DEBUG_CERR 1
-#endif
-
-#define FSA_DEBUG_DEBUG 0
-# define FSADBGif(i,e,x) do { if (i) { if (FSA_DEBUG_CERR){std::cerr<<x;} INFO_EDGE(e,x); if (FSA_DEBUG_DEBUG){std::cerr<<"FSADBGif edge.info "<<&e<<" = "<<e.info()<<std::endl;}} } while(0)
-# define FSADBGif_nl(i,e) do { if (i) { if (FSA_DEBUG_CERR) std::cerr<<std::endl; INFO_EDGE(e,"; "); } } while(0)
-#if FSA_DEBUG
-# include <iostream>
-# define FSADBG(e,x) FSADBGif(d().debug(),e,x)
-# define FSADBGnl(e) FSADBGif_nl(d().debug(),e,x)
-#else
-# define FSADBG(e,x)
-# define FSADBGnl(e)
-#endif
-
-#include "fast_lexical_cast.hpp"
-#include <sstream>
-#include <string>
-#include "ff.h"
-#include "sparse_vector.h"
-#include "tdict.h"
-#include "hg.h"
-#include "ff_fsa_data.h"
-
-/*
-usage: see ff_sample_fsa.h or ff_lm_fsa.h
-
- then, to decode, see ff_from_fsa.h (or TODO: left->right target-earley style rescoring)
-
- */
-
-
-template <class Impl>
-struct FsaFeatureFunctionBase : public FsaFeatureFunctionData {
- Impl const& d() const { return static_cast<Impl const&>(*this); }
- Impl & d() { return static_cast<Impl &>(*this); }
-
- // this will get called by factory - override if you have multiple or dynamically named features. note: may be called repeatedly
- void Init() {
- Init(name());
- DBGINIT("base (single feature) FsaFeatureFunctionBase::Init name="<<name()<<" features="<<FD::Convert(features_));
- }
- void Init(std::string const& fname) {
- fid_=FD::Convert(fname);
- InitHaveFid();
- }
- void InitHaveFid() {
- features_=FeatureFunction::single_feature(fid_);
- }
- Features features() const {
- DBGINIT("FeatureFunctionBase::features() name="<<name()<<" features="<<FD::Convert(features_));
- return features_;
- }
-
-public:
- int fid_; // you can have more than 1 feature of course.
-
- std::string describe() const {
- std::ostringstream o;
- o<<*this;
- return o.str();
- }
-
- // can override to different return type, e.g. just return feats:
- Featval describe_features(FeatureVector const& feats) const {
- return feats.get(fid_);
- }
-
- bool debug() const { return true; }
- int fid() const { return fid_; } // return the one most important feature (for debugging)
- std::string name() const {
- return Impl::usage(false,false);
- }
-
- void print_state(std::ostream &o,void const*state) const {
- char const* i=(char const*)state;
- char const* e=i+ssz;
- for (;i!=e;++i)
- print_hex_byte(o,*i);
- }
-
- std::string describe_state(void const* state) const {
- std::ostringstream o;
- d().print_state(o,state);
- return o.str();
- }
- typedef SingleFeatureAccumulator Accum;
-
- // return m: all strings x with the same final m+1 letters must end in this state
- /* markov chain of order m: P(xn|xn-1...x1)=P(xn|xn-1...xn-m) */
- int markov_order() const { return 0; } // override if you use state. order 0 implies state_bytes()==0 as well, as far as scoring/splitting is concerned (you can still track state, though)
- //TODO: if we wanted, we could mark certain states as maximal-context, but this would lose our fixed amount of left context in ff_from_fsa, and lose also our vector operations (have to scan left words 1 at a time, checking always to see where you change from h to inside - BUT, could detect equivalent LM states, which would be nice).
-
-
-
- // if [i,end) are unscored words of length <= markov_order, score some of them on the right, and return the number scored, i.e. [end-r,end) will have been scored for return r. CAREFUL: for ngram you have to sometimes remember to pay all of the backoff once you see a few more words to the left.
- template <class Accum>
- int early_score_words(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,WordID const* i, WordID const* end,Accum *accum) const {
- return 0;
- }
-
- // this isn't currently used at all. this left-shortening is not recommended (wasn't worth the computation expense for ngram): specifically for bottom up scoring (ff_from_fsa), you can return a shorter left-words context - but this means e.g. for ngram tracking that a backoff occurred where the final BO cost isn't yet known. you would also have to remember any necessary info in your own state - in the future, ff_from_fsa on a list of fsa features would only shorten it to the max
-
-
- // override this (static)
- static std::string usage(bool param,bool verbose) {
- return FeatureFunction::usage_helper("unnamed_fsa_feature","","",param,verbose);
- }
-
- // move from state to next_state after seeing word x, while emitting features->set_value(fid,val) possibly with duplicates. state and next_state will never be the same memory.
- //TODO: decide if we want to require you to support dest same as src, since that's how we use it most often in ff_from_fsa bottom-up wrapper (in l->r scoring, however, distinct copies will be the rule), and it probably wouldn't be too hard for most people to support. however, it's good to hide the complexity here, once (see overly clever FsaScan loop that swaps src/dest addresses repeatedly to scan a sequence by effectively swapping)
-
-protected:
- // overrides have different name because of inheritance method hiding;
-
- // simple/common case; 1 fid. these need not be overriden if you have multiple feature ids
- Featval Scan1(WordID w,void const* state,void *next_state) const {
- assert(0);
- return 0;
- }
- Featval Scan1Meta(SentenceMetadata const& /* smeta */,Hypergraph::Edge const& /* edge */,
- WordID w,void const* state,void *next_state) const {
- return d().Scan1(w,state,next_state);
- }
-public:
-
- // must override this or Scan1Meta or Scan1
- template <class Accum>
- inline void ScanAccum(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,
- WordID w,void const* state,void *next_state,Accum *a) const {
- Add(d().Scan1Meta(smeta,edge,w,state,next_state),a);
- }
-
- // bounce back and forth between two state vars starting at cs, returning end state location. if we required src=dest addr safe state updating, this concept wouldn't need to exist.
- // required that you override this if you score phrases differently than word-by-word, however, you can just use the SCAN_PHRASE_ACCUM_OVERRIDE macro to do that in terms of ScanPhraseAccum
- template <class Accum>
- void *ScanPhraseAccumBounce(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,WordID const* i, WordID const* end,void *cs,void *ns,Accum *accum) const {
- // extra code - IT'S FOR EFFICIENCY, MAN! IT'S OK! definitely no bugs here.
- if (!ssz) {
- for (;i<end;++i)
- d().ScanAccum(smeta,edge,*i,0,0,accum);
- return 0;
- }
- void *os,*es;
- if ((end-i)&1) { // odd # of words
- os=cs;
- es=ns;
- goto odd;
- } else {
- i+=1;
- es=cs;
- os=ns;
- }
- for (;i<end;i+=2) {
- d().ScanAccum(smeta,edge,i[-1],es,os,accum); // e->o
- odd:
- d().ScanAccum(smeta,edge,i[0],os,es,accum); // o->e
- }
- return es;
- }
-
-
- static const bool simple_phrase_score=true; // if d().simple_phrase_score_, then you should expect different Phrase scores for phrase length > M. so, set this false if you provide ScanPhraseAccum (SCAN_PHRASE_ACCUM_OVERRIDE macro does this)
-
- // override this (and use SCAN_PHRASE_ACCUM_OVERRIDE ) if you want e.g. maximum possible order ngram scores with markov_order < n-1. in the future SparseFeatureAccumulator will probably be the only option for type-erased FSA ffs.
- // note you'll still have to override ScanAccum
- template <class Accum>
- void ScanPhraseAccum(SentenceMetadata const& smeta,Hypergraph::Edge const & edge,
- WordID const* i, WordID const* end,
- void const* state,void *next_state,Accum *accum) const {
- if (!ssz) {
- for (;i<end;++i)
- d().ScanAccum(smeta,edge,*i,0,0,accum);
- return;
- }
- char tstate[ssz];
- void *tst=tstate;
- bool odd=(end-i)&1;
- void *cs,*ns;
- // we're going to use Bounce (word by word alternating of states) such that the final place is next_state
- if (odd) {
- cs=tst;
- ns=next_state;
- } else {
- cs=next_state;
- ns=tst;
- }
- state_copy(cs,state);
- void *est=d().ScanPhraseAccumBounce(smeta,edge,i,end,cs,ns,accum);
- assert(est==next_state);
- }
-
-
-
- // could replace this with a CRTP subclass providing these impls.
- // the d() subclass dispatch is not needed because these will be defined in the subclass
-#define SCAN_PHRASE_ACCUM_OVERRIDE \
- static const bool simple_phrase_score=false; \
- template <class Accum> \
- void *ScanPhraseAccumBounce(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,WordID const* i, WordID const* end,void *cs,void *ns,Accum *accum) const { \
- ScanPhraseAccum(smeta,edge,i,end,cs,ns,accum); \
- return ns; \
- } \
- template <class Accum> \
- void ScanPhraseAccumOnly(SentenceMetadata const& smeta,Hypergraph::Edge const& edge, \
- WordID const* i, WordID const* end, \
- void const* state,Accum *accum) const { \
- char s2[ssz]; ScanPhraseAccum(smeta,edge,i,end,state,(void*)s2,accum); \
- }
-
- // override this or bounce along with above. note: you can just call ScanPhraseAccum
- // doesn't set state (for heuristic in ff_from_fsa)
- template <class Accum>
- void ScanPhraseAccumOnly(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,
- WordID const* i, WordID const* end,
- void const* state,Accum *accum) const {
- char s1[ssz];
- char s2[ssz];
- state_copy(s1,state);
- d().ScanPhraseAccumBounce(smeta,edge,i,end,(void*)s1,(void*)s2,accum);
- }
-
- // for single-feat only. but will work for different accums
- template <class Accum>
- inline void Add(Featval v,Accum *a) const {
- a->Add(fid_,v);
- }
- inline void set_feat(FeatureVector *features,Featval v) const {
- features->set_value(fid_,v);
- }
-
- // don't set state-bytes etc. in ctor because it may depend on parsing param string
- FsaFeatureFunctionBase(int statesz=0,Sentence const& end_sentence_phrase=Sentence())
- : FsaFeatureFunctionData(statesz,end_sentence_phrase)
- {
- name_=name(); // should allow FsaDynamic wrapper to get name copied to it with sync
- }
-
-};
-
-template <class Impl>
-struct MultipleFeatureFsa : public FsaFeatureFunctionBase<Impl> {
- typedef SparseFeatureAccumulator Accum;
-};
-
-
-
-
-// if State is pod. sets state size and allocs start, h_start
-// usage:
-// struct ShorterThanPrev : public FsaTypedBase<int,ShorterThanPrev>
-// i.e. Impl is a CRTP
-template <class St,class Impl>
-struct FsaTypedBase : public FsaFeatureFunctionBase<Impl> {
- Impl const& d() const { return static_cast<Impl const&>(*this); }
- Impl & d() { return static_cast<Impl &>(*this); }
-protected:
- typedef FsaFeatureFunctionBase<Impl> Base;
- typedef St State;
- static inline State & state(void *state) {
- return *(State*)state;
- }
- static inline State const& state(void const* state) {
- return *(State const*)state;
- }
- void set_starts(State const& s,State const& heuristic_s) {
- if (0) { // already in ctor
- Base::start.resize(sizeof(State));
- Base::h_start.resize(sizeof(State));
- }
- assert(Base::start.size()==sizeof(State));
- assert(Base::h_start.size()==sizeof(State));
- state(Base::start.begin())=s;
- state(Base::h_start.begin())=heuristic_s;
- }
- FsaTypedBase(St const& start_st=St()
- ,St const& h_start_st=St()
- ,Sentence const& end_sentence_phrase=Sentence())
- : Base(sizeof(State),end_sentence_phrase) {
- set_starts(start_st,h_start_st);
- }
-public:
- void print_state(std::ostream &o,void const*st) const {
- o<<state(st);
- }
- int markov_order() const { return 1; }
-
- // override this
- Featval ScanT1S(WordID w,St const& /* from */ ,St & /* to */) const {
- return 0;
- }
-
- // or this
- Featval ScanT1(SentenceMetadata const& /* smeta */,Hypergraph::Edge const& /* edge */,WordID w,St const& from ,St & to) const {
- return d().ScanT1S(w,from,to);
- }
-
- // or this (most general)
- template <class Accum>
- inline void ScanT(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,WordID w,St const& prev_st,St &new_st,Accum *a) const {
- Add(d().ScanT1(smeta,edge,w,prev_st,new_st),a);
- }
-
- // note: you're on your own when it comes to Phrase overrides. see FsaFeatureFunctionBase. sorry.
-
- template <class Accum>
- inline void ScanAccum(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,WordID w,void const* st,void *next_state,Accum *a) const {
- Impl const& im=d();
- FSADBG(edge,"Scan "<<FD::Convert(im.fid_)<<" = "<<a->describe(im)<<" "<<im.state(st)<<"->"<<TD::Convert(w)<<" ");
- im.ScanT(smeta,edge,w,state(st),state(next_state),a);
- FSADBG(edge,state(next_state)<<" = "<<a->describe(im));
- FSADBGnl(edge);
- }
-};
-
-
-// keep a "current state" (bouncing back and forth)
-template <class FF>
-struct FsaScanner {
-// enum {ALIGN=8};
- static const int ALIGN=8;
- FF const& ff;
- SentenceMetadata const& smeta;
- int ssz;
- Bytes states; // first is at begin, second is at (char*)begin+stride
- void *st0; // states
- void *st1; // states+stride
- void *cs; // initially st0, alternates between st0 and st1
- inline void *nexts() const {
- return (cs==st0)?st1:st0;
- }
- Hypergraph::Edge const& edge;
- FsaScanner(FF const& ff,SentenceMetadata const& smeta,Hypergraph::Edge const& edge) : ff(ff),smeta(smeta),edge(edge)
- {
- ssz=ff.state_bytes();
- int stride=((ssz+ALIGN-1)/ALIGN)*ALIGN; // round up to multiple of ALIGN
- states.resize(stride+ssz);
- st0=states.begin();
- st1=(char*)st0+stride;
-// for (int i=0;i<2;++i) st[i]=cs+(i*stride);
- }
- void reset(void const* state) {
- cs=st0;
- std::memcpy(st0,state,ssz);
- }
- template <class Accum>
- void scan(WordID w,Accum *a) {
- void *ns=nexts();
- ff.ScanAccum(smeta,edge,w,cs,ns,a);
- cs=ns;
- }
- template <class Accum>
- void scan(WordID const* i,WordID const* end,Accum *a) {
- // faster. and allows greater-order excursions
- cs=ff.ScanPhraseAccumBounce(smeta,edge,i,end,cs,nexts(),a);
- }
-};
-
-
-//TODO: combine 2 FsaFeatures typelist style (can recurse for more)
-
-
-
-
-#endif
diff --git a/decoder/ff_fsa_data.h b/decoder/ff_fsa_data.h
deleted file mode 100755
index d215e940..00000000
--- a/decoder/ff_fsa_data.h
+++ /dev/null
@@ -1,131 +0,0 @@
-#ifndef FF_FSA_DATA_H
-#define FF_FSA_DATA_H
-
-#include <stdint.h> //C99
-#include <sstream>
-#include "sentences.h"
-#include "feature_accum.h"
-#include "value_array.h"
-#include "ff.h" //debug
-typedef ValueArray<uint8_t> Bytes;
-
-// stuff I see no reason to have virtual. but because it's impossible (w/o virtual inheritance to have dynamic fsa ff know where the impl's data starts, implemented a sync (copy) method that needs to be called. init_name_debug was already necessary to keep state in sync between ff and ff_from_fsa, so no sync should be needed after it. supposing all modifications were through setters, then no explicit sync call would ever be needed; updates could be mirrored.
-struct FsaFeatureFunctionData
-{
- void init_name_debug(std::string const& n,bool debug) {
- name_=n;
- debug_=debug;
- }
- //HACK for diamond inheritance (w/o costing performance)
- FsaFeatureFunctionData *sync_to_;
-
- void sync() const { // call this if you modify any fields after your constructor is done
- if (sync_to_) {
- DBGINIT("sync to "<<*sync_to_);
- *sync_to_=*this;
- DBGINIT("synced result="<<*sync_to_<< " from this="<<*this);
- } else {
- DBGINIT("nobody to sync to - from FeatureFunctionData this="<<*this);
- }
- }
-
- friend std::ostream &operator<<(std::ostream &o,FsaFeatureFunctionData const& d) {
- o << "[FSA "<<d.name_<<" features="<<FD::Convert(d.features_)<<" state_bytes="<<d.state_bytes()<<" end='"<<d.end_phrase()<<"' start=";
- d.print_state(o,d.start_state());
- o<<"]";
- return o;
- }
-
- FsaFeatureFunctionData(int statesz=0,Sentence const& end_sentence_phrase=Sentence()) : start(statesz),h_start(statesz),end_phrase_(end_sentence_phrase),ssz(statesz) {
- debug_=true;
- sync_to_=0;
- }
-
- std::string name_;
- std::string name() const {
- return name_;
- }
- typedef SparseFeatureAccumulator Accum;
- bool debug_;
- bool debug() const { return debug_; }
- void state_copy(void *to,void const*from) const {
- if (ssz)
- std::memcpy(to,from,ssz);
- }
- void state_zero(void *st) const { // you should call this if you don't know the state yet and want it to be hashed/compared properly
- std::memset(st,0,ssz);
- }
- Features features() const {
- return features_;
- }
- int n_features() const {
- return features_.size();
- }
- int state_bytes() const { return ssz; }
- void const* start_state() const {
- return start.begin();
- }
- void const * heuristic_start_state() const {
- return h_start.begin();
- }
- Sentence const& end_phrase() const { return end_phrase_; }
- template <class T>
- static inline T* state_as(void *p) { return (T*)p; }
- template <class T>
- static inline T const* state_as(void const* p) { return (T*)p; }
- std::string describe_features(FeatureVector const& feats) {
- std::ostringstream o;
- o<<feats;
- return o.str();
- }
- void print_state(std::ostream &o,void const*state) const {
- char const* i=(char const*)state;
- char const* e=i+ssz;
- for (;i!=e;++i)
- print_hex_byte(o,*i);
- }
-
- Features features_;
- Bytes start,h_start; // start state and estimated-features (heuristic) start state. set these. default empty.
- Sentence end_phrase_; // words appended for final traversal (final state cost is assessed using Scan) e.g. "</s>" for lm.
-protected:
- int ssz; // don't forget to set this. default 0 (it may depend on params of course)
- // this can be called instead or after constructor (also set bytes and end_phrase_)
- void set_state_bytes(int sb=0) {
- if (start.size()!=sb) start.resize(sb);
- if (h_start.size()!=sb) h_start.resize(sb);
- ssz=sb;
- }
- void set_end_phrase(WordID single) {
- end_phrase_=singleton_sentence(single);
- }
-
- inline void static to_state(void *state,char const* begin,char const* end) {
- std::memcpy(state,begin,end-begin);
- }
- inline void static to_state(void *state,char const* begin,int n) {
- std::memcpy(state,begin,n);
- }
- template <class T>
- inline void static to_state(void *state,T const* begin,int n=1) {
- to_state(state,(char const*)begin,n*sizeof(T));
- }
- template <class T>
- inline void static to_state(void *state,T const* begin,T const* end) {
- to_state(state,(char const*)begin,(char const*)end);
- }
- inline static char hexdigit(int i) {
- int j=i-10;
- return j>=0?'a'+j:'0'+i;
- }
- inline static void print_hex_byte(std::ostream &o,unsigned c) {
- o<<hexdigit(c>>4);
- o<<hexdigit(c&0x0f);
- }
- inline static void Add(Featval v,SingleFeatureAccumulator *a) {
- a->Add(v);
- }
-
-};
-
-#endif
diff --git a/decoder/ff_fsa_dynamic.h b/decoder/ff_fsa_dynamic.h
deleted file mode 100755
index 6f75bbe5..00000000
--- a/decoder/ff_fsa_dynamic.h
+++ /dev/null
@@ -1,208 +0,0 @@
-#ifndef FF_FSA_DYNAMIC_H
-#define FF_FSA_DYNAMIC_H
-
-struct SentenceMetadata;
-
-#include "ff_fsa_data.h"
-#include "hg.h" // can't forward declare nested Hypergraph::Edge class
-#include <sstream>
-
-// the type-erased interface
-
-//FIXME: diamond inheritance problem. make a copy of the fixed data? or else make the dynamic version not wrap but rather be templated CRTP base (yuck)
-struct FsaFeatureFunction : public FsaFeatureFunctionData {
- static const bool simple_phrase_score=false;
- virtual int markov_order() const = 0;
-
- // see ff_fsa.h - FsaFeatureFunctionBase<Impl> gives you reasonable impls of these if you override just ScanAccum
- virtual void ScanAccum(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,
- WordID w,void const* state,void *next_state,Accum *a) const = 0;
- virtual void ScanPhraseAccum(SentenceMetadata const& smeta,Hypergraph::Edge const & edge,
- WordID const* i, WordID const* end,
- void const* state,void *next_state,Accum *accum) const = 0;
- virtual void ScanPhraseAccumOnly(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,
- WordID const* i, WordID const* end,
- void const* state,Accum *accum) const = 0;
- virtual void *ScanPhraseAccumBounce(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,WordID const* i, WordID const* end,void *cs,void *ns,Accum *accum) const = 0;
-
- virtual int early_score_words(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,WordID const* i, WordID const* end,Accum *accum) const { return 0; }
- // called after constructor, before use
- virtual void Init() = 0;
- virtual std::string usage_v(bool param,bool verbose) const {
- return FeatureFunction::usage_helper("unnamed_dynamic_fsa_feature","","",param,verbose);
- }
- virtual void init_name_debug(std::string const& n,bool debug) {
- FsaFeatureFunctionData::init_name_debug(n,debug);
- }
-
- virtual void print_state(std::ostream &o,void const*state) const {
- FsaFeatureFunctionData::print_state(o,state);
- }
- virtual std::string describe() const { return "[FSA unnamed_dynamic_fsa_feature]"; }
-
- //end_phrase()
- virtual ~FsaFeatureFunction() {}
-
- // no need to override:
- std::string describe_state(void const* state) const {
- std::ostringstream o;
- print_state(o,state);
- return o.str();
- }
-};
-
-// conforming to above interface, type erases FsaImpl
-// you might be wondering: why do this? answer: it's cool, and it means that the bottom-up ff over ff_fsa wrapper doesn't go through multiple layers of dynamic dispatch
-// usage: typedef FsaFeatureFunctionDynamic<MyFsa> MyFsaDyn;
-template <class Impl>
-struct FsaFeatureFunctionDynamic : public FsaFeatureFunction {
- static const bool simple_phrase_score=Impl::simple_phrase_score;
- Impl& d() { return impl;//static_cast<Impl&>(*this);
- }
- Impl const& d() const { return impl;
- //static_cast<Impl const&>(*this);
- }
- int markov_order() const { return d().markov_order(); }
-
- std::string describe() const {
- return d().describe();
- }
-
- virtual void ScanAccum(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,
- WordID w,void const* state,void *next_state,Accum *a) const {
- return d().ScanAccum(smeta,edge,w,state,next_state,a);
- }
-
- virtual void ScanPhraseAccum(SentenceMetadata const& smeta,Hypergraph::Edge const & edge,
- WordID const* i, WordID const* end,
- void const* state,void *next_state,Accum *a) const {
- return d().ScanPhraseAccum(smeta,edge,i,end,state,next_state,a);
- }
-
- virtual void ScanPhraseAccumOnly(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,
- WordID const* i, WordID const* end,
- void const* state,Accum *a) const {
- return d().ScanPhraseAccumOnly(smeta,edge,i,end,state,a);
- }
-
- virtual void *ScanPhraseAccumBounce(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,WordID const* i, WordID const* end,void *cs,void *ns,Accum *a) const {
- return d().ScanPhraseAccumBounce(smeta,edge,i,end,cs,ns,a);
- }
-
- virtual int early_score_words(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,WordID const* i, WordID const* end,Accum *accum) const {
- return d().early_score_words(smeta,edge,i,end,accum);
- }
-
- static std::string usage(bool param,bool verbose) {
- return Impl::usage(param,verbose);
- }
-
- std::string usage_v(bool param,bool verbose) const {
- return Impl::usage(param,verbose);
- }
-
- virtual void print_state(std::ostream &o,void const*state) const {
- return d().print_state(o,state);
- }
-
- void init_name_debug(std::string const& n,bool debug) {
- FsaFeatureFunction::init_name_debug(n,debug);
- d().init_name_debug(n,debug);
- }
-
- virtual void Init() {
- d().sync_to_=(FsaFeatureFunctionData*)this;
- d().Init();
- d().sync();
- }
-
- template <class I>
- FsaFeatureFunctionDynamic(I const& param) : impl(param) {
- Init();
- }
-private:
- Impl impl;
-};
-
-// constructor takes ptr or shared_ptr to Impl, otherwise same as above - note: not virtual
-template <class Impl>
-struct FsaFeatureFunctionPimpl : public FsaFeatureFunctionData {
- typedef boost::shared_ptr<Impl const> Pimpl;
- static const bool simple_phrase_score=Impl::simple_phrase_score;
- Impl const& d() const { return *p_; }
- int markov_order() const { return d().markov_order(); }
-
- std::string describe() const {
- return d().describe();
- }
-
- void ScanAccum(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,
- WordID w,void const* state,void *next_state,Accum *a) const {
- return d().ScanAccum(smeta,edge,w,state,next_state,a);
- }
-
- void ScanPhraseAccum(SentenceMetadata const& smeta,Hypergraph::Edge const & edge,
- WordID const* i, WordID const* end,
- void const* state,void *next_state,Accum *a) const {
- return d().ScanPhraseAccum(smeta,edge,i,end,state,next_state,a);
- }
-
- void ScanPhraseAccumOnly(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,
- WordID const* i, WordID const* end,
- void const* state,Accum *a) const {
- return d().ScanPhraseAccumOnly(smeta,edge,i,end,state,a);
- }
-
- void *ScanPhraseAccumBounce(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,WordID const* i, WordID const* end,void *cs,void *ns,Accum *a) const {
- return d().ScanPhraseAccumBounce(smeta,edge,i,end,cs,ns,a);
- }
-
- int early_score_words(SentenceMetadata const& smeta,Hypergraph::Edge const& edge,WordID const* i, WordID const* end,Accum *accum) const {
- return d().early_score_words(smeta,edge,i,end,accum);
- }
-
- static std::string usage(bool param,bool verbose) {
- return Impl::usage(param,verbose);
- }
-
- std::string usage_v(bool param,bool verbose) const {
- return Impl::usage(param,verbose);
- }
-
- void print_state(std::ostream &o,void const*state) const {
- return d().print_state(o,state);
- }
-
-#if 0
- // this and Init() don't touch p_ because we want to leave the original alone.
- void init_name_debug(std::string const& n,bool debug) {
- FsaFeatureFunctionData::init_name_debug(n,debug);
- }
-#endif
- void Init() {
- p_=hold_pimpl_.get();
-#if 0
- d().sync_to_=static_cast<FsaFeatureFunctionData*>(this);
- d().Init();
-#endif
- *static_cast<FsaFeatureFunctionData*>(this)=d();
- }
-
- FsaFeatureFunctionPimpl(Impl const* const p) : hold_pimpl_(p,null_deleter()) {
- Init();
- }
- FsaFeatureFunctionPimpl(Pimpl const& p) : hold_pimpl_(p) {
- Init();
- }
-private:
- Impl const* p_;
- Pimpl hold_pimpl_;
-};
-
-typedef FsaFeatureFunctionPimpl<FsaFeatureFunction> FsaFeatureFunctionFwd; // allow ff_from_fsa for an existing dynamic-type ff (as opposed to usual register a wrapped known-type FSA in ff_register, which is more efficient)
-//typedef FsaFeatureFunctionDynamic<FsaFeatureFunctionFwd> DynamicFsaFeatureFunctionFwd; //if you really need to have a dynamic fsa facade that's also a dynamic fsa
-
-//TODO: combine 2 (or N) FsaFeatureFunction (type erased)
-
-
-#endif
diff --git a/decoder/ff_klm.cc b/decoder/ff_klm.cc
index 24dcb9c3..28bcb6b9 100644
--- a/decoder/ff_klm.cc
+++ b/decoder/ff_klm.cc
@@ -12,11 +12,9 @@
#include "lm/model.hh"
#include "lm/enumerate_vocab.hh"
-using namespace std;
+#include "lm/left.hh"
-static const unsigned char HAS_FULL_CONTEXT = 1;
-static const unsigned char HAS_EOS_ON_RIGHT = 2;
-static const unsigned char MASK = 7;
+using namespace std;
// -x : rules include <s> and </s>
// -n NAME : feature id is NAME
@@ -70,6 +68,8 @@ string KLanguageModel<Model>::usage(bool /*param*/,bool /*verbose*/) {
return "KLanguageModel";
}
+namespace {
+
struct VMapper : public lm::ngram::EnumerateVocab {
VMapper(vector<lm::WordIndex>* out) : out_(out), kLM_UNKNOWN_TOKEN(0) { out_->clear(); }
void Add(lm::WordIndex index, const StringPiece &str) {
@@ -82,181 +82,122 @@ struct VMapper : public lm::ngram::EnumerateVocab {
const lm::WordIndex kLM_UNKNOWN_TOKEN;
};
-template <class Model>
-class KLanguageModelImpl {
-
- // returns the number of unscored words at the left edge of a span
- inline int UnscoredSize(const void* state) const {
- return *(static_cast<const char*>(state) + unscored_size_offset_);
- }
+#pragma pack(push)
+#pragma pack(1)
- inline void SetUnscoredSize(int size, void* state) const {
- *(static_cast<char*>(state) + unscored_size_offset_) = size;
- }
+struct BoundaryAnnotatedState {
+ lm::ngram::ChartState state;
+ bool seen_bos, seen_eos;
+};
- static inline const lm::ngram::State& RemnantLMState(const void* state) {
- return *static_cast<const lm::ngram::State*>(state);
- }
+#pragma pack(pop)
+
+template <class Model> class BoundaryRuleScore {
+ public:
+ BoundaryRuleScore(const Model &m, BoundaryAnnotatedState &state) :
+ back_(m, state.state),
+ bos_(state.seen_bos),
+ eos_(state.seen_eos),
+ penalty_(0.0),
+ end_sentence_(m.GetVocabulary().EndSentence()) {
+ bos_ = false;
+ eos_ = false;
+ }
- inline void SetRemnantLMState(const lm::ngram::State& lmstate, void* state) const {
- // if we were clever, we could use the memory pointed to by state to do all
- // the work, avoiding this copy
- memcpy(state, &lmstate, ngram_->StateSize());
- }
+ void BeginSentence() {
+ back_.BeginSentence();
+ bos_ = true;
+ }
- lm::WordIndex IthUnscoredWord(int i, const void* state) const {
- const lm::WordIndex* const mem = reinterpret_cast<const lm::WordIndex*>(static_cast<const char*>(state) + unscored_words_offset_);
- return mem[i];
- }
+ void BeginNonTerminal(const BoundaryAnnotatedState &sub) {
+ back_.BeginNonTerminal(sub.state, 0.0f);
+ bos_ = sub.seen_bos;
+ eos_ = sub.seen_eos;
+ }
- void SetIthUnscoredWord(int i, lm::WordIndex index, void *state) const {
- lm::WordIndex* mem = reinterpret_cast<lm::WordIndex*>(static_cast<char*>(state) + unscored_words_offset_);
- mem[i] = index;
- }
+ void NonTerminal(const BoundaryAnnotatedState &sub) {
+ back_.NonTerminal(sub.state, 0.0f);
+ // cdec only calls this if there's content.
+ if (sub.seen_bos) {
+ bos_ = true;
+ penalty_ -= 100.0f;
+ }
+ if (eos_) penalty_ -= 100.0f;
+ eos_ |= sub.seen_eos;
+ }
- inline bool GetFlag(const void *state, unsigned char flag) const {
- return (*(static_cast<const char*>(state) + is_complete_offset_) & flag);
- }
+ void Terminal(lm::WordIndex word) {
+ back_.Terminal(word);
+ if (eos_) penalty_ -= 100.0f;
+ if (word == end_sentence_) eos_ = true;
+ }
- inline void SetFlag(bool on, unsigned char flag, void *state) const {
- if (on) {
- *(static_cast<char*>(state) + is_complete_offset_) |= flag;
- } else {
- *(static_cast<char*>(state) + is_complete_offset_) &= (MASK ^ flag);
+ float Finish() {
+ return penalty_ + back_.Finish();
}
- }
- inline bool HasFullContext(const void *state) const {
- return GetFlag(state, HAS_FULL_CONTEXT);
- }
+ private:
+ lm::ngram::RuleScore<Model> back_;
+ bool &bos_, &eos_;
- inline void SetHasFullContext(bool flag, void *state) const {
- SetFlag(flag, HAS_FULL_CONTEXT, state);
- }
+ float penalty_;
+ lm::WordIndex end_sentence_;
+};
+
+} // namespace
+
+template <class Model>
+class KLanguageModelImpl {
public:
- double LookupWords(const TRule& rule, const vector<const void*>& ant_states, double* pest_sum, double* oovs, double* est_oovs, void* remnant) {
- double sum = 0.0;
- double est_sum = 0.0;
- int num_scored = 0;
- int num_estimated = 0;
- if (oovs) *oovs = 0;
- if (est_oovs) *est_oovs = 0;
- bool saw_eos = false;
- bool has_some_history = false;
- lm::ngram::State state = ngram_->NullContextState();
+ double LookupWords(const TRule& rule, const vector<const void*>& ant_states, double* oovs, void* remnant) {
+ *oovs = 0;
const vector<WordID>& e = rule.e();
- bool context_complete = false;
- for (int j = 0; j < e.size(); ++j) {
- if (e[j] < 1) { // handle non-terminal substitution
- const void* astate = (ant_states[-e[j]]);
- int unscored_ant_len = UnscoredSize(astate);
- for (int k = 0; k < unscored_ant_len; ++k) {
- const lm::WordIndex cur_word = IthUnscoredWord(k, astate);
- const bool is_oov = (cur_word == 0);
- double p = 0;
- if (cur_word == kSOS_) {
- state = ngram_->BeginSentenceState();
- if (has_some_history) { // this is immediately fully scored, and bad
- p = -100;
- context_complete = true;
- } else { // this might be a real <s>
- num_scored = max(0, order_ - 2);
- }
- } else {
- const lm::ngram::State scopy(state);
- p = ngram_->Score(scopy, cur_word, state);
- if (saw_eos) { p = -100; }
- saw_eos = (cur_word == kEOS_);
- }
- has_some_history = true;
- ++num_scored;
- if (!context_complete) {
- if (num_scored >= order_) context_complete = true;
- }
- if (context_complete) {
- sum += p;
- if (oovs && is_oov) (*oovs)++;
- } else {
- if (remnant)
- SetIthUnscoredWord(num_estimated, cur_word, remnant);
- ++num_estimated;
- est_sum += p;
- if (est_oovs && is_oov) (*est_oovs)++;
- }
- }
- saw_eos = GetFlag(astate, HAS_EOS_ON_RIGHT);
- if (HasFullContext(astate)) { // this is equivalent to the "star" in Chiang 2007
- state = RemnantLMState(astate);
- context_complete = true;
- }
- } else { // handle terminal
- const WordID cdec_word_or_class = ClassifyWordIfNecessary(e[j]); // in future,
+ BoundaryRuleScore<Model> ruleScore(*ngram_, *static_cast<BoundaryAnnotatedState*>(remnant));
+ unsigned i = 0;
+ if (e.size()) {
+ if (e[i] == kCDEC_SOS) {
+ ++i;
+ ruleScore.BeginSentence();
+ } else if (e[i] <= 0) { // special case for left-edge NT
+ ruleScore.BeginNonTerminal(*static_cast<const BoundaryAnnotatedState*>(ant_states[-e[0]]));
+ ++i;
+ }
+ }
+ for (; i < e.size(); ++i) {
+ if (e[i] <= 0) {
+ ruleScore.NonTerminal(*static_cast<const BoundaryAnnotatedState*>(ant_states[-e[i]]));
+ } else {
+ const WordID cdec_word_or_class = ClassifyWordIfNecessary(e[i]); // in future,
// maybe handle emission
const lm::WordIndex cur_word = MapWord(cdec_word_or_class); // map to LM's id
- double p = 0;
- const bool is_oov = (cur_word == 0);
- if (cur_word == kSOS_) {
- state = ngram_->BeginSentenceState();
- if (has_some_history) { // this is immediately fully scored, and bad
- p = -100;
- context_complete = true;
- } else { // this might be a real <s>
- num_scored = max(0, order_ - 2);
- }
- } else {
- const lm::ngram::State scopy(state);
- p = ngram_->Score(scopy, cur_word, state);
- if (saw_eos) { p = -100; }
- saw_eos = (cur_word == kEOS_);
- }
- has_some_history = true;
- ++num_scored;
- if (!context_complete) {
- if (num_scored >= order_) context_complete = true;
- }
- if (context_complete) {
- sum += p;
- if (oovs && is_oov) (*oovs)++;
- } else {
- if (remnant)
- SetIthUnscoredWord(num_estimated, cur_word, remnant);
- ++num_estimated;
- est_sum += p;
- if (est_oovs && is_oov) (*est_oovs)++;
- }
+ if (cur_word == 0) (*oovs) += 1.0;
+ ruleScore.Terminal(cur_word);
}
}
- if (pest_sum) *pest_sum = est_sum;
- if (remnant) {
- state.ZeroRemaining();
- SetFlag(saw_eos, HAS_EOS_ON_RIGHT, remnant);
- SetRemnantLMState(state, remnant);
- SetUnscoredSize(num_estimated, remnant);
- SetHasFullContext(context_complete || (num_scored >= order_), remnant);
- }
- return sum;
+ double ret = ruleScore.Finish();
+ static_cast<BoundaryAnnotatedState*>(remnant)->state.ZeroRemaining();
+ return ret;
}
// this assumes no target words on final unary -> goal rule. is that ok?
// for <s> (n-1 left words) and (n-1 right words) </s>
- double FinalTraversalCost(const void* state, double* oovs) {
+ double FinalTraversalCost(const void* state_void, double* oovs) {
+ const BoundaryAnnotatedState &annotated = *static_cast<const BoundaryAnnotatedState*>(state_void);
if (add_sos_eos_) { // rules do not produce <s> </s>, so do it here
- SetRemnantLMState(ngram_->BeginSentenceState(), dummy_state_);
- SetHasFullContext(1, dummy_state_);
- SetUnscoredSize(0, dummy_state_);
- dummy_ants_[1] = state;
- *oovs = 0;
- return LookupWords(*dummy_rule_, dummy_ants_, NULL, oovs, NULL, NULL);
+ assert(!annotated.seen_bos);
+ assert(!annotated.seen_eos);
+ lm::ngram::ChartState cstate;
+ lm::ngram::RuleScore<Model> ruleScore(*ngram_, cstate);
+ ruleScore.BeginSentence();
+ ruleScore.NonTerminal(annotated.state, 0.0f);
+ ruleScore.Terminal(kEOS_);
+ return ruleScore.Finish();
} else { // rules DO produce <s> ... </s>
- double p = 0;
- if (!GetFlag(state, HAS_EOS_ON_RIGHT)) { p -= 100; }
- if (UnscoredSize(state) > 0) { // are there unscored words
- if (kSOS_ != IthUnscoredWord(0, state)) {
- p -= 100 * UnscoredSize(state);
- }
- }
- return p;
+ double ret = 0.0;
+ if (!annotated.seen_bos) ret -= 100.0;
+ if (!annotated.seen_eos) ret -= 100.0;
+ return ret;
}
}
@@ -282,6 +223,7 @@ class KLanguageModelImpl {
public:
KLanguageModelImpl(const string& filename, const string& mapfile, bool explicit_markers) :
kCDEC_UNK(TD::Convert("<unk>")) ,
+ kCDEC_SOS(TD::Convert("<s>")) ,
add_sos_eos_(!explicit_markers) {
{
VMapper vm(&cdec2klm_map_);
@@ -291,18 +233,9 @@ class KLanguageModelImpl {
}
order_ = ngram_->Order();
cerr << "Loaded " << order_ << "-gram KLM from " << filename << " (MapSize=" << cdec2klm_map_.size() << ")\n";
- state_size_ = ngram_->StateSize() + 2 + (order_ - 1) * sizeof(lm::WordIndex);
- unscored_size_offset_ = ngram_->StateSize();
- is_complete_offset_ = unscored_size_offset_ + 1;
- unscored_words_offset_ = is_complete_offset_ + 1;
// special handling of beginning / ending sentence markers
- dummy_state_ = new char[state_size_];
- memset(dummy_state_, 0, state_size_);
- dummy_ants_.push_back(dummy_state_);
- dummy_ants_.push_back(NULL);
- dummy_rule_.reset(new TRule("[DUMMY] ||| [BOS] [DUMMY] ||| [1] [2] </s> ||| X=0"));
- kSOS_ = MapWord(TD::Convert("<s>"));
+ kSOS_ = MapWord(kCDEC_SOS);
assert(kSOS_ > 0);
kEOS_ = MapWord(TD::Convert("</s>"));
assert(kEOS_ > 0);
@@ -350,13 +283,13 @@ class KLanguageModelImpl {
~KLanguageModelImpl() {
delete ngram_;
- delete[] dummy_state_;
}
- int ReserveStateSize() const { return state_size_; }
+ int ReserveStateSize() const { return sizeof(BoundaryAnnotatedState); }
private:
const WordID kCDEC_UNK;
+ const WordID kCDEC_SOS;
lm::WordIndex kSOS_; // <s> - requires special handling.
lm::WordIndex kEOS_; // </s>
Model* ngram_;
@@ -367,15 +300,8 @@ class KLanguageModelImpl {
// the sentence) with 0, and anything else with -100
int order_;
- int state_size_;
- int unscored_size_offset_;
- int is_complete_offset_;
- int unscored_words_offset_;
- char* dummy_state_;
- vector<const void*> dummy_ants_;
vector<lm::WordIndex> cdec2klm_map_;
vector<WordID> word2class_map_; // if this is a class-based LM, this is the word->class mapping
- TRulePtr dummy_rule_;
};
template <class Model>
@@ -393,7 +319,7 @@ KLanguageModel<Model>::KLanguageModel(const string& param) {
}
fid_ = FD::Convert(featname);
oov_fid_ = FD::Convert(featname+"_OOV");
- cerr << "FID: " << oov_fid_ << endl;
+ // cerr << "FID: " << oov_fid_ << endl;
SetStateSize(pimpl_->ReserveStateSize());
}
@@ -416,13 +342,9 @@ void KLanguageModel<Model>::TraversalFeaturesImpl(const SentenceMetadata& /* sme
void* state) const {
double est = 0;
double oovs = 0;
- double est_oovs = 0;
- features->set_value(fid_, pimpl_->LookupWords(*edge.rule_, ant_states, &est, &oovs, &est_oovs, state));
- estimated_features->set_value(fid_, est);
- if (oov_fid_) {
- if (oovs) features->set_value(oov_fid_, oovs);
- if (est_oovs) estimated_features->set_value(oov_fid_, est_oovs);
- }
+ features->set_value(fid_, pimpl_->LookupWords(*edge.rule_, ant_states, &oovs, state));
+ if (oovs && oov_fid_)
+ features->set_value(oov_fid_, oovs);
}
template <class Model>
@@ -469,3 +391,23 @@ boost::shared_ptr<FeatureFunction> KLanguageModelFactory::Create(std::string par
std::string KLanguageModelFactory::usage(bool params,bool verbose) const {
return KLanguageModel<lm::ngram::Model>::usage(params, verbose);
}
+
+ switch (m) {
+ case HASH_PROBING:
+ return CreateModel<ProbingModel>(param);
+ case TRIE_SORTED:
+ return CreateModel<TrieModel>(param);
+ case ARRAY_TRIE_SORTED:
+ return CreateModel<ArrayTrieModel>(param);
+ case QUANT_TRIE_SORTED:
+ return CreateModel<QuantTrieModel>(param);
+ case QUANT_ARRAY_TRIE_SORTED:
+ return CreateModel<QuantArrayTrieModel>(param);
+ default:
+ UTIL_THROW(util::Exception, "Unrecognized kenlm binary file type " << (unsigned)m);
+ }
+}
+
+std::string KLanguageModelFactory::usage(bool params,bool verbose) const {
+ return KLanguageModel<lm::ngram::Model>::usage(params, verbose);
+}
diff --git a/decoder/ff_lm.cc b/decoder/ff_lm.cc
index afa36b96..5e16d4e3 100644
--- a/decoder/ff_lm.cc
+++ b/decoder/ff_lm.cc
@@ -46,7 +46,6 @@ char const* usage_verbose="-n determines the name of the feature (and its weight
#endif
#include "ff_lm.h"
-#include "ff_lm_fsa.h"
#include <sstream>
#include <unistd.h>
@@ -69,10 +68,6 @@ char const* usage_verbose="-n determines the name of the feature (and its weight
using namespace std;
-string LanguageModelFsa::usage(bool param,bool verbose) {
- return FeatureFunction::usage_helper("LanguageModelFsa",usage_short,usage_verbose,param,verbose);
-}
-
string LanguageModel::usage(bool param,bool verbose) {
return FeatureFunction::usage_helper(usage_name,usage_short,usage_verbose,param,verbose);
}
@@ -524,49 +519,6 @@ LanguageModel::LanguageModel(const string& param) {
SetStateSize(LanguageModelImpl::OrderToStateSize(order));
}
-//TODO: decide whether to waste a word of space so states are always none-terminated for SRILM. otherwise we have to copy
-void LanguageModelFsa::set_ngram_order(int i) {
- assert(i>0);
- ngram_order_=i;
- ctxlen_=i-1;
- set_state_bytes(ctxlen_*sizeof(WordID));
- WordID *ss=(WordID*)start.begin();
- WordID *hs=(WordID*)h_start.begin();
- if (ctxlen_) { // avoid segfault in case of unigram lm (0 state)
- set_end_phrase(TD::Convert("</s>"));
-// se is pretty boring in unigram case, just adds constant prob. check that this is what we want
- ss[0]=TD::Convert("<s>"); // start-sentence context (length 1)
- hs[0]=0; // empty context
- for (int i=1;i<ctxlen_;++i) {
- ss[i]=hs[i]=0; // need this so storage is initialized for hashing.
- //TODO: reevaluate whether state space comes cleared by allocator or not.
- }
- }
- sync(); // for dynamic markov_order copy etc
-}
-
-LanguageModelFsa::LanguageModelFsa(string const& param) {
- int lmorder;
- pimpl_ = make_lm_impl(param,&lmorder,&fid_);
- Init();
- floor_=pimpl_->floor_;
- set_ngram_order(lmorder);
-}
-
-void LanguageModelFsa::print_state(ostream &o,void const* st) const {
- WordID const *wst=(WordID const*)st;
- o<<'[';
- bool sp=false;
- for (int i=ctxlen_;i>0;sp=true) {
- --i;
- WordID w=wst[i];
- if (w==0) continue;
- if (sp) o<<' ';
- o << TD::Convert(w);
- }
- o<<']';
-}
-
Features LanguageModel::features() const {
return single_feature(fid_);
}
diff --git a/decoder/ff_lm_fsa.h b/decoder/ff_lm_fsa.h
deleted file mode 100755
index 85b7ef44..00000000
--- a/decoder/ff_lm_fsa.h
+++ /dev/null
@@ -1,140 +0,0 @@
-#ifndef FF_LM_FSA_H
-#define FF_LM_FSA_H
-
-//FIXME: when FSA_LM_PHRASE 1, 3gram fsa has differences, especially with unk words, in about the 4th decimal digit (about .05%), compared to regular ff_lm. this is USUALLY a bug (there's way more actual precision in there). this was with #define LM_FSA_SHORTEN_CONTEXT 1 and 0 (so it's not that). also, LM_FSA_SHORTEN_CONTEXT gives identical scores with FSA_LM_PHRASE 0
-
-// enabling for now - retest unigram+ more, solve above puzzle
-
-// some impls in ff_lm.cc
-
-#define FSA_LM_PHRASE 1
-
-#define FSA_LM_DEBUG 0
-#if FSA_LM_DEBUG
-# define FSALMDBG(e,x) FSADBGif(debug(),e,x)
-# define FSALMDBGnl(e) FSADBGif_nl(debug(),e)
-#else
-# define FSALMDBG(e,x)
-# define FSALMDBGnl(e)
-#endif
-
-#include "ff_fsa.h"
-#include "ff_lm.h"
-
-#ifndef TD__none
-// replacing dependency on SRILM
-#define TD__none -1
-#endif
-
-namespace {
-WordID empty_context=TD__none;
-}
-
-struct LanguageModelFsa : public FsaFeatureFunctionBase<LanguageModelFsa> {
- typedef WordID * W;
- typedef WordID const* WP;
-
- // overrides; implementations in ff_lm.cc
- typedef SingleFeatureAccumulator Accum;
- static std::string usage(bool,bool);
- LanguageModelFsa(std::string const& param);
- int markov_order() const { return ctxlen_; }
- void print_state(std::ostream &,void const *) const;
- inline Featval floored(Featval p) const {
- return p<floor_?floor_:p;
- }
- static inline WordID const* left_end(WordID const* left, WordID const* e) {
- for (;e>left;--e)
- if (e[-1]!=TD__none) break;
- //post: [left,e] are the seen left words
- return e;
- }
-
- template <class Accum>
- void ScanAccum(SentenceMetadata const& /* smeta */,Hypergraph::Edge const& edge,WordID w,void const* old_st,void *new_st,Accum *a) const {
-#if USE_INFO_EDGE
- Hypergraph::Edge &de=(Hypergraph::Edge &)edge;
-#endif
- if (!ctxlen_) {
- Add(floored(pimpl_->WordProb(w,&empty_context)),a);
- } else {
- WordID ctx[ngram_order_]; //alloca if you don't have C99
- state_copy(ctx,old_st);
- ctx[ctxlen_]=TD__none;
- Featval p=floored(pimpl_->WordProb(w,ctx));
- FSALMDBG(de,"p("<<TD::Convert(w)<<"|"<<TD::Convert(ctx,ctx+ctxlen_)<<")="<<p);FSALMDBGnl(de);
- // states are srilm contexts so are in reverse order (most recent word is first, then 1-back comes next, etc.).
- WordID *nst=(WordID *)new_st;
- nst[0]=w; // new most recent word
- to_state(nst+1,ctx,ctxlen_-1); // rotate old words right
-#if LM_FSA_SHORTEN_CONTEXT
- p+=pimpl_->ShortenContext(nst,ctxlen_);
-#endif
- Add(p,a);
- }
- }
-
-#if FSA_LM_PHRASE
- //FIXME: there is a bug in here somewhere, or else the 3gram LM we use gives different scores for phrases (impossible? BOW nonzero when shortening context past what LM has?)
- template <class Accum>
- void ScanPhraseAccum(SentenceMetadata const& /* smeta */,const Hypergraph::Edge&edge,WordID const* begin,WordID const* end,void const* old_st,void *new_st,Accum *a) const {
- Hypergraph::Edge &de=(Hypergraph::Edge &)edge;(void)de;
- if (begin==end) return; // otherwise w/ shortening it's possible to end up with no words at all.
- /* // this is forcing unigram prob always. we will instead build the phrase
- if (!ctxlen_) {
- Featval p=0;
- for (;i<end;++i)
- p+=floored(pimpl_->WordProb(*i,e&mpty_context));
- Add(p,a);
- return;
- } */
- int nw=end-begin;
- WP st=(WP)old_st;
- WP st_end=st+ctxlen_; // may include some null already (or none if full)
- int nboth=nw+ctxlen_;
- WordID ctx[nboth+1];
- ctx[nboth]=TD__none;
- // reverse order - state at very end of context, then [i,end) in rev order ending at ctx[0]
- W ctx_score_end=wordcpy_reverse(ctx,begin,end);
- wordcpy(ctx_score_end,st,st_end); // st already reversed.
- assert(ctx_score_end==ctx+nw);
- // we could just copy the filled state words, but it probably doesn't save much time (and might cost some to scan to find the nones. most contexts are full except for the shortest source spans.
- FSALMDBG(de," scan.r->l("<<TD::GetString(ctx,ctx_score_end)<<"|"<<TD::GetString(ctx_score_end,ctx+nboth)<<')');
- Featval p=0;
- FSALMDBGnl(edge);
- for(;ctx_score_end>ctx;--ctx_score_end)
- p+=floored(pimpl_->WordProb(ctx_score_end[-1],ctx_score_end));
- //TODO: look for score discrepancy -
- // i had some idea that maybe shortencontext would return a different prob if the length provided was > ctxlen_; however, since the same disagreement happens with LM_FSA_SHORTEN_CONTEXT 0 anyway, it's not that. perhaps look to SCAN_PHRASE_ACCUM_OVERRIDE - make sure they do the right thing.
-#if LM_FSA_SHORTEN_CONTEXT
- p+=pimpl_->ShortenContext(ctx,nboth<ctxlen_?nboth:ctxlen_);
-#endif
- state_copy(new_st,ctx);
- FSALMDBG(de," lm.Scan("<<TD::GetString(begin,end)<<"|"<<describe_state(old_st)<<")"<<"="<<p<<","<<describe_state(new_st));
- FSALMDBGnl(edge);
- Add(p,a);
- }
-
- SCAN_PHRASE_ACCUM_OVERRIDE
-#endif
-
- // impl details:
- void set_ngram_order(int i); // if you build ff_from_fsa first, then increase this, you will get memory overflows. otherwise, it's the same as a "-o i" argument to constructor
- // note: if you adjust ngram_order, ff_from_fsa won't notice.
-
- double floor_; // log10prob minimum used (e.g. unk words)
-
- // because we might have a custom fid due to lm name option:
- void Init() {
- InitHaveFid();
- }
-
-private:
- int ngram_order_;
- int ctxlen_; // 1 less than above
- LanguageModelInterface *pimpl_;
-
-};
-
-
-#endif
diff --git a/decoder/ff_register.h b/decoder/ff_register.h
index eff23537..80b1457e 100755
--- a/decoder/ff_register.h
+++ b/decoder/ff_register.h
@@ -2,50 +2,12 @@
#define FF_FSA_REGISTER_H
#include "ff_factory.h"
-#include "ff_from_fsa.h"
-#include "ff_fsa_dynamic.h"
-
-inline std::string prefix_fsa(std::string const& name,bool fsa_prefix_ff) {
- return fsa_prefix_ff ? "Fsa"+name : name;
-}
-
-//FIXME: problem with FeatureFunctionFromFsa<FsaFeatureFunction> - need to use factory rather than ctor.
-#if 0
-template <class DynFsa>
-inline void RegisterFsa(bool ff_also=true,bool fsa_prefix_ff=true) {
- assert(!ff_also);
-// global_fsa_ff_registry->RegisterFsa<DynFsa>();
-//if (ff_also) ff_registry.RegisterFF<FeatureFunctionFromFsa<DynFsa> >(prefix_fsa(DynFsa::usage(false,false)),fsa_prefix_ff);
-}
-#endif
-
-//TODO: ff from fsa that uses pointer to fsa impl? e.g. in LanguageModel we share underlying lm file by recognizing same param, but without that effort, otherwise stateful ff may duplicate state if we enable both fsa and ff_from_fsa
-template <class FsaImpl>
-inline void RegisterFsaImpl(bool ff_also=true,bool fsa_prefix_ff=false) {
- typedef FsaFeatureFunctionDynamic<FsaImpl> DynFsa;
- typedef FeatureFunctionFromFsa<FsaImpl> FFFrom;
- std::string name=FsaImpl::usage(false,false);
- fsa_ff_registry.Register(new FsaFactory<DynFsa>);
- if (ff_also)
- ff_registry.Register(prefix_fsa(name,fsa_prefix_ff),new FFFactory<FFFrom>);
-}
template <class Impl>
inline void RegisterFF() {
ff_registry.Register(new FFFactory<Impl>);
}
-template <class FsaImpl>
-inline void RegisterFsaDynToFF(std::string name,bool prefix=true) {
- typedef FsaFeatureFunctionDynamic<FsaImpl> DynFsa;
- ff_registry.Register(prefix?"DynamicFsa"+name:name,new FFFactory<FeatureFunctionFromFsa<DynFsa> >);
-}
-
-template <class FsaImpl>
-inline void RegisterFsaDynToFF(bool prefix=true) {
- RegisterFsaDynToFF<FsaImpl>(FsaImpl::usage(false,false),prefix);
-}
-
void register_feature_functions();
#endif
diff --git a/decoder/ff_source_syntax.cc b/decoder/ff_source_syntax.cc
new file mode 100644
index 00000000..035132b4
--- /dev/null
+++ b/decoder/ff_source_syntax.cc
@@ -0,0 +1,232 @@
+#include "ff_source_syntax.h"
+
+#include <sstream>
+#include <stack>
+
+#include "sentence_metadata.h"
+#include "array2d.h"
+#include "filelib.h"
+
+using namespace std;
+
+// implements the source side syntax features described in Blunsom et al. (EMNLP 2008)
+// source trees must be represented in Penn Treebank format, e.g.
+// (S (NP John) (VP (V left)))
+
+// log transform to make long spans cluster together
+// but preserve differences
+inline int SpanSizeTransform(unsigned span_size) {
+ if (!span_size) return 0;
+ return static_cast<int>(log(span_size+1) / log(1.39)) - 1;
+}
+
+struct SourceSyntaxFeaturesImpl {
+ SourceSyntaxFeaturesImpl() {}
+
+ void InitializeGrids(const string& tree, unsigned src_len) {
+ assert(tree.size() > 0);
+ //fids_cat.clear();
+ fids_ef.clear();
+ src_tree.clear();
+ //fids_cat.resize(src_len, src_len + 1);
+ fids_ef.resize(src_len, src_len + 1);
+ src_tree.resize(src_len, src_len + 1, TD::Convert("XX"));
+ ParseTreeString(tree, src_len);
+ }
+
+ void ParseTreeString(const string& tree, unsigned src_len) {
+ stack<pair<int, WordID> > stk; // first = i, second = category
+ pair<int, WordID> cur_cat; cur_cat.first = -1;
+ unsigned i = 0;
+ unsigned p = 0;
+ while(p < tree.size()) {
+ const char cur = tree[p];
+ if (cur == '(') {
+ stk.push(cur_cat);
+ ++p;
+ unsigned k = p + 1;
+ while (k < tree.size() && tree[k] != ' ') { ++k; }
+ cur_cat.first = i;
+ cur_cat.second = TD::Convert(tree.substr(p, k - p));
+ // cerr << "NT: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n";
+ p = k + 1;
+ } else if (cur == ')') {
+ unsigned k = p;
+ while (k < tree.size() && tree[k] == ')') { ++k; }
+ const unsigned num_closes = k - p;
+ for (unsigned ci = 0; ci < num_closes; ++ci) {
+ // cur_cat.second spans from cur_cat.first to i
+ // cerr << TD::Convert(cur_cat.second) << " from " << cur_cat.first << " to " << i << endl;
+ // NOTE: unary rule chains end up being labeled with the top-most category
+ src_tree(cur_cat.first, i) = cur_cat.second;
+ cur_cat = stk.top();
+ stk.pop();
+ }
+ p = k;
+ while (p < tree.size() && (tree[p] == ' ' || tree[p] == '\t')) { ++p; }
+ } else if (cur == ' ' || cur == '\t') {
+ cerr << "Unexpected whitespace in: " << tree << endl;
+ abort();
+ } else { // terminal symbol
+ unsigned k = p + 1;
+ do {
+ while (k < tree.size() && tree[k] != ')' && tree[k] != ' ') { ++k; }
+ // cerr << "TERM: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n";
+ ++i;
+ assert(i <= src_len);
+ while (k < tree.size() && tree[k] == ' ') { ++k; }
+ p = k;
+ } while (p < tree.size() && tree[p] != ')');
+ }
+ }
+ // cerr << "i=" << i << " src_len=" << src_len << endl;
+ assert(i == src_len); // make sure tree specified in src_tree is
+ // the same length as the source sentence
+ }
+
+ WordID FireFeatures(const TRule& rule, const int i, const int j, const WordID* ants, SparseVector<double>* feats) {
+ //cerr << "fire features: " << rule.AsString() << " for " << i << "," << j << endl;
+ const WordID lhs = src_tree(i,j);
+ //int& fid_cat = fids_cat(i,j);
+ int& fid_ef = fids_ef(i,j)[&rule];
+ if (fid_ef <= 0) {
+ ostringstream os;
+ //ostringstream os2;
+ os << "SYN:" << TD::Convert(lhs);
+ //os2 << "SYN:" << TD::Convert(lhs) << '_' << SpanSizeTransform(j - i);
+ //fid_cat = FD::Convert(os2.str());
+ os << ':';
+ unsigned ntc = 0;
+ for (unsigned k = 0; k < rule.f_.size(); ++k) {
+ if (k > 0) os << '_';
+ int fj = rule.f_[k];
+ if (fj <= 0) {
+ os << '[' << TD::Convert(ants[ntc++]) << ']';
+ } else {
+ os << TD::Convert(fj);
+ }
+ }
+ os << ':';
+ for (unsigned k = 0; k < rule.e_.size(); ++k) {
+ const int ei = rule.e_[k];
+ if (k > 0) os << '_';
+ if (ei <= 0)
+ os << '[' << (1-ei) << ']';
+ else
+ os << TD::Convert(ei);
+ }
+ fid_ef = FD::Convert(os.str());
+ }
+ //if (fid_cat > 0)
+ // feats->set_value(fid_cat, 1.0);
+ if (fid_ef > 0)
+ feats->set_value(fid_ef, 1.0);
+ return lhs;
+ }
+
+ Array2D<WordID> src_tree; // src_tree(i,j) NT = type
+ // mutable Array2D<int> fids_cat; // this tends to overfit baddly
+ mutable Array2D<map<const TRule*, int> > fids_ef; // fires for fully lexicalized
+};
+
+SourceSyntaxFeatures::SourceSyntaxFeatures(const string& param) :
+ FeatureFunction(sizeof(WordID)) {
+ impl = new SourceSyntaxFeaturesImpl;
+}
+
+SourceSyntaxFeatures::~SourceSyntaxFeatures() {
+ delete impl;
+ impl = NULL;
+}
+
+void SourceSyntaxFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* context) const {
+ WordID ants[8];
+ for (unsigned i = 0; i < ant_contexts.size(); ++i)
+ ants[i] = *static_cast<const WordID*>(ant_contexts[i]);
+
+ *static_cast<WordID*>(context) =
+ impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features);
+}
+
+void SourceSyntaxFeatures::PrepareForInput(const SentenceMetadata& smeta) {
+ impl->InitializeGrids(smeta.GetSGMLValue("src_tree"), smeta.GetSourceLength());
+}
+
+struct SourceSpanSizeFeaturesImpl {
+ SourceSpanSizeFeaturesImpl() {}
+
+ void InitializeGrids(unsigned src_len) {
+ fids.clear();
+ fids.resize(src_len, src_len + 1);
+ }
+
+ int FireFeatures(const TRule& rule, const int i, const int j, const WordID* ants, SparseVector<double>* feats) {
+ if (rule.Arity() > 0) {
+ int& fid = fids(i,j)[&rule];
+ if (fid <= 0) {
+ ostringstream os;
+ os << "SSS:";
+ unsigned ntc = 0;
+ for (unsigned k = 0; k < rule.f_.size(); ++k) {
+ if (k > 0) os << '_';
+ int fj = rule.f_[k];
+ if (fj <= 0) {
+ os << '[' << TD::Convert(-fj) << ants[ntc++] << ']';
+ } else {
+ os << TD::Convert(fj);
+ }
+ }
+ os << ':';
+ for (unsigned k = 0; k < rule.e_.size(); ++k) {
+ const int ei = rule.e_[k];
+ if (k > 0) os << '_';
+ if (ei <= 0)
+ os << '[' << (1-ei) << ']';
+ else
+ os << TD::Convert(ei);
+ }
+ fid = FD::Convert(os.str());
+ }
+ if (fid > 0)
+ feats->set_value(fid, 1.0);
+ }
+ return SpanSizeTransform(j - i);
+ }
+
+ mutable Array2D<map<const TRule*, int> > fids;
+};
+
+SourceSpanSizeFeatures::SourceSpanSizeFeatures(const string& param) :
+ FeatureFunction(sizeof(char)) {
+ impl = new SourceSpanSizeFeaturesImpl;
+}
+
+SourceSpanSizeFeatures::~SourceSpanSizeFeatures() {
+ delete impl;
+ impl = NULL;
+}
+
+void SourceSpanSizeFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* context) const {
+ int ants[8];
+ for (unsigned i = 0; i < ant_contexts.size(); ++i)
+ ants[i] = *static_cast<const char*>(ant_contexts[i]);
+
+ *static_cast<char*>(context) =
+ impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features);
+}
+
+void SourceSpanSizeFeatures::PrepareForInput(const SentenceMetadata& smeta) {
+ impl->InitializeGrids(smeta.GetSourceLength());
+}
+
+
diff --git a/decoder/ff_source_syntax.h b/decoder/ff_source_syntax.h
new file mode 100644
index 00000000..279563e1
--- /dev/null
+++ b/decoder/ff_source_syntax.h
@@ -0,0 +1,41 @@
+#ifndef _FF_SOURCE_TOOLS_H_
+#define _FF_SOURCE_TOOLS_H_
+
+#include "ff.h"
+
+struct SourceSyntaxFeaturesImpl;
+
+class SourceSyntaxFeatures : public FeatureFunction {
+ public:
+ SourceSyntaxFeatures(const std::string& param);
+ ~SourceSyntaxFeatures();
+ protected:
+ virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const std::vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* context) const;
+ virtual void PrepareForInput(const SentenceMetadata& smeta);
+ private:
+ SourceSyntaxFeaturesImpl* impl;
+};
+
+struct SourceSpanSizeFeaturesImpl;
+class SourceSpanSizeFeatures : public FeatureFunction {
+ public:
+ SourceSpanSizeFeatures(const std::string& param);
+ ~SourceSpanSizeFeatures();
+ protected:
+ virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const std::vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* context) const;
+ virtual void PrepareForInput(const SentenceMetadata& smeta);
+ private:
+ SourceSpanSizeFeaturesImpl* impl;
+};
+
+#endif
diff --git a/decoder/grammar_test.cc b/decoder/grammar_test.cc
index 62b8f958..cde00efa 100644
--- a/decoder/grammar_test.cc
+++ b/decoder/grammar_test.cc
@@ -15,12 +15,12 @@ using namespace std;
class GrammarTest : public testing::Test {
public:
GrammarTest() {
- wts.InitFromFile("test_data/weights.gt");
+ Weights::InitFromFile("test_data/weights.gt", &wts);
}
protected:
virtual void SetUp() { }
virtual void TearDown() { }
- Weights wts;
+ vector<weight_t> wts;
};
TEST_F(GrammarTest,TestTextGrammar) {
diff --git a/decoder/hg.cc b/decoder/hg.cc
index 3ad17f1a..180986d7 100644
--- a/decoder/hg.cc
+++ b/decoder/hg.cc
@@ -157,14 +157,14 @@ prob_t Hypergraph::ComputeEdgePosteriors(double scale, vector<prob_t>* posts) co
const ScaledEdgeProb weight(scale);
const ScaledTransitionEventWeightFunction w2(scale);
SparseVector<prob_t> pv;
- const double inside = InsideOutside<prob_t,
+ const prob_t inside = InsideOutside<prob_t,
ScaledEdgeProb,
SparseVector<prob_t>,
ScaledTransitionEventWeightFunction>(*this, &pv, weight, w2);
posts->resize(edges_.size());
for (int i = 0; i < edges_.size(); ++i)
(*posts)[i] = prob_t(pv.value(i));
- return prob_t(inside);
+ return inside;
}
prob_t Hypergraph::ComputeBestPathThroughEdges(vector<prob_t>* post) const {
diff --git a/decoder/hg.h b/decoder/hg.h
index 70bc4995..52a18601 100644
--- a/decoder/hg.h
+++ b/decoder/hg.h
@@ -49,16 +49,14 @@ public:
// TODO get rid of cat_?
// TODO keep cat_ and add span and/or state? :)
struct Node {
- Node() : id_(), cat_(), promise(1) {}
+ Node() : id_(), cat_() {}
int id_; // equal to this object's position in the nodes_ vector
WordID cat_; // non-terminal category if <0, 0 if not set
WordID NT() const { return -cat_; }
EdgesVector in_edges_; // an in edge is an edge with this node as its head. (in edges come from the bottom up to us) indices in edges_
EdgesVector out_edges_; // an out edge is an edge with this node as its tail. (out edges leave us up toward the top/goal). indices in edges_
- double promise; // set in global pruning; in [0,infty) so that mean is 1. use: e.g. scale cube poplimit. //TODO: appears to be useless, compile without this? on the other hand, pretty cheap.
void copy_fixed(Node const& o) { // nonstructural fields only - structural ones are managed by sorting/pruning/subsetting
cat_=o.cat_;
- promise=o.promise;
}
void copy_reindex(Node const& o,indices_after const& n2,indices_after const& e2) {
copy_fixed(o);
@@ -81,7 +79,7 @@ public:
int head_node_; // refers to a position in nodes_
TailNodeVector tail_nodes_; // contents refer to positions in nodes_
TRulePtr rule_;
- FeatureVector feature_values_;
+ SparseVector<weight_t> feature_values_;
prob_t edge_prob_; // dot product of weights and feat_values
int id_; // equal to this object's position in the edges_ vector
@@ -470,7 +468,7 @@ public:
/// drop edge i if edge_margin[i] < prune_below, unless preserve_mask[i]
void MarginPrune(EdgeProbs const& edge_margin,prob_t prune_below,EdgeMask const* preserve_mask=0,bool safe_inside=false,bool verbose=false);
- //TODO: in my opinion, looking at the ratio of logprobs (features \dot weights) rather than the absolute difference generalizes more nicely across sentence lengths and weight vectors that are constant multiples of one another. at least make that an option. i worked around this a little in cdec by making "beam alpha per source word" but that's not helping with different tuning runs. this would also make me more comfortable about allocating Node.promise
+ //TODO: in my opinion, looking at the ratio of logprobs (features \dot weights) rather than the absolute difference generalizes more nicely across sentence lengths and weight vectors that are constant multiples of one another. at least make that an option. i worked around this a little in cdec by making "beam alpha per source word" but that's not helping with different tuning runs.
// beam_alpha=0 means don't beam prune, otherwise drop things that are e^beam_alpha times worse than best - // prunes any edge whose prob_t on the best path taking that edge is more than e^alpha times
//density=0 means don't density prune: // for density>=1.0, keep this many times the edges needed for the 1best derivation
diff --git a/decoder/hg_test.cc b/decoder/hg_test.cc
index 3be5b82d..5d1910fb 100644
--- a/decoder/hg_test.cc
+++ b/decoder/hg_test.cc
@@ -57,7 +57,7 @@ TEST_F(HGTest,Union) {
c3 = ViterbiESentence(hg1, &t3);
int l3 = ViterbiPathLength(hg1);
cerr << c3 << "\t" << TD::GetString(t3) << endl;
- EXPECT_FLOAT_EQ(c2, c3);
+ EXPECT_FLOAT_EQ(c2.as_float(), c3.as_float());
EXPECT_EQ(TD::GetString(t2), TD::GetString(t3));
EXPECT_EQ(l2, l3);
@@ -117,7 +117,7 @@ TEST_F(HGTest,InsideScore) {
cerr << "cost: " << cost << "\n";
hg.PrintGraphviz();
prob_t inside = Inside<prob_t, EdgeProb>(hg);
- EXPECT_FLOAT_EQ(1.7934048, inside); // computed by hand
+ EXPECT_FLOAT_EQ(1.7934048, inside.as_float()); // computed by hand
vector<prob_t> post;
inside = hg.ComputeBestPathThroughEdges(&post);
EXPECT_FLOAT_EQ(-0.3, log(inside)); // computed by hand
@@ -282,13 +282,13 @@ TEST_F(HGTest, TestGenericInside) {
hg.Reweight(wts);
vector<prob_t> inside;
prob_t ins = Inside<prob_t, EdgeProb>(hg, &inside);
- EXPECT_FLOAT_EQ(1.7934048, ins); // computed by hand
+ EXPECT_FLOAT_EQ(1.7934048, ins.as_float()); // computed by hand
vector<prob_t> outside;
Outside<prob_t, EdgeProb>(hg, inside, &outside);
EXPECT_EQ(3, outside.size());
- EXPECT_FLOAT_EQ(1.7934048, outside[0]);
- EXPECT_FLOAT_EQ(1.3114071, outside[1]);
- EXPECT_FLOAT_EQ(1.0, outside[2]);
+ EXPECT_FLOAT_EQ(1.7934048, outside[0].as_float());
+ EXPECT_FLOAT_EQ(1.3114071, outside[1].as_float());
+ EXPECT_FLOAT_EQ(1.0, outside[2].as_float());
}
TEST_F(HGTest,TestGenericInside2) {
@@ -327,8 +327,8 @@ TEST_F(HGTest,TestAddExpectations) {
SparseVector<prob_t> feat_exps;
prob_t z = InsideOutside<prob_t, EdgeProb,
SparseVector<prob_t>, EdgeFeaturesAndProbWeightFunction>(hg, &feat_exps);
- EXPECT_FLOAT_EQ(-2.5439765, feat_exps.value(FD::Convert("f1")) / z);
- EXPECT_FLOAT_EQ(-2.6357865, feat_exps.value(FD::Convert("f2")) / z);
+ EXPECT_FLOAT_EQ(-2.5439765, (feat_exps.value(FD::Convert("f1")) / z).as_float());
+ EXPECT_FLOAT_EQ(-2.6357865, (feat_exps.value(FD::Convert("f2")) / z).as_float());
cerr << feat_exps << endl;
cerr << "Z=" << z << endl;
}
diff --git a/decoder/oracle_bleu.h b/decoder/oracle_bleu.h
index 15d48588..b603e27a 100755
--- a/decoder/oracle_bleu.h
+++ b/decoder/oracle_bleu.h
@@ -272,23 +272,31 @@ struct OracleBleu {
}
kbest_out<<endl<<flush;
if (show_derivation) {
- deriv_out<<"\nsent_id="<<sent_id<<"\n";
+ deriv_out<<"\nsent_id="<<sent_id<<"."<<i<<" ||| "; //where i is candidate #/k
+ deriv_out<<log(d->score)<<"\n";
deriv_out<<kbest.derivation_tree(*d,true);
- deriv_out<<flush;
+ deriv_out<<"\n"<<flush;
}
}
}
// TODO decoder output should probably be moved to another file - how about oracle_bleu.h
- void DumpKBest(const int sent_id, const Hypergraph& forest, const int k, const bool unique, std::string const &kbest_out_filename_) {
+ void DumpKBest(const int sent_id, const Hypergraph& forest, const int k, const bool unique, std::string const &kbest_out_filename_, std::string const &deriv_out_filename_) {
WriteFile ko(kbest_out_filename_);
- std::cerr << "Output kbest to " << kbest_out_filename_<<std::endl;
+ std::cerr << "Output kbest to " << kbest_out_filename_ <<std::endl;
+ std::ostringstream sderiv;
+ sderiv << deriv_out_filename_;
+ if (show_derivation) {
+ sderiv << "/derivs." << sent_id;
+ std::cerr << "Output derivations to " << deriv_out_filename_ << std::endl;
+ }
+ WriteFile oderiv(sderiv.str());
if (!unique)
- kbest<KBest::NoFilter<std::vector<WordID> > >(sent_id,forest,k,ko.get(),std::cerr);
+ kbest<KBest::NoFilter<std::vector<WordID> > >(sent_id,forest,k,ko.get(),oderiv.get());
else {
- kbest<KBest::FilterUnique>(sent_id,forest,k,ko.get(),std::cerr);
+ kbest<KBest::FilterUnique>(sent_id,forest,k,ko.get(),oderiv.get());
}
}
@@ -296,7 +304,7 @@ void DumpKBest(std::string const& suffix,const int sent_id, const Hypergraph& fo
{
std::ostringstream kbest_string_stream;
kbest_string_stream << forest_output << "/kbest_"<<suffix<< "." << sent_id;
- DumpKBest(sent_id, forest, k, unique, kbest_string_stream.str());
+ DumpKBest(sent_id, forest, k, unique, kbest_string_stream.str(), "-");
}
};
diff --git a/decoder/rule_lexer.l b/decoder/rule_lexer.l
index 9331d8ed..083a5bb1 100644
--- a/decoder/rule_lexer.l
+++ b/decoder/rule_lexer.l
@@ -220,6 +220,8 @@ NT [^\t \[\],]+
std::cerr << "Line " << lex_line << ": LHS and RHS arity mismatch!\n";
abort();
}
+ // const bool ignore_grammar_features = false;
+ // if (ignore_grammar_features) scfglex_num_feats = 0;
TRulePtr rp(new TRule(scfglex_lhs, scfglex_src_rhs, scfglex_src_rhs_size, scfglex_trg_rhs, scfglex_trg_rhs_size, scfglex_feat_ids, scfglex_feat_vals, scfglex_num_feats, scfglex_src_arity, scfglex_als, scfglex_num_als));
check_and_update_ctf_stack(rp);
TRulePtr coarse_rp = ((ctf_level == 0) ? TRulePtr() : ctf_rule_stack.top());
diff --git a/decoder/trule.h b/decoder/trule.h
index 4df4ec90..8eb2a059 100644
--- a/decoder/trule.h
+++ b/decoder/trule.h
@@ -5,7 +5,9 @@
#include <vector>
#include <cassert>
#include <iostream>
-#include <boost/shared_ptr.hpp>
+
+#include "boost/shared_ptr.hpp"
+#include "boost/functional/hash.hpp"
#include "sparse_vector.h"
#include "wordid.h"
@@ -162,4 +164,15 @@ class TRule {
bool SanityCheck() const;
};
+inline size_t hash_value(const TRule& r) {
+ size_t h = boost::hash_value(r.e_);
+ boost::hash_combine(h, -r.lhs_);
+ boost::hash_combine(h, boost::hash_value(r.f_));
+ return h;
+}
+
+inline bool operator==(const TRule& a, const TRule& b) {
+ return (a.lhs_ == b.lhs_ && a.e_ == b.e_ && a.f_ == b.f_);
+}
+
#endif
diff --git a/dtrain/hgsampler.cc b/dtrain/hgsampler.cc
index 7a00a3d3..ad28b162 100644
--- a/dtrain/hgsampler.cc
+++ b/dtrain/hgsampler.cc
@@ -1,3 +1,4 @@
+// Chris Dyer
#include "hgsampler.h"
#include <queue>
diff --git a/dtrain/hgsampler.h b/dtrain/hgsampler.h
index b840c07f..45c5b8f2 100644
--- a/dtrain/hgsampler.h
+++ b/dtrain/hgsampler.h
@@ -1,3 +1,4 @@
+// Chris Dyer
#ifndef _DTRAIN_HGSAMPLER_H_
#define _DTRAIN_HGSAMPLER_H_
diff --git a/environment/LocalConfig.pm b/environment/LocalConfig.pm
index 7b3d950c..4e5e0d5f 100644
--- a/environment/LocalConfig.pm
+++ b/environment/LocalConfig.pm
@@ -44,6 +44,10 @@ my $CCONFIG = {
'HOST_REGEXP' => qr/^(barrow|chicago).lti.cs.cmu.edu$/,
'QSubMemFlag' => '-l pmem=',
},
+ 'OxfordDeathSnakes' => {
+ 'HOST_REGEXP' => qr/^(taipan|tiger).cs.ox.ac.uk$/,
+ 'QSubMemFlag' => '-l pmem=',
+ },
'LOCAL' => {
'HOST_REGEXP' => qr/local\./,
'QSubMemFlag' => ' ',
diff --git a/expLog b/expLog
new file mode 100644
index 00000000..2070ac98
--- /dev/null
+++ b/expLog
@@ -0,0 +1,60 @@
+TIME MEASURES AFTER MERGE WITH cdec:
+8/July/2011
+commit ed8a6e81d87f6e917ecf
+
+./runEval
+Fri Jul 8 13:28:23 CEST 2011
+Fri Jul 8 13:30:24 CEST 2011
+Loading references (4 files)
+Loaded reference translations for 919 sentences.
+Loaded 919 references for scoring with ibm_bleu
+BLEU = 32.25, 76.5|43.1|24.3|13.9 (brev=0.993)
+0.322487
+Fri Jul 8 13:30:24 CEST 2011
+------------
+Fri Jul 8 15:04:00 CEST 2011
+Fri Jul 8 15:05:58 CEST 2011
+Time required for Cube Pruning execution: 77.61 seconds.
+------------
+Fri Jul 8 15:24:39 CEST 2011
+Fri Jul 8 15:26:36 CEST 2011
+Time required for Cube Pruning execution: 79.01 seconds.
+------------
+
+./runEvalFCP
+Fri Jul 8 13:33:17 CEST 2011
+Fri Jul 8 13:35:06 CEST 2011
+Loading references (4 files)
+Loaded reference translations for 919 sentences.
+Loaded 919 references for scoring with ibm_bleu
+BLEU = 32.39, 76.5|43.1|24.5|14.0 (brev=0.994)
+0.323857
+Fri Jul 8 13:35:07 CEST 2011
+------------
+Fri Jul 8 15:08:17 CEST 2011
+Fri Jul 8 15:10:05 CEST 2011
+Time required for Cube Pruning execution: 69.36 seconds.
+------------
+Fri Jul 8 15:21:48 CEST 2011
+Fri Jul 8 15:23:35 CEST 2011
+Time required for Cube Pruning execution: 69.71 seconds.
+------------
+
+./runEvalFCP2
+Fri Jul 8 13:53:38 CEST 2011
+Fri Jul 8 13:55:29 CEST 2011
+Loading references (4 files)
+Loaded reference translations for 919 sentences.
+Loaded 919 references for scoring with ibm_bleu
+BLEU = 32.49, 76.6|43.2|24.5|14.1 (brev=0.994)
+0.324901
+Fri Jul 8 13:55:29 CEST 2011
+------------
+Fri Jul 8 15:12:52 CEST 2011
+Fri Jul 8 15:14:42 CEST 2011
+Time required for Cube Pruning execution: 72.66 seconds.
+------------
+Fri Jul 8 15:19:13 CEST 2011
+Fri Jul 8 15:21:03 CEST 2011
+Time required for Cube Pruning execution: 72.06 seconds.
+------------
diff --git a/gi/markov_al/Makefile.am b/gi/markov_al/Makefile.am
new file mode 100644
index 00000000..fe3e3349
--- /dev/null
+++ b/gi/markov_al/Makefile.am
@@ -0,0 +1,6 @@
+bin_PROGRAMS = ml
+
+ml_SOURCES = ml.cc
+
+AM_CPPFLAGS = -W -Wall -Wno-sign-compare -funroll-loops -I$(top_srcdir)/utils $(GTEST_CPPFLAGS) -I$(top_srcdir)/decoder
+AM_LDFLAGS = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz
diff --git a/gi/markov_al/README b/gi/markov_al/README
new file mode 100644
index 00000000..9c10f7cd
--- /dev/null
+++ b/gi/markov_al/README
@@ -0,0 +1,2 @@
+Experimental translation models with Markovian dependencies.
+
diff --git a/gi/markov_al/ml.cc b/gi/markov_al/ml.cc
new file mode 100644
index 00000000..1e71edd6
--- /dev/null
+++ b/gi/markov_al/ml.cc
@@ -0,0 +1,470 @@
+#include <iostream>
+#include <tr1/unordered_map>
+
+#include <boost/shared_ptr.hpp>
+#include <boost/functional.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "tdict.h"
+#include "filelib.h"
+#include "sampler.h"
+#include "ccrp_onetable.h"
+#include "array2d.h"
+
+using namespace std;
+using namespace std::tr1;
+namespace po = boost::program_options;
+
+void PrintTopCustomers(const CCRP_OneTable<WordID>& crp) {
+ for (CCRP_OneTable<WordID>::const_iterator it = crp.begin(); it != crp.end(); ++it) {
+ cerr << " " << TD::Convert(it->first) << " = " << it->second << endl;
+ }
+}
+
+void PrintAlignment(const vector<WordID>& src, const vector<WordID>& trg, const vector<unsigned char>& a) {
+ cerr << TD::GetString(src) << endl << TD::GetString(trg) << endl;
+ Array2D<bool> al(src.size(), trg.size());
+ for (int i = 0; i < a.size(); ++i)
+ if (a[i] != 255) al(a[i], i) = true;
+ cerr << al << endl;
+}
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
+ ("input,i",po::value<string>(),"Read parallel data from")
+ ("random_seed,S",po::value<uint32_t>(), "Random seed");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || (conf->count("input") == 0)) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+struct Unigram;
+struct Bigram {
+ Bigram() : trg(), cond() {}
+ Bigram(WordID prev, WordID cur, WordID t) : trg(t) { cond.first = prev; cond.second = cur; }
+ const pair<WordID,WordID>& ConditioningPair() const {
+ return cond;
+ }
+ WordID& prev_src() { return cond.first; }
+ WordID& cur_src() { return cond.second; }
+ const WordID& prev_src() const { return cond.first; }
+ const WordID& cur_src() const { return cond.second; }
+ WordID trg;
+ private:
+ pair<WordID, WordID> cond;
+};
+
+struct Unigram {
+ Unigram() : cur_src(), trg() {}
+ Unigram(WordID s, WordID t) : cur_src(s), trg(t) {}
+ WordID cur_src;
+ WordID trg;
+};
+
+ostream& operator<<(ostream& os, const Bigram& b) {
+ os << "( " << TD::Convert(b.trg) << " | " << TD::Convert(b.prev_src()) << " , " << TD::Convert(b.cur_src()) << " )";
+ return os;
+}
+
+ostream& operator<<(ostream& os, const Unigram& u) {
+ os << "( " << TD::Convert(u.trg) << " | " << TD::Convert(u.cur_src) << " )";
+ return os;
+}
+
+bool operator==(const Bigram& a, const Bigram& b) {
+ return a.trg == b.trg && a.cur_src() == b.cur_src() && a.prev_src() == b.prev_src();
+}
+
+bool operator==(const Unigram& a, const Unigram& b) {
+ return a.trg == b.trg && a.cur_src == b.cur_src;
+}
+
+size_t hash_value(const Bigram& b) {
+ size_t h = boost::hash_value(b.prev_src());
+ boost::hash_combine(h, boost::hash_value(b.cur_src()));
+ boost::hash_combine(h, boost::hash_value(b.trg));
+ return h;
+}
+
+size_t hash_value(const Unigram& u) {
+ size_t h = boost::hash_value(u.cur_src);
+ boost::hash_combine(h, boost::hash_value(u.trg));
+ return h;
+}
+
+void ReadParallelCorpus(const string& filename,
+ vector<vector<WordID> >* f,
+ vector<vector<WordID> >* e,
+ set<WordID>* vocab_f,
+ set<WordID>* vocab_e) {
+ f->clear();
+ e->clear();
+ vocab_f->clear();
+ vocab_e->clear();
+ istream* in;
+ if (filename == "-")
+ in = &cin;
+ else
+ in = new ifstream(filename.c_str());
+ assert(*in);
+ string line;
+ const WordID kDIV = TD::Convert("|||");
+ vector<WordID> tmp;
+ while(*in) {
+ getline(*in, line);
+ if (line.empty() && !*in) break;
+ e->push_back(vector<int>());
+ f->push_back(vector<int>());
+ vector<int>& le = e->back();
+ vector<int>& lf = f->back();
+ tmp.clear();
+ TD::ConvertSentence(line, &tmp);
+ bool isf = true;
+ for (unsigned i = 0; i < tmp.size(); ++i) {
+ const int cur = tmp[i];
+ if (isf) {
+ if (kDIV == cur) { isf = false; } else {
+ lf.push_back(cur);
+ vocab_f->insert(cur);
+ }
+ } else {
+ assert(cur != kDIV);
+ le.push_back(cur);
+ vocab_e->insert(cur);
+ }
+ }
+ assert(isf == false);
+ }
+ if (in != &cin) delete in;
+}
+
+struct UnigramModel {
+ UnigramModel(size_t src_voc_size, size_t trg_voc_size) :
+ unigrams(TD::NumWords() + 1, CCRP_OneTable<WordID>(1,1,1,1)),
+ p0(1.0 / trg_voc_size) {}
+
+ void increment(const Bigram& b) {
+ unigrams[b.cur_src()].increment(b.trg);
+ }
+
+ void decrement(const Bigram& b) {
+ unigrams[b.cur_src()].decrement(b.trg);
+ }
+
+ double prob(const Bigram& b) const {
+ const double q0 = unigrams[b.cur_src()].prob(b.trg, p0);
+ return q0;
+ }
+
+ double LogLikelihood() const {
+ double llh = 0;
+ for (unsigned i = 0; i < unigrams.size(); ++i) {
+ const CCRP_OneTable<WordID>& crp = unigrams[i];
+ if (crp.num_customers() > 0) {
+ llh += crp.log_crp_prob();
+ llh += crp.num_tables() * log(p0);
+ }
+ }
+ return llh;
+ }
+
+ void ResampleHyperparameters(MT19937* rng) {
+ for (unsigned i = 0; i < unigrams.size(); ++i)
+ unigrams[i].resample_hyperparameters(rng);
+ }
+
+ vector<CCRP_OneTable<WordID> > unigrams; // unigrams[src].prob(trg, p0) = p(trg|src)
+
+ const double p0;
+};
+
+struct BigramModel {
+ BigramModel(size_t src_voc_size, size_t trg_voc_size) :
+ unigrams(TD::NumWords() + 1, CCRP_OneTable<WordID>(1,1,1,1)),
+ p0(1.0 / trg_voc_size) {}
+
+ void increment(const Bigram& b) {
+ BigramMap::iterator it = bigrams.find(b.ConditioningPair());
+ if (it == bigrams.end()) {
+ it = bigrams.insert(make_pair(b.ConditioningPair(), CCRP_OneTable<WordID>(1,1,1,1))).first;
+ }
+ if (it->second.increment(b.trg))
+ unigrams[b.cur_src()].increment(b.trg);
+ }
+
+ void decrement(const Bigram& b) {
+ BigramMap::iterator it = bigrams.find(b.ConditioningPair());
+ assert(it != bigrams.end());
+ if (it->second.decrement(b.trg)) {
+ unigrams[b.cur_src()].decrement(b.trg);
+ if (it->second.num_customers() == 0)
+ bigrams.erase(it);
+ }
+ }
+
+ double prob(const Bigram& b) const {
+ const double q0 = unigrams[b.cur_src()].prob(b.trg, p0);
+ const BigramMap::const_iterator it = bigrams.find(b.ConditioningPair());
+ if (it == bigrams.end()) return q0;
+ return it->second.prob(b.trg, q0);
+ }
+
+ double LogLikelihood() const {
+ double llh = 0;
+ for (unsigned i = 0; i < unigrams.size(); ++i) {
+ const CCRP_OneTable<WordID>& crp = unigrams[i];
+ if (crp.num_customers() > 0) {
+ llh += crp.log_crp_prob();
+ llh += crp.num_tables() * log(p0);
+ }
+ }
+ for (BigramMap::const_iterator it = bigrams.begin(); it != bigrams.end(); ++it) {
+ const CCRP_OneTable<WordID>& crp = it->second;
+ const WordID cur_src = it->first.second;
+ llh += crp.log_crp_prob();
+ for (CCRP_OneTable<WordID>::const_iterator bit = crp.begin(); bit != crp.end(); ++bit) {
+ llh += log(unigrams[cur_src].prob(bit->second, p0));
+ }
+ }
+ return llh;
+ }
+
+ void ResampleHyperparameters(MT19937* rng) {
+ for (unsigned i = 0; i < unigrams.size(); ++i)
+ unigrams[i].resample_hyperparameters(rng);
+ for (BigramMap::iterator it = bigrams.begin(); it != bigrams.end(); ++it)
+ it->second.resample_hyperparameters(rng);
+ }
+
+ typedef unordered_map<pair<WordID,WordID>, CCRP_OneTable<WordID>, boost::hash<pair<WordID,WordID> > > BigramMap;
+ BigramMap bigrams; // bigrams[(src-1,src)].prob(trg, q0) = p(trg|src,src-1)
+ vector<CCRP_OneTable<WordID> > unigrams; // unigrams[src].prob(trg, p0) = p(trg|src)
+
+ const double p0;
+};
+
+struct BigramAlignmentModel {
+ BigramAlignmentModel(size_t src_voc_size, size_t trg_voc_size) : bigrams(TD::NumWords() + 1, CCRP_OneTable<WordID>(1,1,1,1)), p0(1.0 / src_voc_size) {}
+ void increment(WordID prev, WordID next) {
+ bigrams[prev].increment(next); // hierarchy?
+ }
+ void decrement(WordID prev, WordID next) {
+ bigrams[prev].decrement(next); // hierarchy?
+ }
+ double prob(WordID prev, WordID next) {
+ return bigrams[prev].prob(next, p0);
+ }
+ double LogLikelihood() const {
+ double llh = 0;
+ for (unsigned i = 0; i < bigrams.size(); ++i) {
+ const CCRP_OneTable<WordID>& crp = bigrams[i];
+ if (crp.num_customers() > 0) {
+ llh += crp.log_crp_prob();
+ llh += crp.num_tables() * log(p0);
+ }
+ }
+ return llh;
+ }
+
+ vector<CCRP_OneTable<WordID> > bigrams; // bigrams[prev].prob(next, p0) = p(next|prev)
+ const double p0;
+};
+
+struct Alignment {
+ vector<unsigned char> a;
+};
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ const unsigned samples = conf["samples"].as<unsigned>();
+
+ boost::shared_ptr<MT19937> prng;
+ if (conf.count("random_seed"))
+ prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ prng.reset(new MT19937);
+ MT19937& rng = *prng;
+
+ vector<vector<WordID> > corpuse, corpusf;
+ set<WordID> vocabe, vocabf;
+ cerr << "Reading corpus...\n";
+ ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
+ cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n";
+ cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
+ assert(corpusf.size() == corpuse.size());
+ const size_t corpus_len = corpusf.size();
+ const WordID kNULL = TD::Convert("<eps>");
+ const WordID kBOS = TD::Convert("<s>");
+ const WordID kEOS = TD::Convert("</s>");
+ Bigram TT(kBOS, TD::Convert("我"), TD::Convert("i"));
+ Bigram TT2(kBOS, TD::Convert("要"), TD::Convert("i"));
+
+ UnigramModel model(vocabf.size(), vocabe.size());
+ vector<Alignment> alignments(corpus_len);
+ for (unsigned ci = 0; ci < corpus_len; ++ci) {
+ const vector<WordID>& src = corpusf[ci];
+ const vector<WordID>& trg = corpuse[ci];
+ vector<unsigned char>& alg = alignments[ci].a;
+ alg.resize(trg.size());
+ int lenp1 = src.size() + 1;
+ WordID prev_src = kBOS;
+ for (int j = 0; j < trg.size(); ++j) {
+ int samp = lenp1 * rng.next();
+ --samp;
+ if (samp < 0) samp = 255;
+ alg[j] = samp;
+ WordID cur_src = (samp == 255 ? kNULL : src[alg[j]]);
+ Bigram b(prev_src, cur_src, trg[j]);
+ model.increment(b);
+ prev_src = cur_src;
+ }
+ Bigram b(prev_src, kEOS, kEOS);
+ model.increment(b);
+ }
+ cerr << "Initial LLH: " << model.LogLikelihood() << endl;
+
+ SampleSet<double> ss;
+ for (unsigned si = 0; si < 50; ++si) {
+ for (unsigned ci = 0; ci < corpus_len; ++ci) {
+ const vector<WordID>& src = corpusf[ci];
+ const vector<WordID>& trg = corpuse[ci];
+ vector<unsigned char>& alg = alignments[ci].a;
+ WordID prev_src = kBOS;
+ for (unsigned j = 0; j < trg.size(); ++j) {
+ unsigned char& a_j = alg[j];
+ WordID cur_e_a_j = (a_j == 255 ? kNULL : src[a_j]);
+ Bigram b(prev_src, cur_e_a_j, trg[j]);
+ //cerr << "DEC: " << b << "\t" << nextb << endl;
+ model.decrement(b);
+ ss.clear();
+ for (unsigned i = 0; i <= src.size(); ++i) {
+ const WordID cur_src = (i ? src[i-1] : kNULL);
+ b.cur_src() = cur_src;
+ ss.add(model.prob(b));
+ }
+ int sampled_a_j = rng.SelectSample(ss);
+ a_j = (sampled_a_j ? sampled_a_j - 1 : 255);
+ cur_e_a_j = (a_j == 255 ? kNULL : src[a_j]);
+ b.cur_src() = cur_e_a_j;
+ //cerr << "INC: " << b << "\t" << nextb << endl;
+ model.increment(b);
+ prev_src = cur_e_a_j;
+ }
+ }
+ cerr << '.' << flush;
+ if (si % 10 == 9) {
+ cerr << "[LLH prev=" << model.LogLikelihood();
+ //model.ResampleHyperparameters(&rng);
+ cerr << " new=" << model.LogLikelihood() << "]\n";
+ //pair<WordID,WordID> xx = make_pair(kBOS, TD::Convert("我"));
+ //PrintTopCustomers(model.bigrams.find(xx)->second);
+ cerr << "p(" << TT << ") = " << model.prob(TT) << endl;
+ cerr << "p(" << TT2 << ") = " << model.prob(TT2) << endl;
+ PrintAlignment(corpusf[0], corpuse[0], alignments[0].a);
+ }
+ }
+ {
+ // MODEL 2
+ BigramModel model(vocabf.size(), vocabe.size());
+ BigramAlignmentModel amodel(vocabf.size(), vocabe.size());
+ for (unsigned ci = 0; ci < corpus_len; ++ci) {
+ const vector<WordID>& src = corpusf[ci];
+ const vector<WordID>& trg = corpuse[ci];
+ vector<unsigned char>& alg = alignments[ci].a;
+ WordID prev_src = kBOS;
+ for (int j = 0; j < trg.size(); ++j) {
+ WordID cur_src = (alg[j] == 255 ? kNULL : src[alg[j]]);
+ Bigram b(prev_src, cur_src, trg[j]);
+ model.increment(b);
+ amodel.increment(prev_src, cur_src);
+ prev_src = cur_src;
+ }
+ amodel.increment(prev_src, kEOS);
+ Bigram b(prev_src, kEOS, kEOS);
+ model.increment(b);
+ }
+ cerr << "Initial LLH: " << model.LogLikelihood() << " " << amodel.LogLikelihood() << endl;
+
+ SampleSet<double> ss;
+ for (unsigned si = 0; si < samples; ++si) {
+ for (unsigned ci = 0; ci < corpus_len; ++ci) {
+ const vector<WordID>& src = corpusf[ci];
+ const vector<WordID>& trg = corpuse[ci];
+ vector<unsigned char>& alg = alignments[ci].a;
+ WordID prev_src = kBOS;
+ for (unsigned j = 0; j < trg.size(); ++j) {
+ unsigned char& a_j = alg[j];
+ WordID cur_e_a_j = (a_j == 255 ? kNULL : src[a_j]);
+ Bigram b(prev_src, cur_e_a_j, trg[j]);
+ WordID next_src = kEOS;
+ WordID next_trg = kEOS;
+ if (j < (trg.size() - 1)) {
+ next_src = (alg[j+1] == 255 ? kNULL : src[alg[j + 1]]);
+ next_trg = trg[j + 1];
+ }
+ Bigram nextb(cur_e_a_j, next_src, next_trg);
+ //cerr << "DEC: " << b << "\t" << nextb << endl;
+ model.decrement(b);
+ model.decrement(nextb);
+ amodel.decrement(prev_src, cur_e_a_j);
+ amodel.decrement(cur_e_a_j, next_src);
+ ss.clear();
+ for (unsigned i = 0; i <= src.size(); ++i) {
+ const WordID cur_src = (i ? src[i-1] : kNULL);
+ b.cur_src() = cur_src;
+ ss.add(model.prob(b) * model.prob(nextb) * amodel.prob(prev_src, cur_src) * amodel.prob(cur_src, next_src));
+ //cerr << log(ss[ss.size() - 1]) << "\t" << b << endl;
+ }
+ int sampled_a_j = rng.SelectSample(ss);
+ a_j = (sampled_a_j ? sampled_a_j - 1 : 255);
+ cur_e_a_j = (a_j == 255 ? kNULL : src[a_j]);
+ b.cur_src() = cur_e_a_j;
+ nextb.prev_src() = cur_e_a_j;
+ //cerr << "INC: " << b << "\t" << nextb << endl;
+ //exit(1);
+ model.increment(b);
+ model.increment(nextb);
+ amodel.increment(prev_src, cur_e_a_j);
+ amodel.increment(cur_e_a_j, next_src);
+ prev_src = cur_e_a_j;
+ }
+ }
+ cerr << '.' << flush;
+ if (si % 10 == 9) {
+ cerr << "[LLH prev=" << (model.LogLikelihood() + amodel.LogLikelihood());
+ //model.ResampleHyperparameters(&rng);
+ cerr << " new=" << model.LogLikelihood() << "]\n";
+ pair<WordID,WordID> xx = make_pair(kBOS, TD::Convert("我"));
+ cerr << "p(" << TT << ") = " << model.prob(TT) << endl;
+ cerr << "p(" << TT2 << ") = " << model.prob(TT2) << endl;
+ pair<WordID,WordID> xx2 = make_pair(kBOS, TD::Convert("要"));
+ PrintTopCustomers(model.bigrams.find(xx)->second);
+ //PrintTopCustomers(amodel.bigrams[TD::Convert("<s>")]);
+ //PrintTopCustomers(model.unigrams[TD::Convert("<eps>")]);
+ PrintAlignment(corpusf[0], corpuse[0], alignments[0].a);
+ }
+ }
+ }
+ return 0;
+}
+
diff --git a/gi/pf/Makefile.am b/gi/pf/Makefile.am
new file mode 100644
index 00000000..42758939
--- /dev/null
+++ b/gi/pf/Makefile.am
@@ -0,0 +1,21 @@
+bin_PROGRAMS = cbgi brat dpnaive pfbrat pfdist itg pfnaive
+
+noinst_LIBRARIES = libpf.a
+libpf_a_SOURCES = base_measures.cc reachability.cc cfg_wfst_composer.cc corpus.cc
+
+itg_SOURCES = itg.cc
+
+dpnaive_SOURCES = dpnaive.cc
+
+pfdist_SOURCES = pfdist.cc
+
+pfnaive_SOURCES = pfnaive.cc
+
+cbgi_SOURCES = cbgi.cc
+
+brat_SOURCES = brat.cc
+
+pfbrat_SOURCES = pfbrat.cc
+
+AM_CPPFLAGS = -W -Wall -Wno-sign-compare -funroll-loops -I$(top_srcdir)/utils $(GTEST_CPPFLAGS) -I$(top_srcdir)/decoder
+AM_LDFLAGS = libpf.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz
diff --git a/gi/pf/README b/gi/pf/README
new file mode 100644
index 00000000..62e47541
--- /dev/null
+++ b/gi/pf/README
@@ -0,0 +1,2 @@
+Experimental Bayesian alignment tools. Nothing to see here.
+
diff --git a/gi/pf/base_measures.cc b/gi/pf/base_measures.cc
new file mode 100644
index 00000000..f8ddfd32
--- /dev/null
+++ b/gi/pf/base_measures.cc
@@ -0,0 +1,112 @@
+#include "base_measures.h"
+
+#include <iostream>
+
+#include "filelib.h"
+
+using namespace std;
+
+void Model1::LoadModel1(const string& fname) {
+ cerr << "Loading Model 1 parameters from " << fname << " ..." << endl;
+ ReadFile rf(fname);
+ istream& in = *rf.stream();
+ string line;
+ unsigned lc = 0;
+ while(getline(in, line)) {
+ ++lc;
+ int cur = 0;
+ int start = 0;
+ while(cur < line.size() && line[cur] != ' ') { ++cur; }
+ assert(cur != line.size());
+ line[cur] = 0;
+ const WordID src = TD::Convert(&line[0]);
+ ++cur;
+ start = cur;
+ while(cur < line.size() && line[cur] != ' ') { ++cur; }
+ assert(cur != line.size());
+ line[cur] = 0;
+ WordID trg = TD::Convert(&line[start]);
+ const double logprob = strtod(&line[cur + 1], NULL);
+ if (src >= ttable.size()) ttable.resize(src + 1);
+ ttable[src][trg].logeq(logprob);
+ }
+ cerr << " read " << lc << " parameters.\n";
+}
+
+prob_t PhraseConditionalBase::p0(const vector<WordID>& vsrc,
+ const vector<WordID>& vtrg,
+ int start_src, int start_trg) const {
+ const int flen = vsrc.size() - start_src;
+ const int elen = vtrg.size() - start_trg;
+ prob_t uniform_src_alignment; uniform_src_alignment.logeq(-log(flen + 1));
+ prob_t p;
+ p.logeq(log_poisson(elen, flen + 0.01)); // elen | flen ~Pois(flen + 0.01)
+ for (int i = 0; i < elen; ++i) { // for each position i in e-RHS
+ const WordID trg = vtrg[i + start_trg];
+ prob_t tp = prob_t::Zero();
+ for (int j = -1; j < flen; ++j) {
+ const WordID src = j < 0 ? 0 : vsrc[j + start_src];
+ tp += kM1MIXTURE * model1(src, trg);
+ tp += kUNIFORM_MIXTURE * kUNIFORM_TARGET;
+ }
+ tp *= uniform_src_alignment; // draw a_i ~uniform
+ p *= tp; // draw e_i ~Model1(f_a_i) / uniform
+ }
+ if (p.is_0()) {
+ cerr << "Zero! " << vsrc << "\nTRG=" << vtrg << endl;
+ abort();
+ }
+ return p;
+}
+
+prob_t PhraseJointBase::p0(const vector<WordID>& vsrc,
+ const vector<WordID>& vtrg,
+ int start_src, int start_trg) const {
+ const int flen = vsrc.size() - start_src;
+ const int elen = vtrg.size() - start_trg;
+ prob_t uniform_src_alignment; uniform_src_alignment.logeq(-log(flen + 1));
+ prob_t p;
+ p.logeq(log_poisson(flen, 1.0)); // flen ~Pois(1)
+ // elen | flen ~Pois(flen + 0.01)
+ prob_t ptrglen; ptrglen.logeq(log_poisson(elen, flen + 0.01));
+ p *= ptrglen;
+ p *= kUNIFORM_SOURCE.pow(flen); // each f in F ~Uniform
+ for (int i = 0; i < elen; ++i) { // for each position i in E
+ const WordID trg = vtrg[i + start_trg];
+ prob_t tp = prob_t::Zero();
+ for (int j = -1; j < flen; ++j) {
+ const WordID src = j < 0 ? 0 : vsrc[j + start_src];
+ tp += kM1MIXTURE * model1(src, trg);
+ tp += kUNIFORM_MIXTURE * kUNIFORM_TARGET;
+ }
+ tp *= uniform_src_alignment; // draw a_i ~uniform
+ p *= tp; // draw e_i ~Model1(f_a_i) / uniform
+ }
+ if (p.is_0()) {
+ cerr << "Zero! " << vsrc << "\nTRG=" << vtrg << endl;
+ abort();
+ }
+ return p;
+}
+
+JumpBase::JumpBase() : p(200) {
+ for (unsigned src_len = 1; src_len < 200; ++src_len) {
+ map<int, prob_t>& cpd = p[src_len];
+ int min_jump = 1 - src_len;
+ int max_jump = src_len;
+ prob_t z;
+ for (int j = min_jump; j <= max_jump; ++j) {
+ prob_t& cp = cpd[j];
+ if (j < 0)
+ cp.logeq(log_poisson(1.5-j, 1));
+ else if (j > 0)
+ cp.logeq(log_poisson(j, 1));
+ cp.poweq(0.2);
+ z += cp;
+ }
+ for (int j = min_jump; j <= max_jump; ++j) {
+ cpd[j] /= z;
+ }
+ }
+}
+
diff --git a/gi/pf/base_measures.h b/gi/pf/base_measures.h
new file mode 100644
index 00000000..df17aa62
--- /dev/null
+++ b/gi/pf/base_measures.h
@@ -0,0 +1,116 @@
+#ifndef _BASE_MEASURES_H_
+#define _BASE_MEASURES_H_
+
+#include <vector>
+#include <map>
+#include <string>
+#include <cmath>
+#include <iostream>
+
+#include "trule.h"
+#include "prob.h"
+#include "tdict.h"
+
+inline double log_poisson(unsigned x, const double& lambda) {
+ assert(lambda > 0.0);
+ return log(lambda) * x - lgamma(x + 1) - lambda;
+}
+
+inline std::ostream& operator<<(std::ostream& os, const std::vector<WordID>& p) {
+ os << '[';
+ for (int i = 0; i < p.size(); ++i)
+ os << (i==0 ? "" : " ") << TD::Convert(p[i]);
+ return os << ']';
+}
+
+struct Model1 {
+ explicit Model1(const std::string& fname) :
+ kNULL(TD::Convert("<eps>")),
+ kZERO() {
+ LoadModel1(fname);
+ }
+
+ void LoadModel1(const std::string& fname);
+
+ // returns prob 0 if src or trg is not found
+ const prob_t& operator()(WordID src, WordID trg) const {
+ if (src == 0) src = kNULL;
+ if (src < ttable.size()) {
+ const std::map<WordID, prob_t>& cpd = ttable[src];
+ const std::map<WordID, prob_t>::const_iterator it = cpd.find(trg);
+ if (it != cpd.end())
+ return it->second;
+ }
+ return kZERO;
+ }
+
+ const WordID kNULL;
+ const prob_t kZERO;
+ std::vector<std::map<WordID, prob_t> > ttable;
+};
+
+struct PhraseConditionalBase {
+ explicit PhraseConditionalBase(const Model1& m1, const double m1mixture, const unsigned vocab_e_size) :
+ model1(m1),
+ kM1MIXTURE(m1mixture),
+ kUNIFORM_MIXTURE(1.0 - m1mixture),
+ kUNIFORM_TARGET(1.0 / vocab_e_size) {
+ assert(m1mixture >= 0.0 && m1mixture <= 1.0);
+ assert(vocab_e_size > 0);
+ }
+
+ // return p0 of rule.e_ | rule.f_
+ prob_t operator()(const TRule& rule) const {
+ return p0(rule.f_, rule.e_, 0, 0);
+ }
+
+ prob_t p0(const std::vector<WordID>& vsrc, const std::vector<WordID>& vtrg, int start_src, int start_trg) const;
+
+ const Model1& model1;
+ const prob_t kM1MIXTURE; // Model 1 mixture component
+ const prob_t kUNIFORM_MIXTURE; // uniform mixture component
+ const prob_t kUNIFORM_TARGET;
+};
+
+struct PhraseJointBase {
+ explicit PhraseJointBase(const Model1& m1, const double m1mixture, const unsigned vocab_e_size, const unsigned vocab_f_size) :
+ model1(m1),
+ kM1MIXTURE(m1mixture),
+ kUNIFORM_MIXTURE(1.0 - m1mixture),
+ kUNIFORM_SOURCE(1.0 / vocab_f_size),
+ kUNIFORM_TARGET(1.0 / vocab_e_size) {
+ assert(m1mixture >= 0.0 && m1mixture <= 1.0);
+ assert(vocab_e_size > 0);
+ }
+
+ // return p0 of rule.e_ | rule.f_
+ prob_t operator()(const TRule& rule) const {
+ return p0(rule.f_, rule.e_, 0, 0);
+ }
+
+ prob_t p0(const std::vector<WordID>& vsrc, const std::vector<WordID>& vtrg, int start_src, int start_trg) const;
+
+ const Model1& model1;
+ const prob_t kM1MIXTURE; // Model 1 mixture component
+ const prob_t kUNIFORM_MIXTURE; // uniform mixture component
+ const prob_t kUNIFORM_SOURCE;
+ const prob_t kUNIFORM_TARGET;
+};
+
+// base distribution for jump size multinomials
+// basically p(0) = 0 and then, p(1) is max, and then
+// you drop as you move to the max jump distance
+struct JumpBase {
+ JumpBase();
+
+ const prob_t& operator()(int jump, unsigned src_len) const {
+ assert(jump != 0);
+ const std::map<int, prob_t>::const_iterator it = p[src_len].find(jump);
+ assert(it != p[src_len].end());
+ return it->second;
+ }
+ std::vector<std::map<int, prob_t> > p;
+};
+
+
+#endif
diff --git a/gi/pf/brat.cc b/gi/pf/brat.cc
new file mode 100644
index 00000000..7b60ef23
--- /dev/null
+++ b/gi/pf/brat.cc
@@ -0,0 +1,543 @@
+#include <iostream>
+#include <tr1/memory>
+#include <queue>
+
+#include <boost/functional.hpp>
+#include <boost/multi_array.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "viterbi.h"
+#include "hg.h"
+#include "trule.h"
+#include "tdict.h"
+#include "filelib.h"
+#include "dict.h"
+#include "sampler.h"
+#include "ccrp_nt.h"
+#include "cfg_wfst_composer.h"
+
+using namespace std;
+using namespace tr1;
+namespace po = boost::program_options;
+
+static unsigned kMAX_SRC_PHRASE;
+static unsigned kMAX_TRG_PHRASE;
+struct FSTState;
+
+double log_poisson(unsigned x, const double& lambda) {
+ assert(lambda > 0.0);
+ return log(lambda) * x - lgamma(x + 1) - lambda;
+}
+
+struct ConditionalBase {
+ explicit ConditionalBase(const double m1mixture, const unsigned vocab_e_size, const string& model1fname) :
+ kM1MIXTURE(m1mixture),
+ kUNIFORM_MIXTURE(1.0 - m1mixture),
+ kUNIFORM_TARGET(1.0 / vocab_e_size),
+ kNULL(TD::Convert("<eps>")) {
+ assert(m1mixture >= 0.0 && m1mixture <= 1.0);
+ assert(vocab_e_size > 0);
+ LoadModel1(model1fname);
+ }
+
+ void LoadModel1(const string& fname) {
+ cerr << "Loading Model 1 parameters from " << fname << " ..." << endl;
+ ReadFile rf(fname);
+ istream& in = *rf.stream();
+ string line;
+ unsigned lc = 0;
+ while(getline(in, line)) {
+ ++lc;
+ int cur = 0;
+ int start = 0;
+ while(cur < line.size() && line[cur] != ' ') { ++cur; }
+ assert(cur != line.size());
+ line[cur] = 0;
+ const WordID src = TD::Convert(&line[0]);
+ ++cur;
+ start = cur;
+ while(cur < line.size() && line[cur] != ' ') { ++cur; }
+ assert(cur != line.size());
+ line[cur] = 0;
+ WordID trg = TD::Convert(&line[start]);
+ const double logprob = strtod(&line[cur + 1], NULL);
+ if (src >= ttable.size()) ttable.resize(src + 1);
+ ttable[src][trg].logeq(logprob);
+ }
+ cerr << " read " << lc << " parameters.\n";
+ }
+
+ // return logp0 of rule.e_ | rule.f_
+ prob_t operator()(const TRule& rule) const {
+ const int flen = rule.f_.size();
+ const int elen = rule.e_.size();
+ prob_t uniform_src_alignment; uniform_src_alignment.logeq(-log(flen + 1));
+ prob_t p;
+ p.logeq(log_poisson(elen, flen + 0.01)); // elen | flen ~Pois(flen + 0.01)
+ for (int i = 0; i < elen; ++i) { // for each position i in e-RHS
+ const WordID trg = rule.e_[i];
+ prob_t tp = prob_t::Zero();
+ for (int j = -1; j < flen; ++j) {
+ const WordID src = j < 0 ? kNULL : rule.f_[j];
+ const map<WordID, prob_t>::const_iterator it = ttable[src].find(trg);
+ if (it != ttable[src].end()) {
+ tp += kM1MIXTURE * it->second;
+ }
+ tp += kUNIFORM_MIXTURE * kUNIFORM_TARGET;
+ }
+ tp *= uniform_src_alignment; // draw a_i ~uniform
+ p *= tp; // draw e_i ~Model1(f_a_i) / uniform
+ }
+ return p;
+ }
+
+ const prob_t kM1MIXTURE; // Model 1 mixture component
+ const prob_t kUNIFORM_MIXTURE; // uniform mixture component
+ const prob_t kUNIFORM_TARGET;
+ const WordID kNULL;
+ vector<map<WordID, prob_t> > ttable;
+};
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
+ ("input,i",po::value<string>(),"Read parallel data from")
+ ("max_src_phrase",po::value<unsigned>()->default_value(3),"Maximum length of source language phrases")
+ ("max_trg_phrase",po::value<unsigned>()->default_value(3),"Maximum length of target language phrases")
+ ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
+ ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
+ ("random_seed,S",po::value<uint32_t>(), "Random seed");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || (conf->count("input") == 0)) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+void ReadParallelCorpus(const string& filename,
+ vector<vector<WordID> >* f,
+ vector<vector<int> >* e,
+ set<int>* vocab_f,
+ set<int>* vocab_e) {
+ f->clear();
+ e->clear();
+ vocab_f->clear();
+ vocab_e->clear();
+ istream* in;
+ if (filename == "-")
+ in = &cin;
+ else
+ in = new ifstream(filename.c_str());
+ assert(*in);
+ string line;
+ const WordID kDIV = TD::Convert("|||");
+ vector<WordID> tmp;
+ while(*in) {
+ getline(*in, line);
+ if (line.empty() && !*in) break;
+ e->push_back(vector<int>());
+ f->push_back(vector<int>());
+ vector<int>& le = e->back();
+ vector<int>& lf = f->back();
+ tmp.clear();
+ TD::ConvertSentence(line, &tmp);
+ bool isf = true;
+ for (unsigned i = 0; i < tmp.size(); ++i) {
+ const int cur = tmp[i];
+ if (isf) {
+ if (kDIV == cur) { isf = false; } else {
+ lf.push_back(cur);
+ vocab_f->insert(cur);
+ }
+ } else {
+ assert(cur != kDIV);
+ le.push_back(cur);
+ vocab_e->insert(cur);
+ }
+ }
+ assert(isf == false);
+ }
+ if (in != &cin) delete in;
+}
+
+struct UniphraseLM {
+ UniphraseLM(const vector<vector<int> >& corpus,
+ const set<int>& vocab,
+ const po::variables_map& conf) :
+ phrases_(1,1),
+ gen_(1,1),
+ corpus_(corpus),
+ uniform_word_(1.0 / vocab.size()),
+ gen_p0_(0.5),
+ p_end_(0.5),
+ use_poisson_(conf.count("poisson_length") > 0) {}
+
+ void ResampleHyperparameters(MT19937* rng) {
+ phrases_.resample_hyperparameters(rng);
+ gen_.resample_hyperparameters(rng);
+ cerr << " " << phrases_.concentration();
+ }
+
+ CCRP_NoTable<vector<int> > phrases_;
+ CCRP_NoTable<bool> gen_;
+ vector<vector<bool> > z_; // z_[i] is there a phrase boundary after the ith word
+ const vector<vector<int> >& corpus_;
+ const double uniform_word_;
+ const double gen_p0_;
+ const double p_end_; // in base length distribution, p of the end of a phrase
+ const bool use_poisson_;
+};
+
+struct Reachability {
+ boost::multi_array<bool, 4> edges; // edges[src_covered][trg_covered][x][trg_delta] is this edge worth exploring?
+ boost::multi_array<short, 2> max_src_delta; // msd[src_covered][trg_covered] -- the largest src delta that's valid
+
+ Reachability(int srclen, int trglen, int src_max_phrase_len, int trg_max_phrase_len) :
+ edges(boost::extents[srclen][trglen][src_max_phrase_len+1][trg_max_phrase_len+1]),
+ max_src_delta(boost::extents[srclen][trglen]) {
+ ComputeReachability(srclen, trglen, src_max_phrase_len, trg_max_phrase_len);
+ }
+
+ private:
+ struct SState {
+ SState() : prev_src_covered(), prev_trg_covered() {}
+ SState(int i, int j) : prev_src_covered(i), prev_trg_covered(j) {}
+ int prev_src_covered;
+ int prev_trg_covered;
+ };
+
+ struct NState {
+ NState() : next_src_covered(), next_trg_covered() {}
+ NState(int i, int j) : next_src_covered(i), next_trg_covered(j) {}
+ int next_src_covered;
+ int next_trg_covered;
+ };
+
+ void ComputeReachability(int srclen, int trglen, int src_max_phrase_len, int trg_max_phrase_len) {
+ typedef boost::multi_array<vector<SState>, 2> array_type;
+ array_type a(boost::extents[srclen + 1][trglen + 1]);
+ a[0][0].push_back(SState());
+ for (int i = 0; i < srclen; ++i) {
+ for (int j = 0; j < trglen; ++j) {
+ if (a[i][j].size() == 0) continue;
+ const SState prev(i,j);
+ for (int k = 1; k <= src_max_phrase_len; ++k) {
+ if ((i + k) > srclen) continue;
+ for (int l = 1; l <= trg_max_phrase_len; ++l) {
+ if ((j + l) > trglen) continue;
+ a[i + k][j + l].push_back(prev);
+ }
+ }
+ }
+ }
+ a[0][0].clear();
+ cerr << "Final cell contains " << a[srclen][trglen].size() << " back pointers\n";
+ assert(a[srclen][trglen].size() > 0);
+
+ typedef boost::multi_array<bool, 2> rarray_type;
+ rarray_type r(boost::extents[srclen + 1][trglen + 1]);
+// typedef boost::multi_array<vector<NState>, 2> narray_type;
+// narray_type b(boost::extents[srclen + 1][trglen + 1]);
+ r[srclen][trglen] = true;
+ for (int i = srclen; i >= 0; --i) {
+ for (int j = trglen; j >= 0; --j) {
+ vector<SState>& prevs = a[i][j];
+ if (!r[i][j]) { prevs.clear(); }
+// const NState nstate(i,j);
+ for (int k = 0; k < prevs.size(); ++k) {
+ r[prevs[k].prev_src_covered][prevs[k].prev_trg_covered] = true;
+ int src_delta = i - prevs[k].prev_src_covered;
+ edges[prevs[k].prev_src_covered][prevs[k].prev_trg_covered][src_delta][j - prevs[k].prev_trg_covered] = true;
+ short &msd = max_src_delta[prevs[k].prev_src_covered][prevs[k].prev_trg_covered];
+ if (src_delta > msd) msd = src_delta;
+// b[prevs[k].prev_src_covered][prevs[k].prev_trg_covered].push_back(nstate);
+ }
+ }
+ }
+ assert(!edges[0][0][1][0]);
+ assert(!edges[0][0][0][1]);
+ assert(!edges[0][0][0][0]);
+ cerr << " MAX SRC DELTA[0][0] = " << max_src_delta[0][0] << endl;
+ assert(max_src_delta[0][0] > 0);
+ //cerr << "First cell contains " << b[0][0].size() << " forward pointers\n";
+ //for (int i = 0; i < b[0][0].size(); ++i) {
+ // cerr << " -> (" << b[0][0][i].next_src_covered << "," << b[0][0][i].next_trg_covered << ")\n";
+ //}
+ }
+};
+
+ostream& operator<<(ostream& os, const FSTState& q);
+struct FSTState {
+ explicit FSTState(int src_size) :
+ trg_covered_(),
+ src_covered_(),
+ src_coverage_(src_size) {}
+
+ FSTState(short trg_covered, short src_covered, const vector<bool>& src_coverage, const vector<short>& src_prefix) :
+ trg_covered_(trg_covered),
+ src_covered_(src_covered),
+ src_coverage_(src_coverage),
+ src_prefix_(src_prefix) {
+ if (src_coverage_.size() == src_covered) {
+ assert(src_prefix.size() == 0);
+ }
+ }
+
+ // if we extend by the word at src_position, what are
+ // the next states that are reachable and lie on a valid
+ // path to the final state?
+ vector<FSTState> Extensions(int src_position, int src_len, int trg_len, const Reachability& r) const {
+ assert(src_position < src_coverage_.size());
+ if (src_coverage_[src_position]) {
+ cerr << "Trying to extend " << *this << " with position " << src_position << endl;
+ abort();
+ }
+ vector<bool> ncvg = src_coverage_;
+ ncvg[src_position] = true;
+
+ vector<FSTState> res;
+ const int trg_remaining = trg_len - trg_covered_;
+ if (trg_remaining <= 0) {
+ cerr << "Target appears to have been covered: " << *this << " (trg_len=" << trg_len << ",trg_covered=" << trg_covered_ << ")" << endl;
+ abort();
+ }
+ const int src_remaining = src_len - src_covered_;
+ if (src_remaining <= 0) {
+ cerr << "Source appears to have been covered: " << *this << endl;
+ abort();
+ }
+
+ for (int tc = 1; tc <= kMAX_TRG_PHRASE; ++tc) {
+ if (r.edges[src_covered_][trg_covered_][src_prefix_.size() + 1][tc]) {
+ int nc = src_prefix_.size() + 1 + src_covered_;
+ res.push_back(FSTState(trg_covered_ + tc, nc, ncvg, vector<short>()));
+ }
+ }
+
+ if ((src_prefix_.size() + 1) < r.max_src_delta[src_covered_][trg_covered_]) {
+ vector<short> nsp = src_prefix_;
+ nsp.push_back(src_position);
+ res.push_back(FSTState(trg_covered_, src_covered_, ncvg, nsp));
+ }
+
+ if (res.size() == 0) {
+ cerr << *this << " can't be extended!\n";
+ abort();
+ }
+ return res;
+ }
+
+ short trg_covered_, src_covered_;
+ vector<bool> src_coverage_;
+ vector<short> src_prefix_;
+};
+bool operator<(const FSTState& q, const FSTState& r) {
+ if (q.trg_covered_ != r.trg_covered_) return q.trg_covered_ < r.trg_covered_;
+ if (q.src_covered_!= r.src_covered_) return q.src_covered_ < r.src_covered_;
+ if (q.src_coverage_ != r.src_coverage_) return q.src_coverage_ < r.src_coverage_;
+ return q.src_prefix_ < r.src_prefix_;
+}
+
+ostream& operator<<(ostream& os, const FSTState& q) {
+ os << "[" << q.trg_covered_ << " : ";
+ for (int i = 0; i < q.src_coverage_.size(); ++i)
+ os << q.src_coverage_[i];
+ os << " : <";
+ for (int i = 0; i < q.src_prefix_.size(); ++i) {
+ if (i != 0) os << ' ';
+ os << q.src_prefix_[i];
+ }
+ return os << ">]";
+}
+
+struct MyModel {
+ MyModel(ConditionalBase& rcp0) : rp0(rcp0) {}
+ typedef unordered_map<vector<WordID>, CCRP_NoTable<TRule>, boost::hash<vector<WordID> > > SrcToRuleCRPMap;
+
+ void DecrementRule(const TRule& rule) {
+ SrcToRuleCRPMap::iterator it = rules.find(rule.f_);
+ assert(it != rules.end());
+ it->second.decrement(rule);
+ if (it->second.num_customers() == 0) rules.erase(it);
+ }
+
+ void IncrementRule(const TRule& rule) {
+ SrcToRuleCRPMap::iterator it = rules.find(rule.f_);
+ if (it == rules.end()) {
+ CCRP_NoTable<TRule> crp(1,1);
+ it = rules.insert(make_pair(rule.f_, crp)).first;
+ }
+ it->second.increment(rule);
+ }
+
+ // conditioned on rule.f_
+ prob_t RuleConditionalProbability(const TRule& rule) const {
+ const prob_t base = rp0(rule);
+ SrcToRuleCRPMap::const_iterator it = rules.find(rule.f_);
+ if (it == rules.end()) {
+ return base;
+ } else {
+ const double lp = it->second.logprob(rule, log(base));
+ prob_t q; q.logeq(lp);
+ return q;
+ }
+ }
+
+ const ConditionalBase& rp0;
+ SrcToRuleCRPMap rules;
+};
+
+struct MyFST : public WFST {
+ MyFST(const vector<WordID>& ssrc, const vector<WordID>& strg, MyModel* m) :
+ src(ssrc), trg(strg),
+ r(src.size(),trg.size(),kMAX_SRC_PHRASE, kMAX_TRG_PHRASE),
+ model(m) {
+ FSTState in(src.size());
+ cerr << " INIT: " << in << endl;
+ init = GetNode(in);
+ for (int i = 0; i < in.src_coverage_.size(); ++i) in.src_coverage_[i] = true;
+ in.src_covered_ = src.size();
+ in.trg_covered_ = trg.size();
+ cerr << "FINAL: " << in << endl;
+ final = GetNode(in);
+ }
+ virtual const WFSTNode* Final() const;
+ virtual const WFSTNode* Initial() const;
+
+ const WFSTNode* GetNode(const FSTState& q);
+ map<FSTState, boost::shared_ptr<WFSTNode> > m;
+ const vector<WordID>& src;
+ const vector<WordID>& trg;
+ Reachability r;
+ const WFSTNode* init;
+ const WFSTNode* final;
+ MyModel* model;
+};
+
+struct MyNode : public WFSTNode {
+ MyNode(const FSTState& q, MyFST* fst) : state(q), container(fst) {}
+ virtual vector<pair<const WFSTNode*, TRulePtr> > ExtendInput(unsigned srcindex) const;
+ const FSTState state;
+ mutable MyFST* container;
+};
+
+vector<pair<const WFSTNode*, TRulePtr> > MyNode::ExtendInput(unsigned srcindex) const {
+ cerr << "EXTEND " << state << " with " << srcindex << endl;
+ vector<FSTState> ext = state.Extensions(srcindex, container->src.size(), container->trg.size(), container->r);
+ vector<pair<const WFSTNode*,TRulePtr> > res(ext.size());
+ for (unsigned i = 0; i < ext.size(); ++i) {
+ res[i].first = container->GetNode(ext[i]);
+ if (ext[i].src_prefix_.size() == 0) {
+ const unsigned trg_from = state.trg_covered_;
+ const unsigned trg_to = ext[i].trg_covered_;
+ const unsigned prev_prfx_size = state.src_prefix_.size();
+ res[i].second.reset(new TRule);
+ res[i].second->lhs_ = -TD::Convert("X");
+ vector<WordID>& src = res[i].second->f_;
+ vector<WordID>& trg = res[i].second->e_;
+ src.resize(prev_prfx_size + 1);
+ for (unsigned j = 0; j < prev_prfx_size; ++j)
+ src[j] = container->src[state.src_prefix_[j]];
+ src[prev_prfx_size] = container->src[srcindex];
+ for (unsigned j = trg_from; j < trg_to; ++j)
+ trg.push_back(container->trg[j]);
+ res[i].second->scores_.set_value(FD::Convert("Proposal"), log(container->model->RuleConditionalProbability(*res[i].second)));
+ }
+ }
+ return res;
+}
+
+const WFSTNode* MyFST::GetNode(const FSTState& q) {
+ boost::shared_ptr<WFSTNode>& res = m[q];
+ if (!res) {
+ res.reset(new MyNode(q, this));
+ }
+ return &*res;
+}
+
+const WFSTNode* MyFST::Final() const {
+ return final;
+}
+
+const WFSTNode* MyFST::Initial() const {
+ return init;
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
+ kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
+
+ if (!conf.count("model1")) {
+ cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
+ return 1;
+ }
+ shared_ptr<MT19937> prng;
+ if (conf.count("random_seed"))
+ prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ prng.reset(new MT19937);
+ MT19937& rng = *prng;
+
+ vector<vector<int> > corpuse, corpusf;
+ set<int> vocabe, vocabf;
+ ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
+ cerr << "f-Corpus size: " << corpusf.size() << " sentences\n";
+ cerr << "f-Vocabulary size: " << vocabf.size() << " types\n";
+ cerr << "f-Corpus size: " << corpuse.size() << " sentences\n";
+ cerr << "f-Vocabulary size: " << vocabe.size() << " types\n";
+ assert(corpusf.size() == corpuse.size());
+
+ ConditionalBase lp0(conf["model1_interpolation_weight"].as<double>(),
+ vocabe.size(),
+ conf["model1"].as<string>());
+ MyModel m(lp0);
+
+ TRule x("[X] ||| kAnwntR myN ||| at the convent ||| 0");
+ m.IncrementRule(x);
+ TRule y("[X] ||| nY dyN ||| gave ||| 0");
+ m.IncrementRule(y);
+
+
+ MyFST fst(corpusf[0], corpuse[0], &m);
+ ifstream in("./kimura.g");
+ assert(in);
+ CFG_WFSTComposer comp(fst);
+ Hypergraph hg;
+ bool succeed = comp.Compose(&in, &hg);
+ hg.PrintGraphviz();
+ if (succeed) { cerr << "SUCCESS.\n"; } else { cerr << "FAILURE REPORTED.\n"; }
+
+#if 0
+ ifstream in2("./amnabooks.g");
+ assert(in2);
+ MyFST fst2(corpusf[1], corpuse[1], &m);
+ CFG_WFSTComposer comp2(fst2);
+ Hypergraph hg2;
+ bool succeed2 = comp2.Compose(&in2, &hg2);
+ if (succeed2) { cerr << "SUCCESS.\n"; } else { cerr << "FAILURE REPORTED.\n"; }
+#endif
+
+ SparseVector<double> w; w.set_value(FD::Convert("Proposal"), 1.0);
+ hg.Reweight(w);
+ cerr << ViterbiFTree(hg) << endl;
+ return 0;
+}
+
diff --git a/gi/pf/cbgi.cc b/gi/pf/cbgi.cc
new file mode 100644
index 00000000..97f1ba34
--- /dev/null
+++ b/gi/pf/cbgi.cc
@@ -0,0 +1,330 @@
+#include <queue>
+#include <sstream>
+#include <iostream>
+
+#include <boost/unordered_map.hpp>
+#include <boost/functional/hash.hpp>
+
+#include "sampler.h"
+#include "filelib.h"
+#include "hg_io.h"
+#include "hg.h"
+#include "ccrp_nt.h"
+#include "trule.h"
+#include "inside_outside.h"
+
+using namespace std;
+using namespace std::tr1;
+
+double log_poisson(unsigned x, const double& lambda) {
+ assert(lambda > 0.0);
+ return log(lambda) * x - lgamma(x + 1) - lambda;
+}
+
+double log_decay(unsigned x, const double& b) {
+ assert(b > 1.0);
+ assert(x > 0);
+ return log(b - 1) - x * log(b);
+}
+
+struct SimpleBase {
+ SimpleBase(unsigned esize, unsigned fsize, unsigned ntsize = 144) :
+ uniform_e(-log(esize)),
+ uniform_f(-log(fsize)),
+ uniform_nt(-log(ntsize)) {
+ }
+
+ // binomial coefficient
+ static double choose(unsigned n, unsigned k) {
+ return exp(lgamma(n + 1) - lgamma(k + 1) - lgamma(n - k + 1));
+ }
+
+ // count the number of patterns of terminals and NTs in the rule, given elen and flen
+ static double log_number_of_patterns(const unsigned flen, const unsigned elen) {
+ static vector<vector<double> > counts;
+ if (elen >= counts.size()) counts.resize(elen + 1);
+ if (flen >= counts[elen].size()) counts[elen].resize(flen + 1);
+ double& count = counts[elen][flen];
+ if (count) return log(count);
+ const unsigned max_arity = min(elen, flen);
+ for (unsigned a = 0; a <= max_arity; ++a)
+ count += choose(elen, a) * choose(flen, a);
+ return log(count);
+ }
+
+ // return logp0 of rule | LHS
+ double operator()(const TRule& rule) const {
+ const unsigned flen = rule.f_.size();
+ const unsigned elen = rule.e_.size();
+#if 0
+ double p = 0;
+ p += log_poisson(flen, 0.5); // flen ~Pois(0.5)
+ p += log_poisson(elen, flen); // elen | flen ~Pois(flen)
+ p -= log_number_of_patterns(flen, elen); // pattern | flen,elen ~Uniform
+ for (unsigned i = 0; i < flen; ++i) { // for each position in f-RHS
+ if (rule.f_[i] <= 0) // according to pattern
+ p += uniform_nt; // draw NT ~Uniform
+ else
+ p += uniform_f; // draw f terminal ~Uniform
+ }
+ p -= lgamma(rule.Arity() + 1); // draw permutation ~Uniform
+ for (unsigned i = 0; i < elen; ++i) { // for each position in e-RHS
+ if (rule.e_[i] > 0) // according to pattern
+ p += uniform_e; // draw e|f term ~Uniform
+ // TODO this should prob be model 1
+ }
+#else
+ double p = 0;
+ bool is_abstract = rule.f_[0] <= 0;
+ p += log(0.5);
+ if (is_abstract) {
+ if (flen == 2) p += log(0.99); else p += log(0.01);
+ } else {
+ p += log_decay(flen, 3);
+ }
+
+ for (unsigned i = 0; i < flen; ++i) { // for each position in f-RHS
+ if (rule.f_[i] <= 0) // according to pattern
+ p += uniform_nt; // draw NT ~Uniform
+ else
+ p += uniform_f; // draw f terminal ~Uniform
+ }
+#endif
+ return p;
+ }
+ const double uniform_e;
+ const double uniform_f;
+ const double uniform_nt;
+ vector<double> arities;
+};
+
+MT19937* rng = NULL;
+
+template <typename Base>
+struct MHSamplerEdgeProb {
+ MHSamplerEdgeProb(const Hypergraph& hg,
+ const map<int, CCRP_NoTable<TRule> >& rdp,
+ const Base& logp0,
+ const bool exclude_multiword_terminals) : edge_probs(hg.edges_.size()) {
+ for (int i = 0; i < edge_probs.size(); ++i) {
+ const TRule& rule = *hg.edges_[i].rule_;
+ const map<int, CCRP_NoTable<TRule> >::const_iterator it = rdp.find(rule.lhs_);
+ assert(it != rdp.end());
+ const CCRP_NoTable<TRule>& crp = it->second;
+ edge_probs[i].logeq(crp.logprob(rule, logp0(rule)));
+ if (exclude_multiword_terminals && rule.f_[0] > 0 && rule.f_.size() > 1)
+ edge_probs[i] = prob_t::Zero();
+ }
+ }
+ inline prob_t operator()(const Hypergraph::Edge& e) const {
+ return edge_probs[e.id_];
+ }
+ prob_t DerivationProb(const vector<int>& d) const {
+ prob_t p = prob_t::One();
+ for (unsigned i = 0; i < d.size(); ++i)
+ p *= edge_probs[d[i]];
+ return p;
+ }
+ vector<prob_t> edge_probs;
+};
+
+template <typename Base>
+struct ModelAndData {
+ ModelAndData() :
+ base_lh(prob_t::One()),
+ logp0(10000, 10000),
+ mh_samples(),
+ mh_rejects() {}
+
+ void SampleCorpus(const string& hgpath, int i);
+ void ResampleHyperparameters() {
+ for (map<int, CCRP_NoTable<TRule> >::iterator it = rules.begin(); it != rules.end(); ++it)
+ it->second.resample_hyperparameters(rng);
+ }
+
+ CCRP_NoTable<TRule>& RuleCRP(int lhs) {
+ map<int, CCRP_NoTable<TRule> >::iterator it = rules.find(lhs);
+ if (it == rules.end()) {
+ rules.insert(make_pair(lhs, CCRP_NoTable<TRule>(1,1)));
+ it = rules.find(lhs);
+ }
+ return it->second;
+ }
+
+ void IncrementRule(const TRule& rule) {
+ CCRP_NoTable<TRule>& crp = RuleCRP(rule.lhs_);
+ if (crp.increment(rule)) {
+ prob_t p; p.logeq(logp0(rule));
+ base_lh *= p;
+ }
+ }
+
+ void DecrementRule(const TRule& rule) {
+ CCRP_NoTable<TRule>& crp = RuleCRP(rule.lhs_);
+ if (crp.decrement(rule)) {
+ prob_t p; p.logeq(logp0(rule));
+ base_lh /= p;
+ }
+ }
+
+ void DecrementDerivation(const Hypergraph& hg, const vector<int>& d) {
+ for (unsigned i = 0; i < d.size(); ++i) {
+ const TRule& rule = *hg.edges_[d[i]].rule_;
+ DecrementRule(rule);
+ }
+ }
+
+ void IncrementDerivation(const Hypergraph& hg, const vector<int>& d) {
+ for (unsigned i = 0; i < d.size(); ++i) {
+ const TRule& rule = *hg.edges_[d[i]].rule_;
+ IncrementRule(rule);
+ }
+ }
+
+ prob_t Likelihood() const {
+ prob_t p = prob_t::One();
+ for (map<int, CCRP_NoTable<TRule> >::const_iterator it = rules.begin(); it != rules.end(); ++it) {
+ prob_t q; q.logeq(it->second.log_crp_prob());
+ p *= q;
+ }
+ p *= base_lh;
+ return p;
+ }
+
+ void ResampleDerivation(const Hypergraph& hg, vector<int>* sampled_derivation);
+
+ map<int, CCRP_NoTable<TRule> > rules; // [lhs] -> distribution over RHSs
+ prob_t base_lh;
+ SimpleBase logp0;
+ vector<vector<int> > samples; // sampled derivations
+ unsigned int mh_samples;
+ unsigned int mh_rejects;
+};
+
+template <typename Base>
+void ModelAndData<Base>::SampleCorpus(const string& hgpath, int n) {
+ vector<Hypergraph> hgs(n); hgs.clear();
+ boost::unordered_map<TRule, unsigned> acc;
+ map<int, unsigned> tot;
+ for (int i = 0; i < n; ++i) {
+ ostringstream os;
+ os << hgpath << '/' << i << ".json.gz";
+ if (!FileExists(os.str())) continue;
+ hgs.push_back(Hypergraph());
+ ReadFile rf(os.str());
+ HypergraphIO::ReadFromJSON(rf.stream(), &hgs.back());
+ }
+ cerr << "Read " << hgs.size() << " alignment hypergraphs.\n";
+ samples.resize(hgs.size());
+ const unsigned SAMPLES = 2000;
+ const unsigned burnin = 3 * SAMPLES / 4;
+ const unsigned every = 20;
+ for (unsigned s = 0; s < SAMPLES; ++s) {
+ if (s % 10 == 0) {
+ if (s > 0) { cerr << endl; ResampleHyperparameters(); }
+ cerr << "[" << s << " LLH=" << log(Likelihood()) << " REJECTS=" << ((double)mh_rejects / mh_samples) << " LHS's=" << rules.size() << " base=" << log(base_lh) << "] ";
+ }
+ cerr << '.';
+ for (unsigned i = 0; i < hgs.size(); ++i) {
+ ResampleDerivation(hgs[i], &samples[i]);
+ if (s > burnin && s % every == 0) {
+ for (unsigned j = 0; j < samples[i].size(); ++j) {
+ const TRule& rule = *hgs[i].edges_[samples[i][j]].rule_;
+ ++acc[rule];
+ ++tot[rule.lhs_];
+ }
+ }
+ }
+ }
+ cerr << endl;
+ for (boost::unordered_map<TRule,unsigned>::iterator it = acc.begin(); it != acc.end(); ++it) {
+ cout << it->first << " MyProb=" << log(it->second)-log(tot[it->first.lhs_]) << endl;
+ }
+}
+
+template <typename Base>
+void ModelAndData<Base>::ResampleDerivation(const Hypergraph& hg, vector<int>* sampled_deriv) {
+ vector<int> cur;
+ cur.swap(*sampled_deriv);
+
+ const prob_t p_cur = Likelihood();
+ DecrementDerivation(hg, cur);
+ if (cur.empty()) {
+ // first iteration, create restaurants
+ for (int i = 0; i < hg.edges_.size(); ++i)
+ RuleCRP(hg.edges_[i].rule_->lhs_);
+ }
+ MHSamplerEdgeProb<SimpleBase> wf(hg, rules, logp0, cur.empty());
+// MHSamplerEdgeProb<SimpleBase> wf(hg, rules, logp0, false);
+ const prob_t q_cur = wf.DerivationProb(cur);
+ vector<prob_t> node_probs;
+ Inside<prob_t, MHSamplerEdgeProb<SimpleBase> >(hg, &node_probs, wf);
+ queue<unsigned> q;
+ q.push(hg.nodes_.size() - 3);
+ while(!q.empty()) {
+ unsigned cur_node_id = q.front();
+// cerr << "NODE=" << cur_node_id << endl;
+ q.pop();
+ const Hypergraph::Node& node = hg.nodes_[cur_node_id];
+ const unsigned num_in_edges = node.in_edges_.size();
+ unsigned sampled_edge = 0;
+ if (num_in_edges == 1) {
+ sampled_edge = node.in_edges_[0];
+ } else {
+ prob_t z;
+ assert(num_in_edges > 1);
+ SampleSet<prob_t> ss;
+ for (unsigned j = 0; j < num_in_edges; ++j) {
+ const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
+ prob_t p = wf.edge_probs[edge.id_]; // edge proposal prob
+ for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k)
+ p *= node_probs[edge.tail_nodes_[k]];
+ ss.add(p);
+// cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl;
+ z += p;
+ }
+// for (unsigned j = 0; j < num_in_edges; ++j) {
+// const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
+// cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl;
+// }
+// cerr << " --- \n";
+ sampled_edge = node.in_edges_[rng->SelectSample(ss)];
+ }
+ sampled_deriv->push_back(sampled_edge);
+ const Hypergraph::Edge& edge = hg.edges_[sampled_edge];
+ for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) {
+ q.push(edge.tail_nodes_[j]);
+ }
+ }
+ IncrementDerivation(hg, *sampled_deriv);
+
+// cerr << "sampled derivation contains " << sampled_deriv->size() << " edges\n";
+// cerr << "DERIV:\n";
+// for (int i = 0; i < sampled_deriv->size(); ++i) {
+// cerr << " " << hg.edges_[(*sampled_deriv)[i]].rule_->AsString() << endl;
+// }
+
+ if (cur.empty()) return; // accept first sample
+
+ ++mh_samples;
+ // only need to do MH if proposal is different to current state
+ if (cur != *sampled_deriv) {
+ const prob_t q_prop = wf.DerivationProb(*sampled_deriv);
+ const prob_t p_prop = Likelihood();
+ if (!rng->AcceptMetropolisHastings(p_prop, p_cur, q_prop, q_cur)) {
+ ++mh_rejects;
+ DecrementDerivation(hg, *sampled_deriv);
+ IncrementDerivation(hg, cur);
+ swap(cur, *sampled_deriv);
+ }
+ }
+}
+
+int main(int argc, char** argv) {
+ rng = new MT19937;
+ ModelAndData<SimpleBase> m;
+ m.SampleCorpus("./hgs", 50);
+ // m.SampleCorpus("./btec/hgs", 5000);
+ return 0;
+}
+
diff --git a/gi/pf/cfg_wfst_composer.cc b/gi/pf/cfg_wfst_composer.cc
new file mode 100644
index 00000000..a31b5be8
--- /dev/null
+++ b/gi/pf/cfg_wfst_composer.cc
@@ -0,0 +1,730 @@
+#include "cfg_wfst_composer.h"
+
+#include <iostream>
+#include <fstream>
+#include <map>
+#include <queue>
+#include <tr1/unordered_set>
+
+#include <boost/shared_ptr.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+#include "fast_lexical_cast.hpp"
+
+#include "phrasetable_fst.h"
+#include "sparse_vector.h"
+#include "tdict.h"
+#include "hg.h"
+
+using boost::shared_ptr;
+namespace po = boost::program_options;
+using namespace std;
+using namespace std::tr1;
+
+WFSTNode::~WFSTNode() {}
+WFST::~WFST() {}
+
+// Define the following macro if you want to see lots of debugging output
+// when you run the chart parser
+#undef DEBUG_CHART_PARSER
+
+// A few constants used by the chart parser ///////////////
+static const int kMAX_NODES = 2000000;
+static const string kPHRASE_STRING = "X";
+static bool constants_need_init = true;
+static WordID kUNIQUE_START;
+static WordID kPHRASE;
+static TRulePtr kX1X2;
+static TRulePtr kX1;
+static WordID kEPS;
+static TRulePtr kEPSRule;
+
+static void InitializeConstants() {
+ if (constants_need_init) {
+ kPHRASE = TD::Convert(kPHRASE_STRING) * -1;
+ kUNIQUE_START = TD::Convert("S") * -1;
+ kX1X2.reset(new TRule("[X] ||| [X,1] [X,2] ||| [X,1] [X,2]"));
+ kX1.reset(new TRule("[X] ||| [X,1] ||| [X,1]"));
+ kEPSRule.reset(new TRule("[X] ||| <eps> ||| <eps>"));
+ kEPS = TD::Convert("<eps>");
+ constants_need_init = false;
+ }
+}
+////////////////////////////////////////////////////////////
+
+class EGrammarNode {
+ friend bool CFG_WFSTComposer::Compose(const Hypergraph& src_forest, Hypergraph* trg_forest);
+ friend void AddGrammarRule(const string& r, map<WordID, EGrammarNode>* g);
+ public:
+#ifdef DEBUG_CHART_PARSER
+ string hint;
+#endif
+ EGrammarNode() : is_some_rule_complete(false), is_root(false) {}
+ const map<WordID, EGrammarNode>& GetTerminals() const { return tptr; }
+ const map<WordID, EGrammarNode>& GetNonTerminals() const { return ntptr; }
+ bool HasNonTerminals() const { return (!ntptr.empty()); }
+ bool HasTerminals() const { return (!tptr.empty()); }
+ bool RuleCompletes() const {
+ return (is_some_rule_complete || (ntptr.empty() && tptr.empty()));
+ }
+ bool GrammarContinues() const {
+ return !(ntptr.empty() && tptr.empty());
+ }
+ bool IsRoot() const {
+ return is_root;
+ }
+ // these are the features associated with the rule from the start
+ // node up to this point. If you use these features, you must
+ // not Extend() this rule.
+ const SparseVector<double>& GetCFGProductionFeatures() const {
+ return input_features;
+ }
+
+ const EGrammarNode* Extend(const WordID& t) const {
+ if (t < 0) {
+ map<WordID, EGrammarNode>::const_iterator it = ntptr.find(t);
+ if (it == ntptr.end()) return NULL;
+ return &it->second;
+ } else {
+ map<WordID, EGrammarNode>::const_iterator it = tptr.find(t);
+ if (it == tptr.end()) return NULL;
+ return &it->second;
+ }
+ }
+
+ private:
+ map<WordID, EGrammarNode> tptr;
+ map<WordID, EGrammarNode> ntptr;
+ SparseVector<double> input_features;
+ bool is_some_rule_complete;
+ bool is_root;
+};
+typedef map<WordID, EGrammarNode> EGrammar; // indexed by the rule LHS
+
+// edges are immutable once created
+struct Edge {
+#ifdef DEBUG_CHART_PARSER
+ static int id_count;
+ const int id;
+#endif
+ const WordID cat; // lhs side of rule proved/being proved
+ const EGrammarNode* const dot; // dot position
+ const WFSTNode* const q; // start of span
+ const WFSTNode* const r; // end of span
+ const Edge* const active_parent; // back pointer, NULL for PREDICT items
+ const Edge* const passive_parent; // back pointer, NULL for SCAN and PREDICT items
+ TRulePtr tps; // translations
+ shared_ptr<SparseVector<double> > features; // features from CFG rule
+
+ bool IsPassive() const {
+ // when a rule is completed, this value will be set
+ return static_cast<bool>(features);
+ }
+ bool IsActive() const { return !IsPassive(); }
+ bool IsInitial() const {
+ return !(active_parent || passive_parent);
+ }
+ bool IsCreatedByScan() const {
+ return active_parent && !passive_parent && !dot->IsRoot();
+ }
+ bool IsCreatedByPredict() const {
+ return dot->IsRoot();
+ }
+ bool IsCreatedByComplete() const {
+ return active_parent && passive_parent;
+ }
+
+ // constructor for PREDICT
+ Edge(WordID c, const EGrammarNode* d, const WFSTNode* q_and_r) :
+#ifdef DEBUG_CHART_PARSER
+ id(++id_count),
+#endif
+ cat(c), dot(d), q(q_and_r), r(q_and_r), active_parent(NULL), passive_parent(NULL), tps() {}
+ Edge(WordID c, const EGrammarNode* d, const WFSTNode* q_and_r, const Edge* act_parent) :
+#ifdef DEBUG_CHART_PARSER
+ id(++id_count),
+#endif
+ cat(c), dot(d), q(q_and_r), r(q_and_r), active_parent(act_parent), passive_parent(NULL), tps() {}
+
+ // constructors for SCAN
+ Edge(WordID c, const EGrammarNode* d, const WFSTNode* i, const WFSTNode* j,
+ const Edge* act_par, const TRulePtr& translations) :
+#ifdef DEBUG_CHART_PARSER
+ id(++id_count),
+#endif
+ cat(c), dot(d), q(i), r(j), active_parent(act_par), passive_parent(NULL), tps(translations) {}
+
+ Edge(WordID c, const EGrammarNode* d, const WFSTNode* i, const WFSTNode* j,
+ const Edge* act_par, const TRulePtr& translations,
+ const SparseVector<double>& feats) :
+#ifdef DEBUG_CHART_PARSER
+ id(++id_count),
+#endif
+ cat(c), dot(d), q(i), r(j), active_parent(act_par), passive_parent(NULL), tps(translations),
+ features(new SparseVector<double>(feats)) {}
+
+ // constructors for COMPLETE
+ Edge(WordID c, const EGrammarNode* d, const WFSTNode* i, const WFSTNode* j,
+ const Edge* act_par, const Edge *pas_par) :
+#ifdef DEBUG_CHART_PARSER
+ id(++id_count),
+#endif
+ cat(c), dot(d), q(i), r(j), active_parent(act_par), passive_parent(pas_par), tps() {
+ assert(pas_par->IsPassive());
+ assert(act_par->IsActive());
+ }
+
+ Edge(WordID c, const EGrammarNode* d, const WFSTNode* i, const WFSTNode* j,
+ const Edge* act_par, const Edge *pas_par, const SparseVector<double>& feats) :
+#ifdef DEBUG_CHART_PARSER
+ id(++id_count),
+#endif
+ cat(c), dot(d), q(i), r(j), active_parent(act_par), passive_parent(pas_par), tps(),
+ features(new SparseVector<double>(feats)) {
+ assert(pas_par->IsPassive());
+ assert(act_par->IsActive());
+ }
+
+ // constructor for COMPLETE query
+ Edge(const WFSTNode* _r) :
+#ifdef DEBUG_CHART_PARSER
+ id(0),
+#endif
+ cat(0), dot(NULL), q(NULL),
+ r(_r), active_parent(NULL), passive_parent(NULL), tps() {}
+ // constructor for MERGE quere
+ Edge(const WFSTNode* _q, int) :
+#ifdef DEBUG_CHART_PARSER
+ id(0),
+#endif
+ cat(0), dot(NULL), q(_q),
+ r(NULL), active_parent(NULL), passive_parent(NULL), tps() {}
+};
+#ifdef DEBUG_CHART_PARSER
+int Edge::id_count = 0;
+#endif
+
+ostream& operator<<(ostream& os, const Edge& e) {
+ string type = "PREDICT";
+ if (e.IsCreatedByScan())
+ type = "SCAN";
+ else if (e.IsCreatedByComplete())
+ type = "COMPLETE";
+ os << "["
+#ifdef DEBUG_CHART_PARSER
+ << '(' << e.id << ") "
+#else
+ << '(' << &e << ") "
+#endif
+ << "q=" << e.q << ", r=" << e.r
+ << ", cat="<< TD::Convert(e.cat*-1) << ", dot="
+ << e.dot
+#ifdef DEBUG_CHART_PARSER
+ << e.dot->hint
+#endif
+ << (e.IsActive() ? ", Active" : ", Passive")
+ << ", " << type;
+#ifdef DEBUG_CHART_PARSER
+ if (e.active_parent) { os << ", act.parent=(" << e.active_parent->id << ')'; }
+ if (e.passive_parent) { os << ", psv.parent=(" << e.passive_parent->id << ')'; }
+#endif
+ if (e.tps) { os << ", tps=" << e.tps->AsString(); }
+ return os << ']';
+}
+
+struct Traversal {
+ const Edge* const edge; // result from the active / passive combination
+ const Edge* const active;
+ const Edge* const passive;
+ Traversal(const Edge* me, const Edge* a, const Edge* p) : edge(me), active(a), passive(p) {}
+};
+
+struct UniqueTraversalHash {
+ size_t operator()(const Traversal* t) const {
+ size_t x = 5381;
+ x = ((x << 5) + x) ^ reinterpret_cast<size_t>(t->active);
+ x = ((x << 5) + x) ^ reinterpret_cast<size_t>(t->passive);
+ x = ((x << 5) + x) ^ t->edge->IsActive();
+ return x;
+ }
+};
+
+struct UniqueTraversalEquals {
+ size_t operator()(const Traversal* a, const Traversal* b) const {
+ return (a->passive == b->passive && a->active == b->active && a->edge->IsActive() == b->edge->IsActive());
+ }
+};
+
+struct UniqueEdgeHash {
+ size_t operator()(const Edge* e) const {
+ size_t x = 5381;
+ if (e->IsActive()) {
+ x = ((x << 5) + x) ^ reinterpret_cast<size_t>(e->dot);
+ x = ((x << 5) + x) ^ reinterpret_cast<size_t>(e->q);
+ x = ((x << 5) + x) ^ reinterpret_cast<size_t>(e->r);
+ x = ((x << 5) + x) ^ static_cast<size_t>(e->cat);
+ x += 13;
+ } else { // with passive edges, we don't care about the dot
+ x = ((x << 5) + x) ^ reinterpret_cast<size_t>(e->q);
+ x = ((x << 5) + x) ^ reinterpret_cast<size_t>(e->r);
+ x = ((x << 5) + x) ^ static_cast<size_t>(e->cat);
+ }
+ return x;
+ }
+};
+
+struct UniqueEdgeEquals {
+ bool operator()(const Edge* a, const Edge* b) const {
+ if (a->IsActive() != b->IsActive()) return false;
+ if (a->IsActive()) {
+ return (a->cat == b->cat) && (a->dot == b->dot) && (a->q == b->q) && (a->r == b->r);
+ } else {
+ return (a->cat == b->cat) && (a->q == b->q) && (a->r == b->r);
+ }
+ }
+};
+
+struct REdgeHash {
+ size_t operator()(const Edge* e) const {
+ size_t x = 5381;
+ x = ((x << 5) + x) ^ reinterpret_cast<size_t>(e->r);
+ return x;
+ }
+};
+
+struct REdgeEquals {
+ bool operator()(const Edge* a, const Edge* b) const {
+ return (a->r == b->r);
+ }
+};
+
+struct QEdgeHash {
+ size_t operator()(const Edge* e) const {
+ size_t x = 5381;
+ x = ((x << 5) + x) ^ reinterpret_cast<size_t>(e->q);
+ return x;
+ }
+};
+
+struct QEdgeEquals {
+ bool operator()(const Edge* a, const Edge* b) const {
+ return (a->q == b->q);
+ }
+};
+
+struct EdgeQueue {
+ queue<const Edge*> q;
+ EdgeQueue() {}
+ void clear() { while(!q.empty()) q.pop(); }
+ bool HasWork() const { return !q.empty(); }
+ const Edge* Next() { const Edge* res = q.front(); q.pop(); return res; }
+ void AddEdge(const Edge* s) { q.push(s); }
+};
+
+class CFG_WFSTComposerImpl {
+ public:
+ CFG_WFSTComposerImpl(WordID start_cat,
+ const WFSTNode* q_0,
+ const WFSTNode* q_final) : start_cat_(start_cat), q_0_(q_0), q_final_(q_final) {}
+
+ // returns false if the intersection is empty
+ bool Compose(const EGrammar& g, Hypergraph* forest) {
+ goal_node = NULL;
+ EGrammar::const_iterator sit = g.find(start_cat_);
+ forest->ReserveNodes(kMAX_NODES);
+ assert(sit != g.end());
+ Edge* init = new Edge(start_cat_, &sit->second, q_0_);
+ assert(IncorporateNewEdge(init));
+ while (exp_agenda.HasWork() || agenda.HasWork()) {
+ while(exp_agenda.HasWork()) {
+ const Edge* edge = exp_agenda.Next();
+ FinishEdge(edge, forest);
+ }
+ if (agenda.HasWork()) {
+ const Edge* edge = agenda.Next();
+#ifdef DEBUG_CHART_PARSER
+ cerr << "processing (" << edge->id << ')' << endl;
+#endif
+ if (edge->IsActive()) {
+ if (edge->dot->HasTerminals())
+ DoScan(edge);
+ if (edge->dot->HasNonTerminals()) {
+ DoMergeWithPassives(edge);
+ DoPredict(edge, g);
+ }
+ } else {
+ DoComplete(edge);
+ }
+ }
+ }
+ if (goal_node) {
+ forest->PruneUnreachable(goal_node->id_);
+ forest->EpsilonRemove(kEPS);
+ }
+ FreeAll();
+ return goal_node;
+ }
+
+ void FreeAll() {
+ for (int i = 0; i < free_list_.size(); ++i)
+ delete free_list_[i];
+ free_list_.clear();
+ for (int i = 0; i < traversal_free_list_.size(); ++i)
+ delete traversal_free_list_[i];
+ traversal_free_list_.clear();
+ all_traversals.clear();
+ exp_agenda.clear();
+ agenda.clear();
+ tps2node.clear();
+ edge2node.clear();
+ all_edges.clear();
+ passive_edges.clear();
+ active_edges.clear();
+ }
+
+ ~CFG_WFSTComposerImpl() {
+ FreeAll();
+ }
+
+ // returns the total number of edges created during composition
+ int EdgesCreated() const {
+ return free_list_.size();
+ }
+
+ private:
+ void DoScan(const Edge* edge) {
+ // here, we assume that the FST will potentially have many more outgoing
+ // edges than the grammar, which will be just a couple. If you want to
+ // efficiently handle the case where both are relatively large, this code
+ // will need to change how the intersection is done. The best general
+ // solution would probably be the Baeza-Yates double binary search.
+
+ const EGrammarNode* dot = edge->dot;
+ const WFSTNode* r = edge->r;
+ const map<WordID, EGrammarNode>& terms = dot->GetTerminals();
+ for (map<WordID, EGrammarNode>::const_iterator git = terms.begin();
+ git != terms.end(); ++git) {
+
+ if (!(TD::Convert(git->first)[0] >= '0' && TD::Convert(git->first)[0] <= '9')) {
+ std::cerr << "TERMINAL SYMBOL: " << TD::Convert(git->first) << endl;
+ abort();
+ }
+ std::vector<std::pair<const WFSTNode*, TRulePtr> > extensions = r->ExtendInput(atoi(TD::Convert(git->first)));
+ for (unsigned nsi = 0; nsi < extensions.size(); ++nsi) {
+ const WFSTNode* next_r = extensions[nsi].first;
+ const EGrammarNode* next_dot = &git->second;
+ const bool grammar_continues = next_dot->GrammarContinues();
+ const bool rule_completes = next_dot->RuleCompletes();
+ if (extensions[nsi].second)
+ cerr << "!!! " << extensions[nsi].second->AsString() << endl;
+ // cerr << " rule completes: " << rule_completes << " after consuming " << TD::Convert(git->first) << endl;
+ assert(grammar_continues || rule_completes);
+ const SparseVector<double>& input_features = next_dot->GetCFGProductionFeatures();
+ if (rule_completes)
+ IncorporateNewEdge(new Edge(edge->cat, next_dot, edge->q, next_r, edge, extensions[nsi].second, input_features));
+ if (grammar_continues)
+ IncorporateNewEdge(new Edge(edge->cat, next_dot, edge->q, next_r, edge, extensions[nsi].second));
+ }
+ }
+ }
+
+ void DoPredict(const Edge* edge, const EGrammar& g) {
+ const EGrammarNode* dot = edge->dot;
+ const map<WordID, EGrammarNode>& non_terms = dot->GetNonTerminals();
+ for (map<WordID, EGrammarNode>::const_iterator git = non_terms.begin();
+ git != non_terms.end(); ++git) {
+ const WordID nt_to_predict = git->first;
+ //cerr << edge->id << " -- " << TD::Convert(nt_to_predict*-1) << endl;
+ EGrammar::const_iterator egi = g.find(nt_to_predict);
+ if (egi == g.end()) {
+ cerr << "[ERROR] Can't find any grammar rules with a LHS of type "
+ << TD::Convert(-1*nt_to_predict) << '!' << endl;
+ continue;
+ }
+ assert(edge->IsActive());
+ const EGrammarNode* new_dot = &egi->second;
+ Edge* new_edge = new Edge(nt_to_predict, new_dot, edge->r, edge);
+ IncorporateNewEdge(new_edge);
+ }
+ }
+
+ void DoComplete(const Edge* passive) {
+#ifdef DEBUG_CHART_PARSER
+ cerr << " complete: " << *passive << endl;
+#endif
+ const WordID completed_nt = passive->cat;
+ const WFSTNode* q = passive->q;
+ const WFSTNode* next_r = passive->r;
+ const Edge query(q);
+ const pair<unordered_multiset<const Edge*, REdgeHash, REdgeEquals>::iterator,
+ unordered_multiset<const Edge*, REdgeHash, REdgeEquals>::iterator > p =
+ active_edges.equal_range(&query);
+ for (unordered_multiset<const Edge*, REdgeHash, REdgeEquals>::iterator it = p.first;
+ it != p.second; ++it) {
+ const Edge* active = *it;
+#ifdef DEBUG_CHART_PARSER
+ cerr << " pos: " << *active << endl;
+#endif
+ const EGrammarNode* next_dot = active->dot->Extend(completed_nt);
+ if (!next_dot) continue;
+ const SparseVector<double>& input_features = next_dot->GetCFGProductionFeatures();
+ // add up to 2 rules
+ if (next_dot->RuleCompletes())
+ IncorporateNewEdge(new Edge(active->cat, next_dot, active->q, next_r, active, passive, input_features));
+ if (next_dot->GrammarContinues())
+ IncorporateNewEdge(new Edge(active->cat, next_dot, active->q, next_r, active, passive));
+ }
+ }
+
+ void DoMergeWithPassives(const Edge* active) {
+ // edge is active, has non-terminals, we need to find the passives that can extend it
+ assert(active->IsActive());
+ assert(active->dot->HasNonTerminals());
+#ifdef DEBUG_CHART_PARSER
+ cerr << " merge active with passives: ACT=" << *active << endl;
+#endif
+ const Edge query(active->r, 1);
+ const pair<unordered_multiset<const Edge*, QEdgeHash, QEdgeEquals>::iterator,
+ unordered_multiset<const Edge*, QEdgeHash, QEdgeEquals>::iterator > p =
+ passive_edges.equal_range(&query);
+ for (unordered_multiset<const Edge*, QEdgeHash, QEdgeEquals>::iterator it = p.first;
+ it != p.second; ++it) {
+ const Edge* passive = *it;
+ const EGrammarNode* next_dot = active->dot->Extend(passive->cat);
+ if (!next_dot) continue;
+ const WFSTNode* next_r = passive->r;
+ const SparseVector<double>& input_features = next_dot->GetCFGProductionFeatures();
+ if (next_dot->RuleCompletes())
+ IncorporateNewEdge(new Edge(active->cat, next_dot, active->q, next_r, active, passive, input_features));
+ if (next_dot->GrammarContinues())
+ IncorporateNewEdge(new Edge(active->cat, next_dot, active->q, next_r, active, passive));
+ }
+ }
+
+ // take ownership of edge memory, add to various indexes, etc
+ // returns true if this edge is new
+ bool IncorporateNewEdge(Edge* edge) {
+ free_list_.push_back(edge);
+ if (edge->passive_parent && edge->active_parent) {
+ Traversal* t = new Traversal(edge, edge->active_parent, edge->passive_parent);
+ traversal_free_list_.push_back(t);
+ if (all_traversals.find(t) != all_traversals.end()) {
+ return false;
+ } else {
+ all_traversals.insert(t);
+ }
+ }
+ exp_agenda.AddEdge(edge);
+ return true;
+ }
+
+ bool FinishEdge(const Edge* edge, Hypergraph* hg) {
+ bool is_new = false;
+ if (all_edges.find(edge) == all_edges.end()) {
+#ifdef DEBUG_CHART_PARSER
+ cerr << *edge << " is NEW\n";
+#endif
+ all_edges.insert(edge);
+ is_new = true;
+ if (edge->IsPassive()) passive_edges.insert(edge);
+ if (edge->IsActive()) active_edges.insert(edge);
+ agenda.AddEdge(edge);
+ } else {
+#ifdef DEBUG_CHART_PARSER
+ cerr << *edge << " is NOT NEW.\n";
+#endif
+ }
+ AddEdgeToTranslationForest(edge, hg);
+ return is_new;
+ }
+
+ // build the translation forest
+ void AddEdgeToTranslationForest(const Edge* edge, Hypergraph* hg) {
+ assert(hg->nodes_.size() < kMAX_NODES);
+ Hypergraph::Node* tps = NULL;
+ // first add any target language rules
+ if (edge->tps) {
+ Hypergraph::Node*& node = tps2node[(size_t)edge->tps.get()];
+ if (!node) {
+ // cerr << "Creating phrases for " << edge->tps << endl;
+ const TRulePtr& rule = edge->tps;
+ node = hg->AddNode(kPHRASE);
+ Hypergraph::Edge* hg_edge = hg->AddEdge(rule, Hypergraph::TailNodeVector());
+ hg_edge->feature_values_ += rule->GetFeatureValues();
+ hg->ConnectEdgeToHeadNode(hg_edge, node);
+ }
+ tps = node;
+ }
+ Hypergraph::Node*& head_node = edge2node[edge];
+ if (!head_node)
+ head_node = hg->AddNode(kPHRASE);
+ if (edge->cat == start_cat_ && edge->q == q_0_ && edge->r == q_final_ && edge->IsPassive()) {
+ assert(goal_node == NULL || goal_node == head_node);
+ goal_node = head_node;
+ }
+ Hypergraph::TailNodeVector tail;
+ SparseVector<double> extra;
+ if (edge->IsCreatedByPredict()) {
+ // extra.set_value(FD::Convert("predict"), 1);
+ } else if (edge->IsCreatedByScan()) {
+ tail.push_back(edge2node[edge->active_parent]->id_);
+ if (tps) {
+ tail.push_back(tps->id_);
+ }
+ //extra.set_value(FD::Convert("scan"), 1);
+ } else if (edge->IsCreatedByComplete()) {
+ tail.push_back(edge2node[edge->active_parent]->id_);
+ tail.push_back(edge2node[edge->passive_parent]->id_);
+ //extra.set_value(FD::Convert("complete"), 1);
+ } else {
+ assert(!"unexpected edge type!");
+ }
+ //cerr << head_node->id_ << "<--" << *edge << endl;
+
+#ifdef DEBUG_CHART_PARSER
+ for (int i = 0; i < tail.size(); ++i)
+ if (tail[i] == head_node->id_) {
+ cerr << "ERROR: " << *edge << "\n i=" << i << endl;
+ if (i == 1) { cerr << "\tP: " << *edge->passive_parent << endl; }
+ if (i == 0) { cerr << "\tA: " << *edge->active_parent << endl; }
+ assert(!"self-loop found!");
+ }
+#endif
+ Hypergraph::Edge* hg_edge = NULL;
+ if (tail.size() == 0) {
+ hg_edge = hg->AddEdge(kEPSRule, tail);
+ } else if (tail.size() == 1) {
+ hg_edge = hg->AddEdge(kX1, tail);
+ } else if (tail.size() == 2) {
+ hg_edge = hg->AddEdge(kX1X2, tail);
+ }
+ if (edge->features)
+ hg_edge->feature_values_ += *edge->features;
+ hg_edge->feature_values_ += extra;
+ hg->ConnectEdgeToHeadNode(hg_edge, head_node);
+ }
+
+ Hypergraph::Node* goal_node;
+ EdgeQueue exp_agenda;
+ EdgeQueue agenda;
+ unordered_map<size_t, Hypergraph::Node*> tps2node;
+ unordered_map<const Edge*, Hypergraph::Node*, UniqueEdgeHash, UniqueEdgeEquals> edge2node;
+ unordered_set<const Traversal*, UniqueTraversalHash, UniqueTraversalEquals> all_traversals;
+ unordered_set<const Edge*, UniqueEdgeHash, UniqueEdgeEquals> all_edges;
+ unordered_multiset<const Edge*, QEdgeHash, QEdgeEquals> passive_edges;
+ unordered_multiset<const Edge*, REdgeHash, REdgeEquals> active_edges;
+ vector<Edge*> free_list_;
+ vector<Traversal*> traversal_free_list_;
+ const WordID start_cat_;
+ const WFSTNode* const q_0_;
+ const WFSTNode* const q_final_;
+};
+
+#ifdef DEBUG_CHART_PARSER
+static string TrimRule(const string& r) {
+ size_t start = r.find(" |||") + 5;
+ size_t end = r.rfind(" |||");
+ return r.substr(start, end - start);
+}
+#endif
+
+void AddGrammarRule(const string& r, EGrammar* g) {
+ const size_t pos = r.find(" ||| ");
+ if (pos == string::npos || r[0] != '[') {
+ cerr << "Bad rule: " << r << endl;
+ return;
+ }
+ const size_t rpos = r.rfind(" ||| ");
+ string feats;
+ string rs = r;
+ if (rpos != pos) {
+ feats = r.substr(rpos + 5);
+ rs = r.substr(0, rpos);
+ }
+ string rhs = rs.substr(pos + 5);
+ string trule = rs + " ||| " + rhs + " ||| " + feats;
+ TRule tr(trule);
+ cerr << "X: " << tr.e_[0] << endl;
+#ifdef DEBUG_CHART_PARSER
+ string hint_last_rule;
+#endif
+ EGrammarNode* cur = &(*g)[tr.GetLHS()];
+ cur->is_root = true;
+ for (int i = 0; i < tr.FLength(); ++i) {
+ WordID sym = tr.f()[i];
+#ifdef DEBUG_CHART_PARSER
+ hint_last_rule = TD::Convert(sym < 0 ? -sym : sym);
+ cur->hint += " <@@> (*" + hint_last_rule + ") " + TrimRule(tr.AsString());
+#endif
+ if (sym < 0)
+ cur = &cur->ntptr[sym];
+ else
+ cur = &cur->tptr[sym];
+ }
+#ifdef DEBUG_CHART_PARSER
+ cur->hint += " <@@> (" + hint_last_rule + "*) " + TrimRule(tr.AsString());
+#endif
+ cur->is_some_rule_complete = true;
+ cur->input_features = tr.GetFeatureValues();
+}
+
+CFG_WFSTComposer::~CFG_WFSTComposer() {
+ delete pimpl_;
+}
+
+CFG_WFSTComposer::CFG_WFSTComposer(const WFST& wfst) {
+ InitializeConstants();
+ pimpl_ = new CFG_WFSTComposerImpl(kUNIQUE_START, wfst.Initial(), wfst.Final());
+}
+
+bool CFG_WFSTComposer::Compose(const Hypergraph& src_forest, Hypergraph* trg_forest) {
+ // first, convert the src forest into an EGrammar
+ EGrammar g;
+ const int nedges = src_forest.edges_.size();
+ const int nnodes = src_forest.nodes_.size();
+ vector<int> cats(nnodes);
+ bool assign_cats = false;
+ for (int i = 0; i < nnodes; ++i)
+ if (assign_cats) {
+ cats[i] = TD::Convert("CAT_" + boost::lexical_cast<string>(i)) * -1;
+ } else {
+ cats[i] = src_forest.nodes_[i].cat_;
+ }
+ // construct the grammar
+ for (int i = 0; i < nedges; ++i) {
+ const Hypergraph::Edge& edge = src_forest.edges_[i];
+ const vector<WordID>& src = edge.rule_->f();
+ EGrammarNode* cur = &g[cats[edge.head_node_]];
+ cur->is_root = true;
+ int ntc = 0;
+ for (int j = 0; j < src.size(); ++j) {
+ WordID sym = src[j];
+ if (sym <= 0) {
+ sym = cats[edge.tail_nodes_[ntc]];
+ ++ntc;
+ cur = &cur->ntptr[sym];
+ } else {
+ cur = &cur->tptr[sym];
+ }
+ }
+ cur->is_some_rule_complete = true;
+ cur->input_features = edge.feature_values_;
+ }
+ EGrammarNode& goal_rule = g[kUNIQUE_START];
+ assert((goal_rule.ntptr.size() == 1 && goal_rule.tptr.size() == 0) ||
+ (goal_rule.ntptr.size() == 0 && goal_rule.tptr.size() == 1));
+
+ return pimpl_->Compose(g, trg_forest);
+}
+
+bool CFG_WFSTComposer::Compose(istream* in, Hypergraph* trg_forest) {
+ EGrammar g;
+ while(*in) {
+ string line;
+ getline(*in, line);
+ if (line.empty()) continue;
+ AddGrammarRule(line, &g);
+ }
+
+ return pimpl_->Compose(g, trg_forest);
+}
diff --git a/gi/pf/cfg_wfst_composer.h b/gi/pf/cfg_wfst_composer.h
new file mode 100644
index 00000000..cf47f459
--- /dev/null
+++ b/gi/pf/cfg_wfst_composer.h
@@ -0,0 +1,46 @@
+#ifndef _CFG_WFST_COMPOSER_H_
+#define _CFG_WFST_COMPOSER_H_
+
+#include <iostream>
+#include <vector>
+#include <utility>
+
+#include "trule.h"
+#include "wordid.h"
+
+class CFG_WFSTComposerImpl;
+class Hypergraph;
+
+struct WFSTNode {
+ virtual ~WFSTNode();
+ // returns the next states reachable by consuming srcindex (which identifies a word)
+ // paired with the output string generated by taking that transition.
+ virtual std::vector<std::pair<const WFSTNode*,TRulePtr> > ExtendInput(unsigned srcindex) const = 0;
+};
+
+struct WFST {
+ virtual ~WFST();
+ virtual const WFSTNode* Final() const = 0;
+ virtual const WFSTNode* Initial() const = 0;
+};
+
+class CFG_WFSTComposer {
+ public:
+ ~CFG_WFSTComposer();
+ explicit CFG_WFSTComposer(const WFST& wfst);
+ bool Compose(const Hypergraph& in_forest, Hypergraph* trg_forest);
+
+ // reads the grammar from a file. There must be a single top-level
+ // S -> X rule. Anything else is possible. Format is:
+ // [S] ||| [SS,1]
+ // [SS] ||| [NP,1] [VP,2] ||| Feature1=0.2 Feature2=-2.3
+ // [SS] ||| [VP,1] [NP,2] ||| Feature1=0.8
+ // [NP] ||| [DET,1] [N,2] ||| Feature3=2
+ // ...
+ bool Compose(std::istream* grammar_file, Hypergraph* trg_forest);
+
+ private:
+ CFG_WFSTComposerImpl* pimpl_;
+};
+
+#endif
diff --git a/gi/pf/corpus.cc b/gi/pf/corpus.cc
new file mode 100644
index 00000000..a408e7cf
--- /dev/null
+++ b/gi/pf/corpus.cc
@@ -0,0 +1,57 @@
+#include "corpus.h"
+
+#include <set>
+#include <vector>
+#include <string>
+
+#include "tdict.h"
+#include "filelib.h"
+
+using namespace std;
+
+namespace corpus {
+
+void ReadParallelCorpus(const string& filename,
+ vector<vector<WordID> >* f,
+ vector<vector<WordID> >* e,
+ set<WordID>* vocab_f,
+ set<WordID>* vocab_e) {
+ f->clear();
+ e->clear();
+ vocab_f->clear();
+ vocab_e->clear();
+ ReadFile rf(filename);
+ istream* in = rf.stream();
+ assert(*in);
+ string line;
+ const WordID kDIV = TD::Convert("|||");
+ vector<WordID> tmp;
+ while(*in) {
+ getline(*in, line);
+ if (line.empty() && !*in) break;
+ e->push_back(vector<int>());
+ f->push_back(vector<int>());
+ vector<int>& le = e->back();
+ vector<int>& lf = f->back();
+ tmp.clear();
+ TD::ConvertSentence(line, &tmp);
+ bool isf = true;
+ for (unsigned i = 0; i < tmp.size(); ++i) {
+ const int cur = tmp[i];
+ if (isf) {
+ if (kDIV == cur) { isf = false; } else {
+ lf.push_back(cur);
+ vocab_f->insert(cur);
+ }
+ } else {
+ assert(cur != kDIV);
+ le.push_back(cur);
+ vocab_e->insert(cur);
+ }
+ }
+ assert(isf == false);
+ }
+}
+
+}
+
diff --git a/gi/pf/corpus.h b/gi/pf/corpus.h
new file mode 100644
index 00000000..e7febdb7
--- /dev/null
+++ b/gi/pf/corpus.h
@@ -0,0 +1,19 @@
+#ifndef _CORPUS_H_
+#define _CORPUS_H_
+
+#include <string>
+#include <vector>
+#include <set>
+#include "wordid.h"
+
+namespace corpus {
+
+void ReadParallelCorpus(const std::string& filename,
+ std::vector<std::vector<WordID> >* f,
+ std::vector<std::vector<WordID> >* e,
+ std::set<WordID>* vocab_f,
+ std::set<WordID>* vocab_e);
+
+}
+
+#endif
diff --git a/gi/pf/dpnaive.cc b/gi/pf/dpnaive.cc
new file mode 100644
index 00000000..c926487b
--- /dev/null
+++ b/gi/pf/dpnaive.cc
@@ -0,0 +1,294 @@
+#include <iostream>
+#include <tr1/memory>
+#include <queue>
+
+#include <boost/multi_array.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "base_measures.h"
+#include "monotonic_pseg.h"
+#include "trule.h"
+#include "tdict.h"
+#include "filelib.h"
+#include "dict.h"
+#include "sampler.h"
+#include "ccrp_nt.h"
+#include "corpus.h"
+
+using namespace std;
+using namespace std::tr1;
+namespace po = boost::program_options;
+
+static unsigned kMAX_SRC_PHRASE;
+static unsigned kMAX_TRG_PHRASE;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
+ ("input,i",po::value<string>(),"Read parallel data from")
+ ("max_src_phrase",po::value<unsigned>()->default_value(4),"Maximum length of source language phrases")
+ ("max_trg_phrase",po::value<unsigned>()->default_value(4),"Maximum length of target language phrases")
+ ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
+ ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
+ ("random_seed,S",po::value<uint32_t>(), "Random seed");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || (conf->count("input") == 0)) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+shared_ptr<MT19937> prng;
+
+template <typename Base>
+struct ModelAndData {
+ explicit ModelAndData(MonotonicParallelSegementationModel& m, const Base& b, const vector<vector<int> >& ce, const vector<vector<int> >& cf, const set<int>& ve, const set<int>& vf) :
+ model(m),
+ rng(&*prng),
+ p0(b),
+ baseprob(prob_t::One()),
+ corpuse(ce),
+ corpusf(cf),
+ vocabe(ve),
+ vocabf(vf),
+ mh_samples(),
+ mh_rejects(),
+ kX(-TD::Convert("X")),
+ derivations(corpuse.size()) {}
+
+ void ResampleHyperparameters() {
+ }
+
+ void InstantiateRule(const pair<short,short>& from,
+ const pair<short,short>& to,
+ const vector<int>& sentf,
+ const vector<int>& sente,
+ TRule* rule) const {
+ rule->f_.clear();
+ rule->e_.clear();
+ rule->lhs_ = kX;
+ for (short i = from.first; i < to.first; ++i)
+ rule->f_.push_back(sentf[i]);
+ for (short i = from.second; i < to.second; ++i)
+ rule->e_.push_back(sente[i]);
+ }
+
+ void DecrementDerivation(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) {
+ if (d.size() < 2) return;
+ TRule x;
+ for (int i = 1; i < d.size(); ++i) {
+ InstantiateRule(d[i], d[i-1], sentf, sente, &x);
+ model.DecrementRule(x);
+ model.DecrementContinue();
+ }
+ model.DecrementStop();
+ }
+
+ void PrintDerivation(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) {
+ if (d.size() < 2) return;
+ TRule x;
+ for (int i = 1; i < d.size(); ++i) {
+ InstantiateRule(d[i], d[i-1], sentf, sente, &x);
+ cerr << i << '/' << (d.size() - 1) << ": " << x << endl;
+ }
+ }
+
+ void IncrementDerivation(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) {
+ if (d.size() < 2) return;
+ TRule x;
+ for (int i = 1; i < d.size(); ++i) {
+ InstantiateRule(d[i], d[i-1], sentf, sente, &x);
+ model.IncrementRule(x);
+ model.IncrementContinue();
+ }
+ model.IncrementStop();
+ }
+
+ prob_t Likelihood() const {
+ return model.Likelihood();
+ }
+
+ prob_t DerivationProposalProbability(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) const {
+ prob_t p = model.StopProbability();
+ if (d.size() < 2) return p;
+ TRule x;
+ const prob_t p_cont = model.ContinueProbability();
+ for (int i = 1; i < d.size(); ++i) {
+ InstantiateRule(d[i], d[i-1], sentf, sente, &x);
+ p *= p_cont;
+ p *= model.RuleProbability(x);
+ }
+ return p;
+ }
+
+ void Sample();
+
+ MonotonicParallelSegementationModel& model;
+ MT19937* rng;
+ const Base& p0;
+ prob_t baseprob; // cached value of generating the table table labels from p0
+ // this can't be used if we go to a hierarchical prior!
+ const vector<vector<int> >& corpuse, corpusf;
+ const set<int>& vocabe, vocabf;
+ unsigned mh_samples, mh_rejects;
+ const int kX;
+ vector<vector<pair<short, short> > > derivations;
+};
+
+template <typename Base>
+void ModelAndData<Base>::Sample() {
+ unsigned MAXK = kMAX_SRC_PHRASE;
+ unsigned MAXL = kMAX_TRG_PHRASE;
+ TRule x;
+ x.lhs_ = -TD::Convert("X");
+ for (int samples = 0; samples < 1000; ++samples) {
+ if (samples % 1 == 0 && samples > 0) {
+ //ResampleHyperparameters();
+ cerr << " [" << samples << " LLH=" << log(Likelihood()) << " MH=" << ((double)mh_rejects / mh_samples) << "]\n";
+ for (int i = 0; i < 10; ++i) {
+ cerr << "SENTENCE: " << TD::GetString(corpusf[i]) << " ||| " << TD::GetString(corpuse[i]) << endl;
+ PrintDerivation(derivations[i], corpusf[i], corpuse[i]);
+ }
+ }
+ cerr << '.' << flush;
+ for (int s = 0; s < corpuse.size(); ++s) {
+ const vector<int>& sentf = corpusf[s];
+ const vector<int>& sente = corpuse[s];
+// cerr << " CUSTOMERS: " << rules.num_customers() << endl;
+// cerr << "SENTENCE: " << TD::GetString(sentf) << " ||| " << TD::GetString(sente) << endl;
+
+ vector<pair<short, short> >& deriv = derivations[s];
+ const prob_t p_cur = Likelihood();
+ DecrementDerivation(deriv, sentf, sente);
+
+ boost::multi_array<prob_t, 2> a(boost::extents[sentf.size() + 1][sente.size() + 1]);
+ boost::multi_array<prob_t, 4> trans(boost::extents[sentf.size() + 1][sente.size() + 1][MAXK][MAXL]);
+ a[0][0] = prob_t::One();
+ const prob_t q_stop = model.StopProbability();
+ const prob_t q_cont = model.ContinueProbability();
+ for (int i = 0; i < sentf.size(); ++i) {
+ for (int j = 0; j < sente.size(); ++j) {
+ const prob_t src_a = a[i][j];
+ x.f_.clear();
+ for (int k = 1; k <= MAXK; ++k) {
+ if (i + k > sentf.size()) break;
+ x.f_.push_back(sentf[i + k - 1]);
+ x.e_.clear();
+ for (int l = 1; l <= MAXL; ++l) {
+ if (j + l > sente.size()) break;
+ x.e_.push_back(sente[j + l - 1]);
+ const bool stop_now = ((j + l) == sente.size()) && ((i + k) == sentf.size());
+ const prob_t& cp = stop_now ? q_stop : q_cont;
+ trans[i][j][k - 1][l - 1] = model.RuleProbability(x) * cp;
+ a[i + k][j + l] += src_a * trans[i][j][k - 1][l - 1];
+ }
+ }
+ }
+ }
+// cerr << "Inside: " << log(a[sentf.size()][sente.size()]) << endl;
+ const prob_t q_cur = DerivationProposalProbability(deriv, sentf, sente);
+
+ vector<pair<short,short> > newderiv;
+ int cur_i = sentf.size();
+ int cur_j = sente.size();
+ while(cur_i > 0 && cur_j > 0) {
+ newderiv.push_back(pair<short,short>(cur_i, cur_j));
+// cerr << "NODE: (" << cur_i << "," << cur_j << ")\n";
+ SampleSet<prob_t> ss;
+ vector<pair<short,short> > nexts;
+ for (int k = 1; k <= MAXK; ++k) {
+ const int hyp_i = cur_i - k;
+ if (hyp_i < 0) break;
+ for (int l = 1; l <= MAXL; ++l) {
+ const int hyp_j = cur_j - l;
+ if (hyp_j < 0) break;
+ const prob_t& inside = a[hyp_i][hyp_j];
+ if (inside == prob_t::Zero()) continue;
+ const prob_t& transp = trans[hyp_i][hyp_j][k - 1][l - 1];
+ if (transp == prob_t::Zero()) continue;
+ const prob_t p = inside * transp;
+ ss.add(p);
+ nexts.push_back(pair<short,short>(hyp_i, hyp_j));
+// cerr << " (" << hyp_i << "," << hyp_j << ") <--- " << log(p) << endl;
+ }
+ }
+// cerr << " sample set has " << nexts.size() << " elements.\n";
+ const int selected = rng->SelectSample(ss);
+ cur_i = nexts[selected].first;
+ cur_j = nexts[selected].second;
+ }
+ newderiv.push_back(pair<short,short>(0,0));
+ const prob_t q_new = DerivationProposalProbability(newderiv, sentf, sente);
+ IncrementDerivation(newderiv, sentf, sente);
+// cerr << "SANITY: " << q_new << " " <<log(DerivationProposalProbability(newderiv, sentf, sente)) << endl;
+ if (deriv.empty()) { deriv = newderiv; continue; }
+ ++mh_samples;
+
+ if (deriv != newderiv) {
+ const prob_t p_new = Likelihood();
+// cerr << "p_cur=" << log(p_cur) << "\t p_new=" << log(p_new) << endl;
+// cerr << "q_cur=" << log(q_cur) << "\t q_new=" << log(q_new) << endl;
+ if (!rng->AcceptMetropolisHastings(p_new, p_cur, q_new, q_cur)) {
+ ++mh_rejects;
+ DecrementDerivation(newderiv, sentf, sente);
+ IncrementDerivation(deriv, sentf, sente);
+ } else {
+// cerr << " ACCEPT\n";
+ deriv = newderiv;
+ }
+ }
+ }
+ }
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
+ kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
+
+ if (!conf.count("model1")) {
+ cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
+ return 1;
+ }
+ if (conf.count("random_seed"))
+ prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ prng.reset(new MT19937);
+// MT19937& rng = *prng;
+
+ vector<vector<int> > corpuse, corpusf;
+ set<int> vocabe, vocabf;
+ corpus::ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
+ cerr << "f-Corpus size: " << corpusf.size() << " sentences\n";
+ cerr << "f-Vocabulary size: " << vocabf.size() << " types\n";
+ cerr << "f-Corpus size: " << corpuse.size() << " sentences\n";
+ cerr << "f-Vocabulary size: " << vocabe.size() << " types\n";
+ assert(corpusf.size() == corpuse.size());
+
+ Model1 m1(conf["model1"].as<string>());
+ PhraseJointBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size());
+ MonotonicParallelSegementationModel m(lp0);
+
+ ModelAndData<PhraseJointBase> posterior(m, lp0, corpuse, corpusf, vocabe, vocabf);
+ posterior.Sample();
+
+ return 0;
+}
+
diff --git a/gi/pf/itg.cc b/gi/pf/itg.cc
new file mode 100644
index 00000000..ac3c16a3
--- /dev/null
+++ b/gi/pf/itg.cc
@@ -0,0 +1,213 @@
+#include <iostream>
+#include <tr1/memory>
+#include <queue>
+
+#include <boost/functional.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "viterbi.h"
+#include "hg.h"
+#include "trule.h"
+#include "tdict.h"
+#include "filelib.h"
+#include "dict.h"
+#include "sampler.h"
+#include "ccrp_nt.h"
+#include "ccrp_onetable.h"
+
+using namespace std;
+using namespace tr1;
+namespace po = boost::program_options;
+
+ostream& operator<<(ostream& os, const vector<WordID>& p) {
+ os << '[';
+ for (int i = 0; i < p.size(); ++i)
+ os << (i==0 ? "" : " ") << TD::Convert(p[i]);
+ return os << ']';
+}
+
+double log_poisson(unsigned x, const double& lambda) {
+ assert(lambda > 0.0);
+ return log(lambda) * x - lgamma(x + 1) - lambda;
+}
+
+struct Model1 {
+ explicit Model1(const string& fname) :
+ kNULL(TD::Convert("<eps>")),
+ kZERO() {
+ LoadModel1(fname);
+ }
+
+ void LoadModel1(const string& fname) {
+ cerr << "Loading Model 1 parameters from " << fname << " ..." << endl;
+ ReadFile rf(fname);
+ istream& in = *rf.stream();
+ string line;
+ unsigned lc = 0;
+ while(getline(in, line)) {
+ ++lc;
+ int cur = 0;
+ int start = 0;
+ while(cur < line.size() && line[cur] != ' ') { ++cur; }
+ assert(cur != line.size());
+ line[cur] = 0;
+ const WordID src = TD::Convert(&line[0]);
+ ++cur;
+ start = cur;
+ while(cur < line.size() && line[cur] != ' ') { ++cur; }
+ assert(cur != line.size());
+ line[cur] = 0;
+ WordID trg = TD::Convert(&line[start]);
+ const double logprob = strtod(&line[cur + 1], NULL);
+ if (src >= ttable.size()) ttable.resize(src + 1);
+ ttable[src][trg].logeq(logprob);
+ }
+ cerr << " read " << lc << " parameters.\n";
+ }
+
+ // returns prob 0 if src or trg is not found!
+ const prob_t& operator()(WordID src, WordID trg) const {
+ if (src == 0) src = kNULL;
+ if (src < ttable.size()) {
+ const map<WordID, prob_t>& cpd = ttable[src];
+ const map<WordID, prob_t>::const_iterator it = cpd.find(trg);
+ if (it != cpd.end())
+ return it->second;
+ }
+ return kZERO;
+ }
+
+ const WordID kNULL;
+ const prob_t kZERO;
+ vector<map<WordID, prob_t> > ttable;
+};
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
+ ("particles,p",po::value<unsigned>()->default_value(25),"Number of particles")
+ ("input,i",po::value<string>(),"Read parallel data from")
+ ("max_src_phrase",po::value<unsigned>()->default_value(7),"Maximum length of source language phrases")
+ ("max_trg_phrase",po::value<unsigned>()->default_value(7),"Maximum length of target language phrases")
+ ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
+ ("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)")
+ ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
+ ("random_seed,S",po::value<uint32_t>(), "Random seed");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || (conf->count("input") == 0)) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+void ReadParallelCorpus(const string& filename,
+ vector<vector<WordID> >* f,
+ vector<vector<WordID> >* e,
+ set<WordID>* vocab_f,
+ set<WordID>* vocab_e) {
+ f->clear();
+ e->clear();
+ vocab_f->clear();
+ vocab_e->clear();
+ istream* in;
+ if (filename == "-")
+ in = &cin;
+ else
+ in = new ifstream(filename.c_str());
+ assert(*in);
+ string line;
+ const WordID kDIV = TD::Convert("|||");
+ vector<WordID> tmp;
+ while(*in) {
+ getline(*in, line);
+ if (line.empty() && !*in) break;
+ e->push_back(vector<int>());
+ f->push_back(vector<int>());
+ vector<int>& le = e->back();
+ vector<int>& lf = f->back();
+ tmp.clear();
+ TD::ConvertSentence(line, &tmp);
+ bool isf = true;
+ for (unsigned i = 0; i < tmp.size(); ++i) {
+ const int cur = tmp[i];
+ if (isf) {
+ if (kDIV == cur) { isf = false; } else {
+ lf.push_back(cur);
+ vocab_f->insert(cur);
+ }
+ } else {
+ assert(cur != kDIV);
+ le.push_back(cur);
+ vocab_e->insert(cur);
+ }
+ }
+ assert(isf == false);
+ }
+ if (in != &cin) delete in;
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ const size_t kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
+ const size_t kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
+ const unsigned particles = conf["particles"].as<unsigned>();
+ const unsigned samples = conf["samples"].as<unsigned>();
+
+ if (!conf.count("model1")) {
+ cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
+ return 1;
+ }
+ shared_ptr<MT19937> prng;
+ if (conf.count("random_seed"))
+ prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ prng.reset(new MT19937);
+ MT19937& rng = *prng;
+
+ vector<vector<WordID> > corpuse, corpusf;
+ set<WordID> vocabe, vocabf;
+ cerr << "Reading corpus...\n";
+ ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
+ cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n";
+ cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
+ assert(corpusf.size() == corpuse.size());
+
+ const int kLHS = -TD::Convert("X");
+ Model1 m1(conf["model1"].as<string>());
+ Model1 invm1(conf["inverse_model1"].as<string>());
+ for (int si = 0; si < conf["samples"].as<unsigned>(); ++si) {
+ cerr << '.' << flush;
+ for (int ci = 0; ci < corpusf.size(); ++ci) {
+ const vector<WordID>& src = corpusf[ci];
+ const vector<WordID>& trg = corpuse[ci];
+ for (int i = 0; i < src.size(); ++i) {
+ for (int j = 0; j < trg.size(); ++j) {
+ const int eff_max_src = min(src.size() - i, kMAX_SRC_PHRASE);
+ for (int k = 0; k < eff_max_src; ++k) {
+ const int eff_max_trg = (k == 0 ? 1 : min(trg.size() - j, kMAX_TRG_PHRASE));
+ for (int l = 0; l < eff_max_trg; ++l) {
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
diff --git a/gi/pf/monotonic_pseg.h b/gi/pf/monotonic_pseg.h
new file mode 100644
index 00000000..7e6af3fc
--- /dev/null
+++ b/gi/pf/monotonic_pseg.h
@@ -0,0 +1,88 @@
+#ifndef _MONOTONIC_PSEG_H_
+#define _MONOTONIC_PSEG_H_
+
+#include <vector>
+
+#include "prob.h"
+#include "ccrp_nt.h"
+#include "trule.h"
+#include "base_measures.h"
+
+struct MonotonicParallelSegementationModel {
+ explicit MonotonicParallelSegementationModel(PhraseJointBase& rcp0) :
+ rp0(rcp0), base(prob_t::One()), rules(1,1), stop(1.0) {}
+
+ void DecrementRule(const TRule& rule) {
+ if (rules.decrement(rule))
+ base /= rp0(rule);
+ }
+
+ void IncrementRule(const TRule& rule) {
+ if (rules.increment(rule))
+ base *= rp0(rule);
+ }
+
+ void IncrementRulesAndStops(const std::vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ IncrementRule(*rules[i]);
+ if (rules.size()) IncrementContinue(rules.size() - 1);
+ IncrementStop();
+ }
+
+ void DecrementRulesAndStops(const std::vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ DecrementRule(*rules[i]);
+ if (rules.size()) {
+ DecrementContinue(rules.size() - 1);
+ DecrementStop();
+ }
+ }
+
+ prob_t RuleProbability(const TRule& rule) const {
+ prob_t p; p.logeq(rules.logprob(rule, log(rp0(rule))));
+ return p;
+ }
+
+ prob_t Likelihood() const {
+ prob_t p = base;
+ prob_t q; q.logeq(rules.log_crp_prob());
+ p *= q;
+ q.logeq(stop.log_crp_prob());
+ p *= q;
+ return p;
+ }
+
+ void IncrementStop() {
+ stop.increment(true);
+ }
+
+ void IncrementContinue(int n = 1) {
+ for (int i = 0; i < n; ++i)
+ stop.increment(false);
+ }
+
+ void DecrementStop() {
+ stop.decrement(true);
+ }
+
+ void DecrementContinue(int n = 1) {
+ for (int i = 0; i < n; ++i)
+ stop.decrement(false);
+ }
+
+ prob_t StopProbability() const {
+ return prob_t(stop.prob(true, 0.5));
+ }
+
+ prob_t ContinueProbability() const {
+ return prob_t(stop.prob(false, 0.5));
+ }
+
+ const PhraseJointBase& rp0;
+ prob_t base;
+ CCRP_NoTable<TRule> rules;
+ CCRP_NoTable<bool> stop;
+};
+
+#endif
+
diff --git a/gi/pf/pfbrat.cc b/gi/pf/pfbrat.cc
new file mode 100644
index 00000000..7b60ef23
--- /dev/null
+++ b/gi/pf/pfbrat.cc
@@ -0,0 +1,543 @@
+#include <iostream>
+#include <tr1/memory>
+#include <queue>
+
+#include <boost/functional.hpp>
+#include <boost/multi_array.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "viterbi.h"
+#include "hg.h"
+#include "trule.h"
+#include "tdict.h"
+#include "filelib.h"
+#include "dict.h"
+#include "sampler.h"
+#include "ccrp_nt.h"
+#include "cfg_wfst_composer.h"
+
+using namespace std;
+using namespace tr1;
+namespace po = boost::program_options;
+
+static unsigned kMAX_SRC_PHRASE;
+static unsigned kMAX_TRG_PHRASE;
+struct FSTState;
+
+double log_poisson(unsigned x, const double& lambda) {
+ assert(lambda > 0.0);
+ return log(lambda) * x - lgamma(x + 1) - lambda;
+}
+
+struct ConditionalBase {
+ explicit ConditionalBase(const double m1mixture, const unsigned vocab_e_size, const string& model1fname) :
+ kM1MIXTURE(m1mixture),
+ kUNIFORM_MIXTURE(1.0 - m1mixture),
+ kUNIFORM_TARGET(1.0 / vocab_e_size),
+ kNULL(TD::Convert("<eps>")) {
+ assert(m1mixture >= 0.0 && m1mixture <= 1.0);
+ assert(vocab_e_size > 0);
+ LoadModel1(model1fname);
+ }
+
+ void LoadModel1(const string& fname) {
+ cerr << "Loading Model 1 parameters from " << fname << " ..." << endl;
+ ReadFile rf(fname);
+ istream& in = *rf.stream();
+ string line;
+ unsigned lc = 0;
+ while(getline(in, line)) {
+ ++lc;
+ int cur = 0;
+ int start = 0;
+ while(cur < line.size() && line[cur] != ' ') { ++cur; }
+ assert(cur != line.size());
+ line[cur] = 0;
+ const WordID src = TD::Convert(&line[0]);
+ ++cur;
+ start = cur;
+ while(cur < line.size() && line[cur] != ' ') { ++cur; }
+ assert(cur != line.size());
+ line[cur] = 0;
+ WordID trg = TD::Convert(&line[start]);
+ const double logprob = strtod(&line[cur + 1], NULL);
+ if (src >= ttable.size()) ttable.resize(src + 1);
+ ttable[src][trg].logeq(logprob);
+ }
+ cerr << " read " << lc << " parameters.\n";
+ }
+
+ // return logp0 of rule.e_ | rule.f_
+ prob_t operator()(const TRule& rule) const {
+ const int flen = rule.f_.size();
+ const int elen = rule.e_.size();
+ prob_t uniform_src_alignment; uniform_src_alignment.logeq(-log(flen + 1));
+ prob_t p;
+ p.logeq(log_poisson(elen, flen + 0.01)); // elen | flen ~Pois(flen + 0.01)
+ for (int i = 0; i < elen; ++i) { // for each position i in e-RHS
+ const WordID trg = rule.e_[i];
+ prob_t tp = prob_t::Zero();
+ for (int j = -1; j < flen; ++j) {
+ const WordID src = j < 0 ? kNULL : rule.f_[j];
+ const map<WordID, prob_t>::const_iterator it = ttable[src].find(trg);
+ if (it != ttable[src].end()) {
+ tp += kM1MIXTURE * it->second;
+ }
+ tp += kUNIFORM_MIXTURE * kUNIFORM_TARGET;
+ }
+ tp *= uniform_src_alignment; // draw a_i ~uniform
+ p *= tp; // draw e_i ~Model1(f_a_i) / uniform
+ }
+ return p;
+ }
+
+ const prob_t kM1MIXTURE; // Model 1 mixture component
+ const prob_t kUNIFORM_MIXTURE; // uniform mixture component
+ const prob_t kUNIFORM_TARGET;
+ const WordID kNULL;
+ vector<map<WordID, prob_t> > ttable;
+};
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
+ ("input,i",po::value<string>(),"Read parallel data from")
+ ("max_src_phrase",po::value<unsigned>()->default_value(3),"Maximum length of source language phrases")
+ ("max_trg_phrase",po::value<unsigned>()->default_value(3),"Maximum length of target language phrases")
+ ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
+ ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
+ ("random_seed,S",po::value<uint32_t>(), "Random seed");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || (conf->count("input") == 0)) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+void ReadParallelCorpus(const string& filename,
+ vector<vector<WordID> >* f,
+ vector<vector<int> >* e,
+ set<int>* vocab_f,
+ set<int>* vocab_e) {
+ f->clear();
+ e->clear();
+ vocab_f->clear();
+ vocab_e->clear();
+ istream* in;
+ if (filename == "-")
+ in = &cin;
+ else
+ in = new ifstream(filename.c_str());
+ assert(*in);
+ string line;
+ const WordID kDIV = TD::Convert("|||");
+ vector<WordID> tmp;
+ while(*in) {
+ getline(*in, line);
+ if (line.empty() && !*in) break;
+ e->push_back(vector<int>());
+ f->push_back(vector<int>());
+ vector<int>& le = e->back();
+ vector<int>& lf = f->back();
+ tmp.clear();
+ TD::ConvertSentence(line, &tmp);
+ bool isf = true;
+ for (unsigned i = 0; i < tmp.size(); ++i) {
+ const int cur = tmp[i];
+ if (isf) {
+ if (kDIV == cur) { isf = false; } else {
+ lf.push_back(cur);
+ vocab_f->insert(cur);
+ }
+ } else {
+ assert(cur != kDIV);
+ le.push_back(cur);
+ vocab_e->insert(cur);
+ }
+ }
+ assert(isf == false);
+ }
+ if (in != &cin) delete in;
+}
+
+struct UniphraseLM {
+ UniphraseLM(const vector<vector<int> >& corpus,
+ const set<int>& vocab,
+ const po::variables_map& conf) :
+ phrases_(1,1),
+ gen_(1,1),
+ corpus_(corpus),
+ uniform_word_(1.0 / vocab.size()),
+ gen_p0_(0.5),
+ p_end_(0.5),
+ use_poisson_(conf.count("poisson_length") > 0) {}
+
+ void ResampleHyperparameters(MT19937* rng) {
+ phrases_.resample_hyperparameters(rng);
+ gen_.resample_hyperparameters(rng);
+ cerr << " " << phrases_.concentration();
+ }
+
+ CCRP_NoTable<vector<int> > phrases_;
+ CCRP_NoTable<bool> gen_;
+ vector<vector<bool> > z_; // z_[i] is there a phrase boundary after the ith word
+ const vector<vector<int> >& corpus_;
+ const double uniform_word_;
+ const double gen_p0_;
+ const double p_end_; // in base length distribution, p of the end of a phrase
+ const bool use_poisson_;
+};
+
+struct Reachability {
+ boost::multi_array<bool, 4> edges; // edges[src_covered][trg_covered][x][trg_delta] is this edge worth exploring?
+ boost::multi_array<short, 2> max_src_delta; // msd[src_covered][trg_covered] -- the largest src delta that's valid
+
+ Reachability(int srclen, int trglen, int src_max_phrase_len, int trg_max_phrase_len) :
+ edges(boost::extents[srclen][trglen][src_max_phrase_len+1][trg_max_phrase_len+1]),
+ max_src_delta(boost::extents[srclen][trglen]) {
+ ComputeReachability(srclen, trglen, src_max_phrase_len, trg_max_phrase_len);
+ }
+
+ private:
+ struct SState {
+ SState() : prev_src_covered(), prev_trg_covered() {}
+ SState(int i, int j) : prev_src_covered(i), prev_trg_covered(j) {}
+ int prev_src_covered;
+ int prev_trg_covered;
+ };
+
+ struct NState {
+ NState() : next_src_covered(), next_trg_covered() {}
+ NState(int i, int j) : next_src_covered(i), next_trg_covered(j) {}
+ int next_src_covered;
+ int next_trg_covered;
+ };
+
+ void ComputeReachability(int srclen, int trglen, int src_max_phrase_len, int trg_max_phrase_len) {
+ typedef boost::multi_array<vector<SState>, 2> array_type;
+ array_type a(boost::extents[srclen + 1][trglen + 1]);
+ a[0][0].push_back(SState());
+ for (int i = 0; i < srclen; ++i) {
+ for (int j = 0; j < trglen; ++j) {
+ if (a[i][j].size() == 0) continue;
+ const SState prev(i,j);
+ for (int k = 1; k <= src_max_phrase_len; ++k) {
+ if ((i + k) > srclen) continue;
+ for (int l = 1; l <= trg_max_phrase_len; ++l) {
+ if ((j + l) > trglen) continue;
+ a[i + k][j + l].push_back(prev);
+ }
+ }
+ }
+ }
+ a[0][0].clear();
+ cerr << "Final cell contains " << a[srclen][trglen].size() << " back pointers\n";
+ assert(a[srclen][trglen].size() > 0);
+
+ typedef boost::multi_array<bool, 2> rarray_type;
+ rarray_type r(boost::extents[srclen + 1][trglen + 1]);
+// typedef boost::multi_array<vector<NState>, 2> narray_type;
+// narray_type b(boost::extents[srclen + 1][trglen + 1]);
+ r[srclen][trglen] = true;
+ for (int i = srclen; i >= 0; --i) {
+ for (int j = trglen; j >= 0; --j) {
+ vector<SState>& prevs = a[i][j];
+ if (!r[i][j]) { prevs.clear(); }
+// const NState nstate(i,j);
+ for (int k = 0; k < prevs.size(); ++k) {
+ r[prevs[k].prev_src_covered][prevs[k].prev_trg_covered] = true;
+ int src_delta = i - prevs[k].prev_src_covered;
+ edges[prevs[k].prev_src_covered][prevs[k].prev_trg_covered][src_delta][j - prevs[k].prev_trg_covered] = true;
+ short &msd = max_src_delta[prevs[k].prev_src_covered][prevs[k].prev_trg_covered];
+ if (src_delta > msd) msd = src_delta;
+// b[prevs[k].prev_src_covered][prevs[k].prev_trg_covered].push_back(nstate);
+ }
+ }
+ }
+ assert(!edges[0][0][1][0]);
+ assert(!edges[0][0][0][1]);
+ assert(!edges[0][0][0][0]);
+ cerr << " MAX SRC DELTA[0][0] = " << max_src_delta[0][0] << endl;
+ assert(max_src_delta[0][0] > 0);
+ //cerr << "First cell contains " << b[0][0].size() << " forward pointers\n";
+ //for (int i = 0; i < b[0][0].size(); ++i) {
+ // cerr << " -> (" << b[0][0][i].next_src_covered << "," << b[0][0][i].next_trg_covered << ")\n";
+ //}
+ }
+};
+
+ostream& operator<<(ostream& os, const FSTState& q);
+struct FSTState {
+ explicit FSTState(int src_size) :
+ trg_covered_(),
+ src_covered_(),
+ src_coverage_(src_size) {}
+
+ FSTState(short trg_covered, short src_covered, const vector<bool>& src_coverage, const vector<short>& src_prefix) :
+ trg_covered_(trg_covered),
+ src_covered_(src_covered),
+ src_coverage_(src_coverage),
+ src_prefix_(src_prefix) {
+ if (src_coverage_.size() == src_covered) {
+ assert(src_prefix.size() == 0);
+ }
+ }
+
+ // if we extend by the word at src_position, what are
+ // the next states that are reachable and lie on a valid
+ // path to the final state?
+ vector<FSTState> Extensions(int src_position, int src_len, int trg_len, const Reachability& r) const {
+ assert(src_position < src_coverage_.size());
+ if (src_coverage_[src_position]) {
+ cerr << "Trying to extend " << *this << " with position " << src_position << endl;
+ abort();
+ }
+ vector<bool> ncvg = src_coverage_;
+ ncvg[src_position] = true;
+
+ vector<FSTState> res;
+ const int trg_remaining = trg_len - trg_covered_;
+ if (trg_remaining <= 0) {
+ cerr << "Target appears to have been covered: " << *this << " (trg_len=" << trg_len << ",trg_covered=" << trg_covered_ << ")" << endl;
+ abort();
+ }
+ const int src_remaining = src_len - src_covered_;
+ if (src_remaining <= 0) {
+ cerr << "Source appears to have been covered: " << *this << endl;
+ abort();
+ }
+
+ for (int tc = 1; tc <= kMAX_TRG_PHRASE; ++tc) {
+ if (r.edges[src_covered_][trg_covered_][src_prefix_.size() + 1][tc]) {
+ int nc = src_prefix_.size() + 1 + src_covered_;
+ res.push_back(FSTState(trg_covered_ + tc, nc, ncvg, vector<short>()));
+ }
+ }
+
+ if ((src_prefix_.size() + 1) < r.max_src_delta[src_covered_][trg_covered_]) {
+ vector<short> nsp = src_prefix_;
+ nsp.push_back(src_position);
+ res.push_back(FSTState(trg_covered_, src_covered_, ncvg, nsp));
+ }
+
+ if (res.size() == 0) {
+ cerr << *this << " can't be extended!\n";
+ abort();
+ }
+ return res;
+ }
+
+ short trg_covered_, src_covered_;
+ vector<bool> src_coverage_;
+ vector<short> src_prefix_;
+};
+bool operator<(const FSTState& q, const FSTState& r) {
+ if (q.trg_covered_ != r.trg_covered_) return q.trg_covered_ < r.trg_covered_;
+ if (q.src_covered_!= r.src_covered_) return q.src_covered_ < r.src_covered_;
+ if (q.src_coverage_ != r.src_coverage_) return q.src_coverage_ < r.src_coverage_;
+ return q.src_prefix_ < r.src_prefix_;
+}
+
+ostream& operator<<(ostream& os, const FSTState& q) {
+ os << "[" << q.trg_covered_ << " : ";
+ for (int i = 0; i < q.src_coverage_.size(); ++i)
+ os << q.src_coverage_[i];
+ os << " : <";
+ for (int i = 0; i < q.src_prefix_.size(); ++i) {
+ if (i != 0) os << ' ';
+ os << q.src_prefix_[i];
+ }
+ return os << ">]";
+}
+
+struct MyModel {
+ MyModel(ConditionalBase& rcp0) : rp0(rcp0) {}
+ typedef unordered_map<vector<WordID>, CCRP_NoTable<TRule>, boost::hash<vector<WordID> > > SrcToRuleCRPMap;
+
+ void DecrementRule(const TRule& rule) {
+ SrcToRuleCRPMap::iterator it = rules.find(rule.f_);
+ assert(it != rules.end());
+ it->second.decrement(rule);
+ if (it->second.num_customers() == 0) rules.erase(it);
+ }
+
+ void IncrementRule(const TRule& rule) {
+ SrcToRuleCRPMap::iterator it = rules.find(rule.f_);
+ if (it == rules.end()) {
+ CCRP_NoTable<TRule> crp(1,1);
+ it = rules.insert(make_pair(rule.f_, crp)).first;
+ }
+ it->second.increment(rule);
+ }
+
+ // conditioned on rule.f_
+ prob_t RuleConditionalProbability(const TRule& rule) const {
+ const prob_t base = rp0(rule);
+ SrcToRuleCRPMap::const_iterator it = rules.find(rule.f_);
+ if (it == rules.end()) {
+ return base;
+ } else {
+ const double lp = it->second.logprob(rule, log(base));
+ prob_t q; q.logeq(lp);
+ return q;
+ }
+ }
+
+ const ConditionalBase& rp0;
+ SrcToRuleCRPMap rules;
+};
+
+struct MyFST : public WFST {
+ MyFST(const vector<WordID>& ssrc, const vector<WordID>& strg, MyModel* m) :
+ src(ssrc), trg(strg),
+ r(src.size(),trg.size(),kMAX_SRC_PHRASE, kMAX_TRG_PHRASE),
+ model(m) {
+ FSTState in(src.size());
+ cerr << " INIT: " << in << endl;
+ init = GetNode(in);
+ for (int i = 0; i < in.src_coverage_.size(); ++i) in.src_coverage_[i] = true;
+ in.src_covered_ = src.size();
+ in.trg_covered_ = trg.size();
+ cerr << "FINAL: " << in << endl;
+ final = GetNode(in);
+ }
+ virtual const WFSTNode* Final() const;
+ virtual const WFSTNode* Initial() const;
+
+ const WFSTNode* GetNode(const FSTState& q);
+ map<FSTState, boost::shared_ptr<WFSTNode> > m;
+ const vector<WordID>& src;
+ const vector<WordID>& trg;
+ Reachability r;
+ const WFSTNode* init;
+ const WFSTNode* final;
+ MyModel* model;
+};
+
+struct MyNode : public WFSTNode {
+ MyNode(const FSTState& q, MyFST* fst) : state(q), container(fst) {}
+ virtual vector<pair<const WFSTNode*, TRulePtr> > ExtendInput(unsigned srcindex) const;
+ const FSTState state;
+ mutable MyFST* container;
+};
+
+vector<pair<const WFSTNode*, TRulePtr> > MyNode::ExtendInput(unsigned srcindex) const {
+ cerr << "EXTEND " << state << " with " << srcindex << endl;
+ vector<FSTState> ext = state.Extensions(srcindex, container->src.size(), container->trg.size(), container->r);
+ vector<pair<const WFSTNode*,TRulePtr> > res(ext.size());
+ for (unsigned i = 0; i < ext.size(); ++i) {
+ res[i].first = container->GetNode(ext[i]);
+ if (ext[i].src_prefix_.size() == 0) {
+ const unsigned trg_from = state.trg_covered_;
+ const unsigned trg_to = ext[i].trg_covered_;
+ const unsigned prev_prfx_size = state.src_prefix_.size();
+ res[i].second.reset(new TRule);
+ res[i].second->lhs_ = -TD::Convert("X");
+ vector<WordID>& src = res[i].second->f_;
+ vector<WordID>& trg = res[i].second->e_;
+ src.resize(prev_prfx_size + 1);
+ for (unsigned j = 0; j < prev_prfx_size; ++j)
+ src[j] = container->src[state.src_prefix_[j]];
+ src[prev_prfx_size] = container->src[srcindex];
+ for (unsigned j = trg_from; j < trg_to; ++j)
+ trg.push_back(container->trg[j]);
+ res[i].second->scores_.set_value(FD::Convert("Proposal"), log(container->model->RuleConditionalProbability(*res[i].second)));
+ }
+ }
+ return res;
+}
+
+const WFSTNode* MyFST::GetNode(const FSTState& q) {
+ boost::shared_ptr<WFSTNode>& res = m[q];
+ if (!res) {
+ res.reset(new MyNode(q, this));
+ }
+ return &*res;
+}
+
+const WFSTNode* MyFST::Final() const {
+ return final;
+}
+
+const WFSTNode* MyFST::Initial() const {
+ return init;
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
+ kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
+
+ if (!conf.count("model1")) {
+ cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
+ return 1;
+ }
+ shared_ptr<MT19937> prng;
+ if (conf.count("random_seed"))
+ prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ prng.reset(new MT19937);
+ MT19937& rng = *prng;
+
+ vector<vector<int> > corpuse, corpusf;
+ set<int> vocabe, vocabf;
+ ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
+ cerr << "f-Corpus size: " << corpusf.size() << " sentences\n";
+ cerr << "f-Vocabulary size: " << vocabf.size() << " types\n";
+ cerr << "f-Corpus size: " << corpuse.size() << " sentences\n";
+ cerr << "f-Vocabulary size: " << vocabe.size() << " types\n";
+ assert(corpusf.size() == corpuse.size());
+
+ ConditionalBase lp0(conf["model1_interpolation_weight"].as<double>(),
+ vocabe.size(),
+ conf["model1"].as<string>());
+ MyModel m(lp0);
+
+ TRule x("[X] ||| kAnwntR myN ||| at the convent ||| 0");
+ m.IncrementRule(x);
+ TRule y("[X] ||| nY dyN ||| gave ||| 0");
+ m.IncrementRule(y);
+
+
+ MyFST fst(corpusf[0], corpuse[0], &m);
+ ifstream in("./kimura.g");
+ assert(in);
+ CFG_WFSTComposer comp(fst);
+ Hypergraph hg;
+ bool succeed = comp.Compose(&in, &hg);
+ hg.PrintGraphviz();
+ if (succeed) { cerr << "SUCCESS.\n"; } else { cerr << "FAILURE REPORTED.\n"; }
+
+#if 0
+ ifstream in2("./amnabooks.g");
+ assert(in2);
+ MyFST fst2(corpusf[1], corpuse[1], &m);
+ CFG_WFSTComposer comp2(fst2);
+ Hypergraph hg2;
+ bool succeed2 = comp2.Compose(&in2, &hg2);
+ if (succeed2) { cerr << "SUCCESS.\n"; } else { cerr << "FAILURE REPORTED.\n"; }
+#endif
+
+ SparseVector<double> w; w.set_value(FD::Convert("Proposal"), 1.0);
+ hg.Reweight(w);
+ cerr << ViterbiFTree(hg) << endl;
+ return 0;
+}
+
diff --git a/gi/pf/pfdist.cc b/gi/pf/pfdist.cc
new file mode 100644
index 00000000..81abd61b
--- /dev/null
+++ b/gi/pf/pfdist.cc
@@ -0,0 +1,610 @@
+#include <iostream>
+#include <tr1/memory>
+#include <queue>
+
+#include <boost/functional.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "base_measures.h"
+#include "reachability.h"
+#include "viterbi.h"
+#include "hg.h"
+#include "trule.h"
+#include "tdict.h"
+#include "filelib.h"
+#include "dict.h"
+#include "sampler.h"
+#include "ccrp_nt.h"
+#include "ccrp_onetable.h"
+
+using namespace std;
+using namespace tr1;
+namespace po = boost::program_options;
+
+shared_ptr<MT19937> prng;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
+ ("particles,p",po::value<unsigned>()->default_value(30),"Number of particles")
+ ("filter_frequency,f",po::value<unsigned>()->default_value(5),"Number of time steps between filterings")
+ ("input,i",po::value<string>(),"Read parallel data from")
+ ("max_src_phrase",po::value<unsigned>()->default_value(5),"Maximum length of source language phrases")
+ ("max_trg_phrase",po::value<unsigned>()->default_value(5),"Maximum length of target language phrases")
+ ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
+ ("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)")
+ ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
+ ("random_seed,S",po::value<uint32_t>(), "Random seed");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || (conf->count("input") == 0)) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+void ReadParallelCorpus(const string& filename,
+ vector<vector<WordID> >* f,
+ vector<vector<WordID> >* e,
+ set<WordID>* vocab_f,
+ set<WordID>* vocab_e) {
+ f->clear();
+ e->clear();
+ vocab_f->clear();
+ vocab_e->clear();
+ istream* in;
+ if (filename == "-")
+ in = &cin;
+ else
+ in = new ifstream(filename.c_str());
+ assert(*in);
+ string line;
+ const WordID kDIV = TD::Convert("|||");
+ vector<WordID> tmp;
+ while(*in) {
+ getline(*in, line);
+ if (line.empty() && !*in) break;
+ e->push_back(vector<int>());
+ f->push_back(vector<int>());
+ vector<int>& le = e->back();
+ vector<int>& lf = f->back();
+ tmp.clear();
+ TD::ConvertSentence(line, &tmp);
+ bool isf = true;
+ for (unsigned i = 0; i < tmp.size(); ++i) {
+ const int cur = tmp[i];
+ if (isf) {
+ if (kDIV == cur) { isf = false; } else {
+ lf.push_back(cur);
+ vocab_f->insert(cur);
+ }
+ } else {
+ assert(cur != kDIV);
+ le.push_back(cur);
+ vocab_e->insert(cur);
+ }
+ }
+ assert(isf == false);
+ }
+ if (in != &cin) delete in;
+}
+
+#if 0
+struct MyConditionalModel {
+ MyConditionalModel(PhraseConditionalBase& rcp0) : rp0(&rcp0), base(prob_t::One()), src_phrases(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {}
+
+ prob_t srcp0(const vector<WordID>& src) const {
+ prob_t p(1.0 / 3000.0);
+ p.poweq(src.size());
+ prob_t lenp; lenp.logeq(log_poisson(src.size(), 1.0));
+ p *= lenp;
+ return p;
+ }
+
+ void DecrementRule(const TRule& rule) {
+ const RuleCRPMap::iterator it = rules.find(rule.f_);
+ assert(it != rules.end());
+ if (it->second.decrement(rule)) {
+ base /= (*rp0)(rule);
+ if (it->second.num_customers() == 0)
+ rules.erase(it);
+ }
+ if (src_phrases.decrement(rule.f_))
+ base /= srcp0(rule.f_);
+ }
+
+ void IncrementRule(const TRule& rule) {
+ RuleCRPMap::iterator it = rules.find(rule.f_);
+ if (it == rules.end())
+ it = rules.insert(make_pair(rule.f_, CCRP_NoTable<TRule>(1,1))).first;
+ if (it->second.increment(rule)) {
+ base *= (*rp0)(rule);
+ }
+ if (src_phrases.increment(rule.f_))
+ base *= srcp0(rule.f_);
+ }
+
+ void IncrementRules(const vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ IncrementRule(*rules[i]);
+ }
+
+ void DecrementRules(const vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ DecrementRule(*rules[i]);
+ }
+
+ void IncrementJump(int dist, unsigned src_len) {
+ assert(src_len > 0);
+ if (src_jumps[src_len].increment(dist))
+ base *= jp0(dist, src_len);
+ }
+
+ void DecrementJump(int dist, unsigned src_len) {
+ assert(src_len > 0);
+ if (src_jumps[src_len].decrement(dist))
+ base /= jp0(dist, src_len);
+ }
+
+ void IncrementJumps(const vector<int>& js, unsigned src_len) {
+ for (unsigned i = 0; i < js.size(); ++i)
+ IncrementJump(js[i], src_len);
+ }
+
+ void DecrementJumps(const vector<int>& js, unsigned src_len) {
+ for (unsigned i = 0; i < js.size(); ++i)
+ DecrementJump(js[i], src_len);
+ }
+
+ // p(jump = dist | src_len , z)
+ prob_t JumpProbability(int dist, unsigned src_len) {
+ const prob_t p0 = jp0(dist, src_len);
+ const double lp = src_jumps[src_len].logprob(dist, log(p0));
+ prob_t q; q.logeq(lp);
+ return q;
+ }
+
+ // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z)
+ prob_t RuleProbability(const TRule& rule) const {
+ const prob_t p0 = (*rp0)(rule);
+ prob_t srcp; srcp.logeq(src_phrases.logprob(rule.f_, log(srcp0(rule.f_))));
+ const RuleCRPMap::const_iterator it = rules.find(rule.f_);
+ if (it == rules.end()) return srcp * p0;
+ const double lp = it->second.logprob(rule, log(p0));
+ prob_t q; q.logeq(lp);
+ return q * srcp;
+ }
+
+ prob_t Likelihood() const {
+ prob_t p = base;
+ for (RuleCRPMap::const_iterator it = rules.begin();
+ it != rules.end(); ++it) {
+ prob_t cl; cl.logeq(it->second.log_crp_prob());
+ p *= cl;
+ }
+ for (unsigned l = 1; l < src_jumps.size(); ++l) {
+ if (src_jumps[l].num_customers() > 0) {
+ prob_t q;
+ q.logeq(src_jumps[l].log_crp_prob());
+ p *= q;
+ }
+ }
+ return p;
+ }
+
+ JumpBase jp0;
+ const PhraseConditionalBase* rp0;
+ prob_t base;
+ typedef unordered_map<vector<WordID>, CCRP_NoTable<TRule>, boost::hash<vector<WordID> > > RuleCRPMap;
+ RuleCRPMap rules;
+ CCRP_NoTable<vector<WordID> > src_phrases;
+ vector<CCRP_NoTable<int> > src_jumps;
+};
+
+#endif
+
+struct MyJointModel {
+ MyJointModel(PhraseJointBase& rcp0) :
+ rp0(rcp0), base(prob_t::One()), rules(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {}
+
+ void DecrementRule(const TRule& rule) {
+ if (rules.decrement(rule))
+ base /= rp0(rule);
+ }
+
+ void IncrementRule(const TRule& rule) {
+ if (rules.increment(rule))
+ base *= rp0(rule);
+ }
+
+ void IncrementRules(const vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ IncrementRule(*rules[i]);
+ }
+
+ void DecrementRules(const vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ DecrementRule(*rules[i]);
+ }
+
+ void IncrementJump(int dist, unsigned src_len) {
+ assert(src_len > 0);
+ if (src_jumps[src_len].increment(dist))
+ base *= jp0(dist, src_len);
+ }
+
+ void DecrementJump(int dist, unsigned src_len) {
+ assert(src_len > 0);
+ if (src_jumps[src_len].decrement(dist))
+ base /= jp0(dist, src_len);
+ }
+
+ void IncrementJumps(const vector<int>& js, unsigned src_len) {
+ for (unsigned i = 0; i < js.size(); ++i)
+ IncrementJump(js[i], src_len);
+ }
+
+ void DecrementJumps(const vector<int>& js, unsigned src_len) {
+ for (unsigned i = 0; i < js.size(); ++i)
+ DecrementJump(js[i], src_len);
+ }
+
+ // p(jump = dist | src_len , z)
+ prob_t JumpProbability(int dist, unsigned src_len) {
+ const prob_t p0 = jp0(dist, src_len);
+ const double lp = src_jumps[src_len].logprob(dist, log(p0));
+ prob_t q; q.logeq(lp);
+ return q;
+ }
+
+ // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z)
+ prob_t RuleProbability(const TRule& rule) const {
+ prob_t p; p.logeq(rules.logprob(rule, log(rp0(rule))));
+ return p;
+ }
+
+ prob_t Likelihood() const {
+ prob_t p = base;
+ prob_t q; q.logeq(rules.log_crp_prob());
+ p *= q;
+ for (unsigned l = 1; l < src_jumps.size(); ++l) {
+ if (src_jumps[l].num_customers() > 0) {
+ prob_t q;
+ q.logeq(src_jumps[l].log_crp_prob());
+ p *= q;
+ }
+ }
+ return p;
+ }
+
+ JumpBase jp0;
+ const PhraseJointBase& rp0;
+ prob_t base;
+ CCRP_NoTable<TRule> rules;
+ vector<CCRP_NoTable<int> > src_jumps;
+};
+
+struct BackwardEstimate {
+ BackwardEstimate(const Model1& m1, const vector<WordID>& src, const vector<WordID>& trg) :
+ model1_(m1), src_(src), trg_(trg) {
+ }
+ const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const {
+ assert(src_.size() == src_cov.size());
+ assert(trg_cov <= trg_.size());
+ prob_t& e = cache_[src_cov][trg_cov];
+ if (e.is_0()) {
+ if (trg_cov == trg_.size()) { e = prob_t::One(); return e; }
+ vector<WordID> r(src_.size() + 1); r.clear();
+ r.push_back(0); // NULL word
+ for (int i = 0; i < src_cov.size(); ++i)
+ if (!src_cov[i]) r.push_back(src_[i]);
+ const prob_t uniform_alignment(1.0 / r.size());
+ e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining)
+ for (unsigned j = trg_cov; j < trg_.size(); ++j) {
+ prob_t p;
+ for (unsigned i = 0; i < r.size(); ++i)
+ p += model1_(r[i], trg_[j]);
+ if (p.is_0()) {
+ cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n";
+ abort();
+ }
+ p *= uniform_alignment;
+ e *= p;
+ }
+ }
+ return e;
+ }
+ const Model1& model1_;
+ const vector<WordID>& src_;
+ const vector<WordID>& trg_;
+ mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_;
+};
+
+struct BackwardEstimateSym {
+ BackwardEstimateSym(const Model1& m1,
+ const Model1& invm1, const vector<WordID>& src, const vector<WordID>& trg) :
+ model1_(m1), invmodel1_(invm1), src_(src), trg_(trg) {
+ }
+ const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const {
+ assert(src_.size() == src_cov.size());
+ assert(trg_cov <= trg_.size());
+ prob_t& e = cache_[src_cov][trg_cov];
+ if (e.is_0()) {
+ if (trg_cov == trg_.size()) { e = prob_t::One(); return e; }
+ vector<WordID> r(src_.size() + 1); r.clear();
+ for (int i = 0; i < src_cov.size(); ++i)
+ if (!src_cov[i]) r.push_back(src_[i]);
+ r.push_back(0); // NULL word
+ const prob_t uniform_alignment(1.0 / r.size());
+ e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining)
+ for (unsigned j = trg_cov; j < trg_.size(); ++j) {
+ prob_t p;
+ for (unsigned i = 0; i < r.size(); ++i)
+ p += model1_(r[i], trg_[j]);
+ if (p.is_0()) {
+ cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n";
+ abort();
+ }
+ p *= uniform_alignment;
+ e *= p;
+ }
+ r.pop_back();
+ const prob_t inv_uniform(1.0 / (trg_.size() - trg_cov + 1.0));
+ prob_t inv;
+ inv.logeq(log_poisson(r.size(), trg_.size() - trg_cov));
+ for (unsigned i = 0; i < r.size(); ++i) {
+ prob_t p;
+ for (unsigned j = trg_cov - 1; j < trg_.size(); ++j)
+ p += invmodel1_(j < trg_cov ? 0 : trg_[j], r[i]);
+ if (p.is_0()) {
+ cerr << "ERROR: p_inv(" << TD::Convert(r[i]) << " | " << TD::GetString(trg_) << ") = 0!\n";
+ abort();
+ }
+ p *= inv_uniform;
+ inv *= p;
+ }
+ prob_t x = pow(e * inv, 0.5);
+ e = x;
+ //cerr << "Forward: " << log(e) << "\tBackward: " << log(inv) << "\t prop: " << log(x) << endl;
+ }
+ return e;
+ }
+ const Model1& model1_;
+ const Model1& invmodel1_;
+ const vector<WordID>& src_;
+ const vector<WordID>& trg_;
+ mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_;
+};
+
+struct Particle {
+ Particle() : weight(prob_t::One()), src_cov(), trg_cov(), prev_pos(-1) {}
+ prob_t weight;
+ prob_t gamma_last;
+ vector<int> src_jumps;
+ vector<TRulePtr> rules;
+ vector<bool> src_cv;
+ int src_cov;
+ int trg_cov;
+ int prev_pos;
+};
+
+ostream& operator<<(ostream& o, const vector<bool>& v) {
+ for (int i = 0; i < v.size(); ++i)
+ o << (v[i] ? '1' : '0');
+ return o;
+}
+ostream& operator<<(ostream& o, const Particle& p) {
+ o << "[cv=" << p.src_cv << " src_cov=" << p.src_cov << " trg_cov=" << p.trg_cov << " last_pos=" << p.prev_pos << " num_rules=" << p.rules.size() << " w=" << log(p.weight) << ']';
+ return o;
+}
+
+void FilterCrapParticlesAndReweight(vector<Particle>* pps) {
+ vector<Particle>& ps = *pps;
+ SampleSet<prob_t> ss;
+ for (int i = 0; i < ps.size(); ++i)
+ ss.add(ps[i].weight);
+ vector<Particle> nps; nps.reserve(ps.size());
+ const prob_t uniform_weight(1.0 / ps.size());
+ for (int i = 0; i < ps.size(); ++i) {
+ nps.push_back(ps[prng->SelectSample(ss)]);
+ nps[i].weight = uniform_weight;
+ }
+ nps.swap(ps);
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ const unsigned kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
+ const unsigned kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
+ const unsigned particles = conf["particles"].as<unsigned>();
+ const unsigned samples = conf["samples"].as<unsigned>();
+ const unsigned rejuv_freq = conf["filter_frequency"].as<unsigned>();
+
+ if (!conf.count("model1")) {
+ cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
+ return 1;
+ }
+ if (conf.count("random_seed"))
+ prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ prng.reset(new MT19937);
+ MT19937& rng = *prng;
+
+ vector<vector<WordID> > corpuse, corpusf;
+ set<WordID> vocabe, vocabf;
+ cerr << "Reading corpus...\n";
+ ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
+ cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n";
+ cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
+ assert(corpusf.size() == corpuse.size());
+
+ const int kLHS = -TD::Convert("X");
+ Model1 m1(conf["model1"].as<string>());
+ Model1 invm1(conf["inverse_model1"].as<string>());
+
+#if 0
+ PhraseConditionalBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size());
+ MyConditionalModel m(lp0);
+#else
+ PhraseJointBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size());
+ MyJointModel m(lp0);
+#endif
+
+ cerr << "Initializing reachability limits...\n";
+ vector<Particle> ps(corpusf.size());
+ vector<Reachability> reaches; reaches.reserve(corpusf.size());
+ for (int ci = 0; ci < corpusf.size(); ++ci)
+ reaches.push_back(Reachability(corpusf[ci].size(),
+ corpuse[ci].size(),
+ kMAX_SRC_PHRASE,
+ kMAX_TRG_PHRASE));
+ cerr << "Sampling...\n";
+ vector<Particle> tmp_p(10000); // work space
+ SampleSet<prob_t> pfss;
+ for (int SS=0; SS < samples; ++SS) {
+ for (int ci = 0; ci < corpusf.size(); ++ci) {
+ vector<int>& src = corpusf[ci];
+ vector<int>& trg = corpuse[ci];
+ m.DecrementRules(ps[ci].rules);
+ m.DecrementJumps(ps[ci].src_jumps, src.size());
+
+ //BackwardEstimate be(m1, src, trg);
+ BackwardEstimateSym be(m1, invm1, src, trg);
+ const Reachability& r = reaches[ci];
+ vector<Particle> lps(particles);
+
+ for (int pi = 0; pi < particles; ++pi) {
+ Particle& p = lps[pi];
+ p.src_cv.resize(src.size(), false);
+ }
+
+ bool all_complete = false;
+ while(!all_complete) {
+ SampleSet<prob_t> ss;
+
+ // all particles have now been extended a bit, we will reweight them now
+ if (lps[0].trg_cov > 0)
+ FilterCrapParticlesAndReweight(&lps);
+
+ // loop over all particles and extend them
+ bool done_nothing = true;
+ for (int pi = 0; pi < particles; ++pi) {
+ Particle& p = lps[pi];
+ int tic = 0;
+ while(p.trg_cov < trg.size() && tic < rejuv_freq) {
+ ++tic;
+ done_nothing = false;
+ ss.clear();
+ TRule x; x.lhs_ = kLHS;
+ prob_t z;
+ int first_uncovered = src.size();
+ int last_uncovered = -1;
+ for (int i = 0; i < src.size(); ++i) {
+ const bool is_uncovered = !p.src_cv[i];
+ if (i < first_uncovered && is_uncovered) first_uncovered = i;
+ if (is_uncovered && i > last_uncovered) last_uncovered = i;
+ }
+ assert(last_uncovered > -1);
+ assert(first_uncovered < src.size());
+
+ for (int trg_len = 1; trg_len <= kMAX_TRG_PHRASE; ++trg_len) {
+ x.e_.push_back(trg[trg_len - 1 + p.trg_cov]);
+ for (int src_len = 1; src_len <= kMAX_SRC_PHRASE; ++src_len) {
+ if (!r.edges[p.src_cov][p.trg_cov][src_len][trg_len]) continue;
+
+ const int last_possible_start = last_uncovered - src_len + 1;
+ assert(last_possible_start >= 0);
+ //cerr << src_len << "," << trg_len << " is allowed. E=" << TD::GetString(x.e_) << endl;
+ //cerr << " first_uncovered=" << first_uncovered << " last_possible_start=" << last_possible_start << endl;
+ for (int i = first_uncovered; i <= last_possible_start; ++i) {
+ if (p.src_cv[i]) continue;
+ assert(ss.size() < tmp_p.size()); // if fails increase tmp_p size
+ Particle& np = tmp_p[ss.size()];
+ np = p;
+ x.f_.clear();
+ int gap_add = 0;
+ bool bad = false;
+ prob_t jp = prob_t::One();
+ int prev_pos = p.prev_pos;
+ for (int j = 0; j < src_len; ++j) {
+ if ((j + i + gap_add) == src.size()) { bad = true; break; }
+ while ((i+j+gap_add) < src.size() && p.src_cv[i + j + gap_add]) { ++gap_add; }
+ if ((j + i + gap_add) == src.size()) { bad = true; break; }
+ np.src_cv[i + j + gap_add] = true;
+ x.f_.push_back(src[i + j + gap_add]);
+ jp *= m.JumpProbability(i + j + gap_add - prev_pos, src.size());
+ int jump = i + j + gap_add - prev_pos;
+ assert(jump != 0);
+ np.src_jumps.push_back(jump);
+ prev_pos = i + j + gap_add;
+ }
+ if (bad) continue;
+ np.prev_pos = prev_pos;
+ np.src_cov += x.f_.size();
+ np.trg_cov += x.e_.size();
+ if (x.f_.size() != src_len) continue;
+ prob_t rp = m.RuleProbability(x);
+ np.gamma_last = rp * jp;
+ const prob_t u = pow(np.gamma_last * be(np.src_cv, np.trg_cov), 0.2);
+ //cerr << "**rule=" << x << endl;
+ //cerr << " u=" << log(u) << " rule=" << rp << " jump=" << jp << endl;
+ ss.add(u);
+ np.rules.push_back(TRulePtr(new TRule(x)));
+ z += u;
+
+ const bool completed = (p.trg_cov == trg.size());
+ if (completed) {
+ int last_jump = src.size() - p.prev_pos;
+ assert(last_jump > 0);
+ p.src_jumps.push_back(last_jump);
+ p.weight *= m.JumpProbability(last_jump, src.size());
+ }
+ }
+ }
+ }
+ cerr << "number of edges to consider: " << ss.size() << endl;
+ const int sampled = rng.SelectSample(ss);
+ prob_t q_n = ss[sampled] / z;
+ p = tmp_p[sampled];
+ //m.IncrementRule(*p.rules.back());
+ p.weight *= p.gamma_last / q_n;
+ cerr << "[w=" << log(p.weight) << "]\tsampled rule: " << p.rules.back()->AsString() << endl;
+ cerr << p << endl;
+ }
+ } // loop over particles (pi = 0 .. particles)
+ if (done_nothing) all_complete = true;
+ }
+ pfss.clear();
+ for (int i = 0; i < lps.size(); ++i)
+ pfss.add(lps[i].weight);
+ const int sampled = rng.SelectSample(pfss);
+ ps[ci] = lps[sampled];
+ m.IncrementRules(lps[sampled].rules);
+ m.IncrementJumps(lps[sampled].src_jumps, src.size());
+ for (int i = 0; i < lps[sampled].rules.size(); ++i) { cerr << "S:\t" << lps[sampled].rules[i]->AsString() << "\n"; }
+ cerr << "tmp-LLH: " << log(m.Likelihood()) << endl;
+ }
+ cerr << "LLH: " << log(m.Likelihood()) << endl;
+ for (int sni = 0; sni < 5; ++sni) {
+ for (int i = 0; i < ps[sni].rules.size(); ++i) { cerr << "\t" << ps[sni].rules[i]->AsString() << endl; }
+ }
+ }
+ return 0;
+}
+
diff --git a/gi/pf/pfdist.new.cc b/gi/pf/pfdist.new.cc
new file mode 100644
index 00000000..3169eb75
--- /dev/null
+++ b/gi/pf/pfdist.new.cc
@@ -0,0 +1,620 @@
+#include <iostream>
+#include <tr1/memory>
+#include <queue>
+
+#include <boost/functional.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "base_measures.h"
+#include "reachability.h"
+#include "viterbi.h"
+#include "hg.h"
+#include "trule.h"
+#include "tdict.h"
+#include "filelib.h"
+#include "dict.h"
+#include "sampler.h"
+#include "ccrp_nt.h"
+#include "ccrp_onetable.h"
+
+using namespace std;
+using namespace tr1;
+namespace po = boost::program_options;
+
+shared_ptr<MT19937> prng;
+
+size_t hash_value(const TRule& r) {
+ size_t h = boost::hash_value(r.e_);
+ boost::hash_combine(h, -r.lhs_);
+ boost::hash_combine(h, boost::hash_value(r.f_));
+ return h;
+}
+
+bool operator==(const TRule& a, const TRule& b) {
+ return (a.lhs_ == b.lhs_ && a.e_ == b.e_ && a.f_ == b.f_);
+}
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
+ ("particles,p",po::value<unsigned>()->default_value(25),"Number of particles")
+ ("input,i",po::value<string>(),"Read parallel data from")
+ ("max_src_phrase",po::value<unsigned>()->default_value(5),"Maximum length of source language phrases")
+ ("max_trg_phrase",po::value<unsigned>()->default_value(5),"Maximum length of target language phrases")
+ ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
+ ("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)")
+ ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
+ ("random_seed,S",po::value<uint32_t>(), "Random seed");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || (conf->count("input") == 0)) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+void ReadParallelCorpus(const string& filename,
+ vector<vector<WordID> >* f,
+ vector<vector<WordID> >* e,
+ set<WordID>* vocab_f,
+ set<WordID>* vocab_e) {
+ f->clear();
+ e->clear();
+ vocab_f->clear();
+ vocab_e->clear();
+ istream* in;
+ if (filename == "-")
+ in = &cin;
+ else
+ in = new ifstream(filename.c_str());
+ assert(*in);
+ string line;
+ const WordID kDIV = TD::Convert("|||");
+ vector<WordID> tmp;
+ while(*in) {
+ getline(*in, line);
+ if (line.empty() && !*in) break;
+ e->push_back(vector<int>());
+ f->push_back(vector<int>());
+ vector<int>& le = e->back();
+ vector<int>& lf = f->back();
+ tmp.clear();
+ TD::ConvertSentence(line, &tmp);
+ bool isf = true;
+ for (unsigned i = 0; i < tmp.size(); ++i) {
+ const int cur = tmp[i];
+ if (isf) {
+ if (kDIV == cur) { isf = false; } else {
+ lf.push_back(cur);
+ vocab_f->insert(cur);
+ }
+ } else {
+ assert(cur != kDIV);
+ le.push_back(cur);
+ vocab_e->insert(cur);
+ }
+ }
+ assert(isf == false);
+ }
+ if (in != &cin) delete in;
+}
+
+#if 0
+struct MyConditionalModel {
+ MyConditionalModel(PhraseConditionalBase& rcp0) : rp0(&rcp0), base(prob_t::One()), src_phrases(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {}
+
+ prob_t srcp0(const vector<WordID>& src) const {
+ prob_t p(1.0 / 3000.0);
+ p.poweq(src.size());
+ prob_t lenp; lenp.logeq(log_poisson(src.size(), 1.0));
+ p *= lenp;
+ return p;
+ }
+
+ void DecrementRule(const TRule& rule) {
+ const RuleCRPMap::iterator it = rules.find(rule.f_);
+ assert(it != rules.end());
+ if (it->second.decrement(rule)) {
+ base /= (*rp0)(rule);
+ if (it->second.num_customers() == 0)
+ rules.erase(it);
+ }
+ if (src_phrases.decrement(rule.f_))
+ base /= srcp0(rule.f_);
+ }
+
+ void IncrementRule(const TRule& rule) {
+ RuleCRPMap::iterator it = rules.find(rule.f_);
+ if (it == rules.end())
+ it = rules.insert(make_pair(rule.f_, CCRP_NoTable<TRule>(1,1))).first;
+ if (it->second.increment(rule)) {
+ base *= (*rp0)(rule);
+ }
+ if (src_phrases.increment(rule.f_))
+ base *= srcp0(rule.f_);
+ }
+
+ void IncrementRules(const vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ IncrementRule(*rules[i]);
+ }
+
+ void DecrementRules(const vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ DecrementRule(*rules[i]);
+ }
+
+ void IncrementJump(int dist, unsigned src_len) {
+ assert(src_len > 0);
+ if (src_jumps[src_len].increment(dist))
+ base *= jp0(dist, src_len);
+ }
+
+ void DecrementJump(int dist, unsigned src_len) {
+ assert(src_len > 0);
+ if (src_jumps[src_len].decrement(dist))
+ base /= jp0(dist, src_len);
+ }
+
+ void IncrementJumps(const vector<int>& js, unsigned src_len) {
+ for (unsigned i = 0; i < js.size(); ++i)
+ IncrementJump(js[i], src_len);
+ }
+
+ void DecrementJumps(const vector<int>& js, unsigned src_len) {
+ for (unsigned i = 0; i < js.size(); ++i)
+ DecrementJump(js[i], src_len);
+ }
+
+ // p(jump = dist | src_len , z)
+ prob_t JumpProbability(int dist, unsigned src_len) {
+ const prob_t p0 = jp0(dist, src_len);
+ const double lp = src_jumps[src_len].logprob(dist, log(p0));
+ prob_t q; q.logeq(lp);
+ return q;
+ }
+
+ // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z)
+ prob_t RuleProbability(const TRule& rule) const {
+ const prob_t p0 = (*rp0)(rule);
+ prob_t srcp; srcp.logeq(src_phrases.logprob(rule.f_, log(srcp0(rule.f_))));
+ const RuleCRPMap::const_iterator it = rules.find(rule.f_);
+ if (it == rules.end()) return srcp * p0;
+ const double lp = it->second.logprob(rule, log(p0));
+ prob_t q; q.logeq(lp);
+ return q * srcp;
+ }
+
+ prob_t Likelihood() const {
+ prob_t p = base;
+ for (RuleCRPMap::const_iterator it = rules.begin();
+ it != rules.end(); ++it) {
+ prob_t cl; cl.logeq(it->second.log_crp_prob());
+ p *= cl;
+ }
+ for (unsigned l = 1; l < src_jumps.size(); ++l) {
+ if (src_jumps[l].num_customers() > 0) {
+ prob_t q;
+ q.logeq(src_jumps[l].log_crp_prob());
+ p *= q;
+ }
+ }
+ return p;
+ }
+
+ JumpBase jp0;
+ const PhraseConditionalBase* rp0;
+ prob_t base;
+ typedef unordered_map<vector<WordID>, CCRP_NoTable<TRule>, boost::hash<vector<WordID> > > RuleCRPMap;
+ RuleCRPMap rules;
+ CCRP_NoTable<vector<WordID> > src_phrases;
+ vector<CCRP_NoTable<int> > src_jumps;
+};
+
+#endif
+
+struct MyJointModel {
+ MyJointModel(PhraseJointBase& rcp0) :
+ rp0(rcp0), base(prob_t::One()), rules(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {}
+
+ void DecrementRule(const TRule& rule) {
+ if (rules.decrement(rule))
+ base /= rp0(rule);
+ }
+
+ void IncrementRule(const TRule& rule) {
+ if (rules.increment(rule))
+ base *= rp0(rule);
+ }
+
+ void IncrementRules(const vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ IncrementRule(*rules[i]);
+ }
+
+ void DecrementRules(const vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ DecrementRule(*rules[i]);
+ }
+
+ void IncrementJump(int dist, unsigned src_len) {
+ assert(src_len > 0);
+ if (src_jumps[src_len].increment(dist))
+ base *= jp0(dist, src_len);
+ }
+
+ void DecrementJump(int dist, unsigned src_len) {
+ assert(src_len > 0);
+ if (src_jumps[src_len].decrement(dist))
+ base /= jp0(dist, src_len);
+ }
+
+ void IncrementJumps(const vector<int>& js, unsigned src_len) {
+ for (unsigned i = 0; i < js.size(); ++i)
+ IncrementJump(js[i], src_len);
+ }
+
+ void DecrementJumps(const vector<int>& js, unsigned src_len) {
+ for (unsigned i = 0; i < js.size(); ++i)
+ DecrementJump(js[i], src_len);
+ }
+
+ // p(jump = dist | src_len , z)
+ prob_t JumpProbability(int dist, unsigned src_len) {
+ const prob_t p0 = jp0(dist, src_len);
+ const double lp = src_jumps[src_len].logprob(dist, log(p0));
+ prob_t q; q.logeq(lp);
+ return q;
+ }
+
+ // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z)
+ prob_t RuleProbability(const TRule& rule) const {
+ prob_t p; p.logeq(rules.logprob(rule, log(rp0(rule))));
+ return p;
+ }
+
+ prob_t Likelihood() const {
+ prob_t p = base;
+ prob_t q; q.logeq(rules.log_crp_prob());
+ p *= q;
+ for (unsigned l = 1; l < src_jumps.size(); ++l) {
+ if (src_jumps[l].num_customers() > 0) {
+ prob_t q;
+ q.logeq(src_jumps[l].log_crp_prob());
+ p *= q;
+ }
+ }
+ return p;
+ }
+
+ JumpBase jp0;
+ const PhraseJointBase& rp0;
+ prob_t base;
+ CCRP_NoTable<TRule> rules;
+ vector<CCRP_NoTable<int> > src_jumps;
+};
+
+struct BackwardEstimate {
+ BackwardEstimate(const Model1& m1, const vector<WordID>& src, const vector<WordID>& trg) :
+ model1_(m1), src_(src), trg_(trg) {
+ }
+ const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const {
+ assert(src_.size() == src_cov.size());
+ assert(trg_cov <= trg_.size());
+ prob_t& e = cache_[src_cov][trg_cov];
+ if (e.is_0()) {
+ if (trg_cov == trg_.size()) { e = prob_t::One(); return e; }
+ vector<WordID> r(src_.size() + 1); r.clear();
+ r.push_back(0); // NULL word
+ for (int i = 0; i < src_cov.size(); ++i)
+ if (!src_cov[i]) r.push_back(src_[i]);
+ const prob_t uniform_alignment(1.0 / r.size());
+ e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining)
+ for (unsigned j = trg_cov; j < trg_.size(); ++j) {
+ prob_t p;
+ for (unsigned i = 0; i < r.size(); ++i)
+ p += model1_(r[i], trg_[j]);
+ if (p.is_0()) {
+ cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n";
+ abort();
+ }
+ p *= uniform_alignment;
+ e *= p;
+ }
+ }
+ return e;
+ }
+ const Model1& model1_;
+ const vector<WordID>& src_;
+ const vector<WordID>& trg_;
+ mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_;
+};
+
+struct BackwardEstimateSym {
+ BackwardEstimateSym(const Model1& m1,
+ const Model1& invm1, const vector<WordID>& src, const vector<WordID>& trg) :
+ model1_(m1), invmodel1_(invm1), src_(src), trg_(trg) {
+ }
+ const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const {
+ assert(src_.size() == src_cov.size());
+ assert(trg_cov <= trg_.size());
+ prob_t& e = cache_[src_cov][trg_cov];
+ if (e.is_0()) {
+ if (trg_cov == trg_.size()) { e = prob_t::One(); return e; }
+ vector<WordID> r(src_.size() + 1); r.clear();
+ for (int i = 0; i < src_cov.size(); ++i)
+ if (!src_cov[i]) r.push_back(src_[i]);
+ r.push_back(0); // NULL word
+ const prob_t uniform_alignment(1.0 / r.size());
+ e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining)
+ for (unsigned j = trg_cov; j < trg_.size(); ++j) {
+ prob_t p;
+ for (unsigned i = 0; i < r.size(); ++i)
+ p += model1_(r[i], trg_[j]);
+ if (p.is_0()) {
+ cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n";
+ abort();
+ }
+ p *= uniform_alignment;
+ e *= p;
+ }
+ r.pop_back();
+ const prob_t inv_uniform(1.0 / (trg_.size() - trg_cov + 1.0));
+ prob_t inv;
+ inv.logeq(log_poisson(r.size(), trg_.size() - trg_cov));
+ for (unsigned i = 0; i < r.size(); ++i) {
+ prob_t p;
+ for (unsigned j = trg_cov - 1; j < trg_.size(); ++j)
+ p += invmodel1_(j < trg_cov ? 0 : trg_[j], r[i]);
+ if (p.is_0()) {
+ cerr << "ERROR: p_inv(" << TD::Convert(r[i]) << " | " << TD::GetString(trg_) << ") = 0!\n";
+ abort();
+ }
+ p *= inv_uniform;
+ inv *= p;
+ }
+ prob_t x = pow(e * inv, 0.5);
+ e = x;
+ //cerr << "Forward: " << log(e) << "\tBackward: " << log(inv) << "\t prop: " << log(x) << endl;
+ }
+ return e;
+ }
+ const Model1& model1_;
+ const Model1& invmodel1_;
+ const vector<WordID>& src_;
+ const vector<WordID>& trg_;
+ mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_;
+};
+
+struct Particle {
+ Particle() : weight(prob_t::One()), src_cov(), trg_cov(), prev_pos(-1) {}
+ prob_t weight;
+ prob_t gamma_last;
+ vector<int> src_jumps;
+ vector<TRulePtr> rules;
+ vector<bool> src_cv;
+ int src_cov;
+ int trg_cov;
+ int prev_pos;
+};
+
+ostream& operator<<(ostream& o, const vector<bool>& v) {
+ for (int i = 0; i < v.size(); ++i)
+ o << (v[i] ? '1' : '0');
+ return o;
+}
+ostream& operator<<(ostream& o, const Particle& p) {
+ o << "[cv=" << p.src_cv << " src_cov=" << p.src_cov << " trg_cov=" << p.trg_cov << " last_pos=" << p.prev_pos << " num_rules=" << p.rules.size() << " w=" << log(p.weight) << ']';
+ return o;
+}
+
+void FilterCrapParticlesAndReweight(vector<Particle>* pps) {
+ vector<Particle>& ps = *pps;
+ SampleSet<prob_t> ss;
+ for (int i = 0; i < ps.size(); ++i)
+ ss.add(ps[i].weight);
+ vector<Particle> nps; nps.reserve(ps.size());
+ const prob_t uniform_weight(1.0 / ps.size());
+ for (int i = 0; i < ps.size(); ++i) {
+ nps.push_back(ps[prng->SelectSample(ss)]);
+ nps[i].weight = uniform_weight;
+ }
+ nps.swap(ps);
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ const unsigned kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
+ const unsigned kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
+ const unsigned particles = conf["particles"].as<unsigned>();
+ const unsigned samples = conf["samples"].as<unsigned>();
+
+ if (!conf.count("model1")) {
+ cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
+ return 1;
+ }
+ if (conf.count("random_seed"))
+ prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ prng.reset(new MT19937);
+ MT19937& rng = *prng;
+
+ vector<vector<WordID> > corpuse, corpusf;
+ set<WordID> vocabe, vocabf;
+ cerr << "Reading corpus...\n";
+ ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
+ cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n";
+ cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
+ assert(corpusf.size() == corpuse.size());
+
+ const int kLHS = -TD::Convert("X");
+ Model1 m1(conf["model1"].as<string>());
+ Model1 invm1(conf["inverse_model1"].as<string>());
+
+#if 0
+ PhraseConditionalBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size());
+ MyConditionalModel m(lp0);
+#else
+ PhraseJointBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size());
+ MyJointModel m(lp0);
+#endif
+
+ cerr << "Initializing reachability limits...\n";
+ vector<Particle> ps(corpusf.size());
+ vector<Reachability> reaches; reaches.reserve(corpusf.size());
+ for (int ci = 0; ci < corpusf.size(); ++ci)
+ reaches.push_back(Reachability(corpusf[ci].size(),
+ corpuse[ci].size(),
+ kMAX_SRC_PHRASE,
+ kMAX_TRG_PHRASE));
+ cerr << "Sampling...\n";
+ vector<Particle> tmp_p(10000); // work space
+ SampleSet<prob_t> pfss;
+ for (int SS=0; SS < samples; ++SS) {
+ for (int ci = 0; ci < corpusf.size(); ++ci) {
+ vector<int>& src = corpusf[ci];
+ vector<int>& trg = corpuse[ci];
+ m.DecrementRules(ps[ci].rules);
+ m.DecrementJumps(ps[ci].src_jumps, src.size());
+
+ //BackwardEstimate be(m1, src, trg);
+ BackwardEstimateSym be(m1, invm1, src, trg);
+ const Reachability& r = reaches[ci];
+ vector<Particle> lps(particles);
+
+ for (int pi = 0; pi < particles; ++pi) {
+ Particle& p = lps[pi];
+ p.src_cv.resize(src.size(), false);
+ }
+
+ bool all_complete = false;
+ while(!all_complete) {
+ SampleSet<prob_t> ss;
+
+ // all particles have now been extended a bit, we will reweight them now
+ if (lps[0].trg_cov > 0)
+ FilterCrapParticlesAndReweight(&lps);
+
+ // loop over all particles and extend them
+ bool done_nothing = true;
+ for (int pi = 0; pi < particles; ++pi) {
+ Particle& p = lps[pi];
+ int tic = 0;
+ const int rejuv_freq = 1;
+ while(p.trg_cov < trg.size() && tic < rejuv_freq) {
+ ++tic;
+ done_nothing = false;
+ ss.clear();
+ TRule x; x.lhs_ = kLHS;
+ prob_t z;
+ int first_uncovered = src.size();
+ int last_uncovered = -1;
+ for (int i = 0; i < src.size(); ++i) {
+ const bool is_uncovered = !p.src_cv[i];
+ if (i < first_uncovered && is_uncovered) first_uncovered = i;
+ if (is_uncovered && i > last_uncovered) last_uncovered = i;
+ }
+ assert(last_uncovered > -1);
+ assert(first_uncovered < src.size());
+
+ for (int trg_len = 1; trg_len <= kMAX_TRG_PHRASE; ++trg_len) {
+ x.e_.push_back(trg[trg_len - 1 + p.trg_cov]);
+ for (int src_len = 1; src_len <= kMAX_SRC_PHRASE; ++src_len) {
+ if (!r.edges[p.src_cov][p.trg_cov][src_len][trg_len]) continue;
+
+ const int last_possible_start = last_uncovered - src_len + 1;
+ assert(last_possible_start >= 0);
+ //cerr << src_len << "," << trg_len << " is allowed. E=" << TD::GetString(x.e_) << endl;
+ //cerr << " first_uncovered=" << first_uncovered << " last_possible_start=" << last_possible_start << endl;
+ for (int i = first_uncovered; i <= last_possible_start; ++i) {
+ if (p.src_cv[i]) continue;
+ assert(ss.size() < tmp_p.size()); // if fails increase tmp_p size
+ Particle& np = tmp_p[ss.size()];
+ np = p;
+ x.f_.clear();
+ int gap_add = 0;
+ bool bad = false;
+ prob_t jp = prob_t::One();
+ int prev_pos = p.prev_pos;
+ for (int j = 0; j < src_len; ++j) {
+ if ((j + i + gap_add) == src.size()) { bad = true; break; }
+ while ((i+j+gap_add) < src.size() && p.src_cv[i + j + gap_add]) { ++gap_add; }
+ if ((j + i + gap_add) == src.size()) { bad = true; break; }
+ np.src_cv[i + j + gap_add] = true;
+ x.f_.push_back(src[i + j + gap_add]);
+ jp *= m.JumpProbability(i + j + gap_add - prev_pos, src.size());
+ int jump = i + j + gap_add - prev_pos;
+ assert(jump != 0);
+ np.src_jumps.push_back(jump);
+ prev_pos = i + j + gap_add;
+ }
+ if (bad) continue;
+ np.prev_pos = prev_pos;
+ np.src_cov += x.f_.size();
+ np.trg_cov += x.e_.size();
+ if (x.f_.size() != src_len) continue;
+ prob_t rp = m.RuleProbability(x);
+ np.gamma_last = rp * jp;
+ const prob_t u = pow(np.gamma_last * be(np.src_cv, np.trg_cov), 0.2);
+ //cerr << "**rule=" << x << endl;
+ //cerr << " u=" << log(u) << " rule=" << rp << " jump=" << jp << endl;
+ ss.add(u);
+ np.rules.push_back(TRulePtr(new TRule(x)));
+ z += u;
+
+ const bool completed = (p.trg_cov == trg.size());
+ if (completed) {
+ int last_jump = src.size() - p.prev_pos;
+ assert(last_jump > 0);
+ p.src_jumps.push_back(last_jump);
+ p.weight *= m.JumpProbability(last_jump, src.size());
+ }
+ }
+ }
+ }
+ cerr << "number of edges to consider: " << ss.size() << endl;
+ const int sampled = rng.SelectSample(ss);
+ prob_t q_n = ss[sampled] / z;
+ p = tmp_p[sampled];
+ //m.IncrementRule(*p.rules.back());
+ p.weight *= p.gamma_last / q_n;
+ cerr << "[w=" << log(p.weight) << "]\tsampled rule: " << p.rules.back()->AsString() << endl;
+ cerr << p << endl;
+ }
+ } // loop over particles (pi = 0 .. particles)
+ if (done_nothing) all_complete = true;
+ }
+ pfss.clear();
+ for (int i = 0; i < lps.size(); ++i)
+ pfss.add(lps[i].weight);
+ const int sampled = rng.SelectSample(pfss);
+ ps[ci] = lps[sampled];
+ m.IncrementRules(lps[sampled].rules);
+ m.IncrementJumps(lps[sampled].src_jumps, src.size());
+ for (int i = 0; i < lps[sampled].rules.size(); ++i) { cerr << "S:\t" << lps[sampled].rules[i]->AsString() << "\n"; }
+ cerr << "tmp-LLH: " << log(m.Likelihood()) << endl;
+ }
+ cerr << "LLH: " << log(m.Likelihood()) << endl;
+ for (int sni = 0; sni < 5; ++sni) {
+ for (int i = 0; i < ps[sni].rules.size(); ++i) { cerr << "\t" << ps[sni].rules[i]->AsString() << endl; }
+ }
+ }
+ return 0;
+}
+
diff --git a/gi/pf/pfnaive.cc b/gi/pf/pfnaive.cc
new file mode 100644
index 00000000..33dc08c3
--- /dev/null
+++ b/gi/pf/pfnaive.cc
@@ -0,0 +1,280 @@
+#include <iostream>
+#include <tr1/memory>
+#include <queue>
+
+#include <boost/functional.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "base_measures.h"
+#include "monotonic_pseg.h"
+#include "reachability.h"
+#include "viterbi.h"
+#include "hg.h"
+#include "trule.h"
+#include "tdict.h"
+#include "filelib.h"
+#include "dict.h"
+#include "sampler.h"
+#include "ccrp_nt.h"
+#include "ccrp_onetable.h"
+#include "corpus.h"
+
+using namespace std;
+using namespace tr1;
+namespace po = boost::program_options;
+
+shared_ptr<MT19937> prng;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
+ ("particles,p",po::value<unsigned>()->default_value(30),"Number of particles")
+ ("filter_frequency,f",po::value<unsigned>()->default_value(5),"Number of time steps between filterings")
+ ("input,i",po::value<string>(),"Read parallel data from")
+ ("max_src_phrase",po::value<unsigned>()->default_value(5),"Maximum length of source language phrases")
+ ("max_trg_phrase",po::value<unsigned>()->default_value(5),"Maximum length of target language phrases")
+ ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
+ ("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)")
+ ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
+ ("random_seed,S",po::value<uint32_t>(), "Random seed");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || (conf->count("input") == 0)) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+struct BackwardEstimateSym {
+ BackwardEstimateSym(const Model1& m1,
+ const Model1& invm1, const vector<WordID>& src, const vector<WordID>& trg) :
+ model1_(m1), invmodel1_(invm1), src_(src), trg_(trg) {
+ }
+ const prob_t& operator()(unsigned src_cov, unsigned trg_cov) const {
+ assert(src_cov <= src_.size());
+ assert(trg_cov <= trg_.size());
+ prob_t& e = cache_[src_cov][trg_cov];
+ if (e.is_0()) {
+ if (trg_cov == trg_.size()) { e = prob_t::One(); return e; }
+ vector<WordID> r(src_.size() + 1); r.clear();
+ for (int i = src_cov; i < src_.size(); ++i)
+ r.push_back(src_[i]);
+ r.push_back(0); // NULL word
+ const prob_t uniform_alignment(1.0 / r.size());
+ e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining)
+ for (unsigned j = trg_cov; j < trg_.size(); ++j) {
+ prob_t p;
+ for (unsigned i = 0; i < r.size(); ++i)
+ p += model1_(r[i], trg_[j]);
+ if (p.is_0()) {
+ cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n";
+ abort();
+ }
+ p *= uniform_alignment;
+ e *= p;
+ }
+ r.pop_back();
+ const prob_t inv_uniform(1.0 / (trg_.size() - trg_cov + 1.0));
+ prob_t inv;
+ inv.logeq(log_poisson(r.size(), trg_.size() - trg_cov));
+ for (unsigned i = 0; i < r.size(); ++i) {
+ prob_t p;
+ for (unsigned j = trg_cov - 1; j < trg_.size(); ++j)
+ p += invmodel1_(j < trg_cov ? 0 : trg_[j], r[i]);
+ if (p.is_0()) {
+ cerr << "ERROR: p_inv(" << TD::Convert(r[i]) << " | " << TD::GetString(trg_) << ") = 0!\n";
+ abort();
+ }
+ p *= inv_uniform;
+ inv *= p;
+ }
+ prob_t x = pow(e * inv, 0.5);
+ e = x;
+ //cerr << "Forward: " << log(e) << "\tBackward: " << log(inv) << "\t prop: " << log(x) << endl;
+ }
+ return e;
+ }
+ const Model1& model1_;
+ const Model1& invmodel1_;
+ const vector<WordID>& src_;
+ const vector<WordID>& trg_;
+ mutable unordered_map<unsigned, map<unsigned, prob_t> > cache_;
+};
+
+struct Particle {
+ Particle() : weight(prob_t::One()), src_cov(), trg_cov() {}
+ prob_t weight;
+ prob_t gamma_last;
+ vector<TRulePtr> rules;
+ int src_cov;
+ int trg_cov;
+};
+
+ostream& operator<<(ostream& o, const vector<bool>& v) {
+ for (int i = 0; i < v.size(); ++i)
+ o << (v[i] ? '1' : '0');
+ return o;
+}
+ostream& operator<<(ostream& o, const Particle& p) {
+ o << "[src_cov=" << p.src_cov << " trg_cov=" << p.trg_cov << " num_rules=" << p.rules.size() << " w=" << log(p.weight) << ']';
+ return o;
+}
+
+void FilterCrapParticlesAndReweight(vector<Particle>* pps) {
+ vector<Particle>& ps = *pps;
+ SampleSet<prob_t> ss;
+ for (int i = 0; i < ps.size(); ++i)
+ ss.add(ps[i].weight);
+ vector<Particle> nps; nps.reserve(ps.size());
+ const prob_t uniform_weight(1.0 / ps.size());
+ for (int i = 0; i < ps.size(); ++i) {
+ nps.push_back(ps[prng->SelectSample(ss)]);
+ nps[i].weight = uniform_weight;
+ }
+ nps.swap(ps);
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ const unsigned kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
+ const unsigned kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
+ const unsigned particles = conf["particles"].as<unsigned>();
+ const unsigned samples = conf["samples"].as<unsigned>();
+ const unsigned rejuv_freq = conf["filter_frequency"].as<unsigned>();
+
+ if (!conf.count("model1")) {
+ cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
+ return 1;
+ }
+ if (conf.count("random_seed"))
+ prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ prng.reset(new MT19937);
+ MT19937& rng = *prng;
+
+ vector<vector<WordID> > corpuse, corpusf;
+ set<WordID> vocabe, vocabf;
+ cerr << "Reading corpus...\n";
+ corpus::ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
+ cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n";
+ cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
+ assert(corpusf.size() == corpuse.size());
+
+ const int kLHS = -TD::Convert("X");
+ Model1 m1(conf["model1"].as<string>());
+ Model1 invm1(conf["inverse_model1"].as<string>());
+
+ PhraseJointBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size());
+ MonotonicParallelSegementationModel m(lp0);
+
+ cerr << "Initializing reachability limits...\n";
+ vector<Particle> ps(corpusf.size());
+ vector<Reachability> reaches; reaches.reserve(corpusf.size());
+ for (int ci = 0; ci < corpusf.size(); ++ci)
+ reaches.push_back(Reachability(corpusf[ci].size(),
+ corpuse[ci].size(),
+ kMAX_SRC_PHRASE,
+ kMAX_TRG_PHRASE));
+ cerr << "Sampling...\n";
+ vector<Particle> tmp_p(10000); // work space
+ SampleSet<prob_t> pfss;
+ for (int SS=0; SS < samples; ++SS) {
+ for (int ci = 0; ci < corpusf.size(); ++ci) {
+ vector<int>& src = corpusf[ci];
+ vector<int>& trg = corpuse[ci];
+ m.DecrementRulesAndStops(ps[ci].rules);
+ const prob_t q_stop = m.StopProbability();
+ const prob_t q_cont = m.ContinueProbability();
+ cerr << "P(stop)=" << q_stop << "\tP(continue)=" <<q_cont << endl;
+
+ BackwardEstimateSym be(m1, invm1, src, trg);
+ const Reachability& r = reaches[ci];
+ vector<Particle> lps(particles);
+
+ bool all_complete = false;
+ while(!all_complete) {
+ SampleSet<prob_t> ss;
+
+ // all particles have now been extended a bit, we will reweight them now
+ if (lps[0].trg_cov > 0)
+ FilterCrapParticlesAndReweight(&lps);
+
+ // loop over all particles and extend them
+ bool done_nothing = true;
+ for (int pi = 0; pi < particles; ++pi) {
+ Particle& p = lps[pi];
+ int tic = 0;
+ while(p.trg_cov < trg.size() && tic < rejuv_freq) {
+ ++tic;
+ done_nothing = false;
+ ss.clear();
+ TRule x; x.lhs_ = kLHS;
+ prob_t z;
+
+ for (int trg_len = 1; trg_len <= kMAX_TRG_PHRASE; ++trg_len) {
+ x.e_.push_back(trg[trg_len - 1 + p.trg_cov]);
+ for (int src_len = 1; src_len <= kMAX_SRC_PHRASE; ++src_len) {
+ if (!r.edges[p.src_cov][p.trg_cov][src_len][trg_len]) continue;
+
+ int i = p.src_cov;
+ assert(ss.size() < tmp_p.size()); // if fails increase tmp_p size
+ Particle& np = tmp_p[ss.size()];
+ np = p;
+ x.f_.clear();
+ for (int j = 0; j < src_len; ++j)
+ x.f_.push_back(src[i + j]);
+ np.src_cov += x.f_.size();
+ np.trg_cov += x.e_.size();
+ const bool stop_now = (np.src_cov == src_len && np.trg_cov == trg_len);
+ prob_t rp = m.RuleProbability(x) * (stop_now ? q_stop : q_cont);
+ np.gamma_last = rp;
+ const prob_t u = pow(np.gamma_last * pow(be(np.src_cov, np.trg_cov), 1.2), 0.1);
+ //cerr << "**rule=" << x << endl;
+ //cerr << " u=" << log(u) << " rule=" << rp << endl;
+ ss.add(u);
+ np.rules.push_back(TRulePtr(new TRule(x)));
+ z += u;
+ }
+ }
+ //cerr << "number of edges to consider: " << ss.size() << endl;
+ const int sampled = rng.SelectSample(ss);
+ prob_t q_n = ss[sampled] / z;
+ p = tmp_p[sampled];
+ //m.IncrementRule(*p.rules.back());
+ p.weight *= p.gamma_last / q_n;
+ //cerr << "[w=" << log(p.weight) << "]\tsampled rule: " << p.rules.back()->AsString() << endl;
+ //cerr << p << endl;
+ }
+ } // loop over particles (pi = 0 .. particles)
+ if (done_nothing) all_complete = true;
+ }
+ pfss.clear();
+ for (int i = 0; i < lps.size(); ++i)
+ pfss.add(lps[i].weight);
+ const int sampled = rng.SelectSample(pfss);
+ ps[ci] = lps[sampled];
+ m.IncrementRulesAndStops(lps[sampled].rules);
+ for (int i = 0; i < lps[sampled].rules.size(); ++i) { cerr << "S:\t" << lps[sampled].rules[i]->AsString() << "\n"; }
+ cerr << "tmp-LLH: " << log(m.Likelihood()) << endl;
+ }
+ cerr << "LLH: " << log(m.Likelihood()) << endl;
+ }
+ return 0;
+}
+
diff --git a/gi/pf/reachability.cc b/gi/pf/reachability.cc
new file mode 100644
index 00000000..73dd8d39
--- /dev/null
+++ b/gi/pf/reachability.cc
@@ -0,0 +1,64 @@
+#include "reachability.h"
+
+#include <vector>
+#include <iostream>
+
+using namespace std;
+
+struct SState {
+ SState() : prev_src_covered(), prev_trg_covered() {}
+ SState(int i, int j) : prev_src_covered(i), prev_trg_covered(j) {}
+ int prev_src_covered;
+ int prev_trg_covered;
+};
+
+void Reachability::ComputeReachability(int srclen, int trglen, int src_max_phrase_len, int trg_max_phrase_len) {
+ typedef boost::multi_array<vector<SState>, 2> array_type;
+ array_type a(boost::extents[srclen + 1][trglen + 1]);
+ a[0][0].push_back(SState());
+ for (int i = 0; i < srclen; ++i) {
+ for (int j = 0; j < trglen; ++j) {
+ if (a[i][j].size() == 0) continue;
+ const SState prev(i,j);
+ for (int k = 1; k <= src_max_phrase_len; ++k) {
+ if ((i + k) > srclen) continue;
+ for (int l = 1; l <= trg_max_phrase_len; ++l) {
+ if ((j + l) > trglen) continue;
+ a[i + k][j + l].push_back(prev);
+ }
+ }
+ }
+ }
+ a[0][0].clear();
+ //cerr << "Final cell contains " << a[srclen][trglen].size() << " back pointers\n";
+ if (a[srclen][trglen].size() == 0) {
+ cerr << "Sentence with length (" << srclen << ',' << trglen << ") violates reachability constraints\n";
+ return;
+ }
+
+ typedef boost::multi_array<bool, 2> rarray_type;
+ rarray_type r(boost::extents[srclen + 1][trglen + 1]);
+ r[srclen][trglen] = true;
+ for (int i = srclen; i >= 0; --i) {
+ for (int j = trglen; j >= 0; --j) {
+ vector<SState>& prevs = a[i][j];
+ if (!r[i][j]) { prevs.clear(); }
+ for (int k = 0; k < prevs.size(); ++k) {
+ r[prevs[k].prev_src_covered][prevs[k].prev_trg_covered] = true;
+ int src_delta = i - prevs[k].prev_src_covered;
+ edges[prevs[k].prev_src_covered][prevs[k].prev_trg_covered][src_delta][j - prevs[k].prev_trg_covered] = true;
+ short &msd = max_src_delta[prevs[k].prev_src_covered][prevs[k].prev_trg_covered];
+ if (src_delta > msd) msd = src_delta;
+ }
+ }
+ }
+ assert(!edges[0][0][1][0]);
+ assert(!edges[0][0][0][1]);
+ assert(!edges[0][0][0][0]);
+ assert(max_src_delta[0][0] > 0);
+ //cerr << "First cell contains " << b[0][0].size() << " forward pointers\n";
+ //for (int i = 0; i < b[0][0].size(); ++i) {
+ // cerr << " -> (" << b[0][0][i].next_src_covered << "," << b[0][0][i].next_trg_covered << ")\n";
+ //}
+ }
+
diff --git a/gi/pf/reachability.h b/gi/pf/reachability.h
new file mode 100644
index 00000000..98450ec1
--- /dev/null
+++ b/gi/pf/reachability.h
@@ -0,0 +1,28 @@
+#ifndef _REACHABILITY_H_
+#define _REACHABILITY_H_
+
+#include "boost/multi_array.hpp"
+
+// determines minimum and maximum lengths of outgoing edges from all
+// coverage positions such that the alignment path respects src and
+// trg maximum phrase sizes
+//
+// runs in O(n^2 * src_max * trg_max) time but should be relatively fast
+//
+// currently forbids 0 -> n and n -> 0 alignments
+
+struct Reachability {
+ boost::multi_array<bool, 4> edges; // edges[src_covered][trg_covered][x][trg_delta] is this edge worth exploring?
+ boost::multi_array<short, 2> max_src_delta; // msd[src_covered][trg_covered] -- the largest src delta that's valid
+
+ Reachability(int srclen, int trglen, int src_max_phrase_len, int trg_max_phrase_len) :
+ edges(boost::extents[srclen][trglen][src_max_phrase_len+1][trg_max_phrase_len+1]),
+ max_src_delta(boost::extents[srclen][trglen]) {
+ ComputeReachability(srclen, trglen, src_max_phrase_len, trg_max_phrase_len);
+ }
+
+ private:
+ void ComputeReachability(int srclen, int trglen, int src_max_phrase_len, int trg_max_phrase_len);
+};
+
+#endif
diff --git a/gi/pf/tpf.cc b/gi/pf/tpf.cc
new file mode 100644
index 00000000..7348d21c
--- /dev/null
+++ b/gi/pf/tpf.cc
@@ -0,0 +1,99 @@
+#include <iostream>
+#include <tr1/memory>
+#include <queue>
+
+#include "sampler.h"
+
+using namespace std;
+using namespace tr1;
+
+shared_ptr<MT19937> prng;
+
+struct Particle {
+ Particle() : weight(prob_t::One()) {}
+ vector<int> states;
+ prob_t weight;
+ prob_t gamma_last;
+};
+
+ostream& operator<<(ostream& os, const Particle& p) {
+ os << "[";
+ for (int i = 0; i < p.states.size(); ++i) os << p.states[i] << ' ';
+ os << "| w=" << log(p.weight) << ']';
+ return os;
+}
+
+void Rejuvenate(vector<Particle>& pps) {
+ SampleSet<prob_t> ss;
+ vector<Particle> nps(pps.size());
+ for (int i = 0; i < pps.size(); ++i) {
+// cerr << pps[i] << endl;
+ ss.add(pps[i].weight);
+ }
+// cerr << "REJUVINATING...\n";
+ for (int i = 0; i < pps.size(); ++i) {
+ nps[i] = pps[prng->SelectSample(ss)];
+ nps[i].weight = prob_t(1.0 / pps.size());
+// cerr << nps[i] << endl;
+ }
+ nps.swap(pps);
+// exit(1);
+}
+
+int main(int argc, char** argv) {
+ const unsigned particles = 100;
+ prng.reset(new MT19937);
+ MT19937& rng = *prng;
+
+ // q(a) = 0.8
+ // q(b) = 0.8
+ // q(c) = 0.4
+ SampleSet<double> ssq;
+ ssq.add(0.4);
+ ssq.add(0.6);
+ ssq.add(0);
+ double qz = 1;
+
+ // p(a) = 0.2
+ // p(b) = 0.8
+ vector<double> p(3);
+ p[0] = 0.2;
+ p[1] = 0.8;
+ p[2] = 0;
+
+ vector<int> counts(3);
+ int tot = 0;
+
+ vector<Particle> pps(particles);
+ SampleSet<prob_t> ppss;
+ int LEN = 12;
+ int PP = 1;
+ while (pps[0].states.size() < LEN) {
+ for (int pi = 0; pi < particles; ++pi) {
+ Particle& prt = pps[pi];
+
+ bool redo = true;
+ const Particle savedp = prt;
+ while (redo) {
+ redo = false;
+ for (int i = 0; i < PP; ++i) {
+ int s = rng.SelectSample(ssq);
+ double gamma_last = p[s];
+ if (!gamma_last) { redo = true; break; }
+ double q = ssq[s] / qz;
+ prt.states.push_back(s);
+ prt.weight *= prob_t(gamma_last / q);
+ }
+ if (redo) { prt = savedp; continue; }
+ }
+ }
+ Rejuvenate(pps);
+ }
+ ppss.clear();
+ for (int i = 0; i < particles; ++i) { ppss.add(pps[i].weight); }
+ int sp = rng.SelectSample(ppss);
+ cerr << pps[sp] << endl;
+
+ return 0;
+}
+
diff --git a/klm/compile.sh b/klm/compile.sh
index 6ca85e1f..8ca89da4 100755
--- a/klm/compile.sh
+++ b/klm/compile.sh
@@ -5,8 +5,8 @@
set -e
-for i in util/{bit_packing,ersatz_progress,exception,file_piece,murmur_hash,scoped,mmap} lm/{binary_format,config,lm_exception,model,quantize,read_arpa,search_hashed,search_trie,trie,virtual_interface,vocab}; do
- g++ -I. -O3 $CXXFLAGS -c $i.cc -o $i.o
+for i in util/{bit_packing,ersatz_progress,exception,file_piece,murmur_hash,file,mmap} lm/{bhiksha,binary_format,config,lm_exception,model,quantize,read_arpa,search_hashed,search_trie,trie,trie_sort,virtual_interface,vocab}; do
+ g++ -I. -O3 -DNDEBUG $CXXFLAGS -c $i.cc -o $i.o
done
-g++ -I. -O3 $CXXFLAGS lm/build_binary.cc {lm,util}/*.o -lz -o build_binary
-g++ -I. -O3 $CXXFLAGS lm/ngram_query.cc {lm,util}/*.o -lz -o query
+g++ -I. -O3 -DNDEBUG $CXXFLAGS lm/build_binary.cc {lm,util}/*.o -lz -o build_binary
+g++ -I. -O3 -DNDEBUG $CXXFLAGS lm/ngram_query.cc {lm,util}/*.o -lz -o query
diff --git a/klm/lm/Makefile.am b/klm/lm/Makefile.am
index fae6b41a..54fd7f68 100644
--- a/klm/lm/Makefile.am
+++ b/klm/lm/Makefile.am
@@ -23,6 +23,7 @@ libklm_a_SOURCES = \
search_hashed.cc \
search_trie.cc \
trie.cc \
+ trie_sort.cc \
virtual_interface.cc \
vocab.cc
diff --git a/klm/lm/bhiksha.hh b/klm/lm/bhiksha.hh
index cfb2b053..bc705959 100644
--- a/klm/lm/bhiksha.hh
+++ b/klm/lm/bhiksha.hh
@@ -11,8 +11,9 @@
*/
#include <inttypes.h>
+#include <assert.h>
-#include "lm/binary_format.hh"
+#include "lm/model_type.hh"
#include "lm/trie.hh"
#include "util/bit_packing.hh"
#include "util/sorted_uniform.hh"
@@ -78,6 +79,7 @@ class ArrayBhiksha {
util::ReadInt57(base, bit_offset, next_inline_.bits, next_inline_.mask);
out.end = ((end_it - offset_begin_) << next_inline_.bits) |
util::ReadInt57(base, bit_offset + total_bits, next_inline_.bits, next_inline_.mask);
+ //assert(out.end >= out.begin);
}
void WriteNext(void *base, uint64_t bit_offset, uint64_t index, uint64_t value) {
diff --git a/klm/lm/binary_format.cc b/klm/lm/binary_format.cc
index e02e621a..eac8aa85 100644
--- a/klm/lm/binary_format.cc
+++ b/klm/lm/binary_format.cc
@@ -19,10 +19,10 @@ namespace lm {
namespace ngram {
namespace {
const char kMagicBeforeVersion[] = "mmap lm http://kheafield.com/code format version";
-const char kMagicBytes[] = "mmap lm http://kheafield.com/code format version 4\n\0";
+const char kMagicBytes[] = "mmap lm http://kheafield.com/code format version 5\n\0";
// This must be shorter than kMagicBytes and indicates an incomplete binary file (i.e. build failed).
const char kMagicIncomplete[] = "mmap lm http://kheafield.com/code incomplete\n";
-const long int kMagicVersion = 4;
+const long int kMagicVersion = 5;
// Test values.
struct Sanity {
@@ -42,12 +42,6 @@ struct Sanity {
const char *kModelNames[6] = {"hashed n-grams with probing", "hashed n-grams with sorted uniform find", "trie", "trie with quantization", "trie with array-compressed pointers", "trie with quantization and array-compressed pointers"};
-std::size_t Align8(std::size_t in) {
- std::size_t off = in % 8;
- if (!off) return in;
- return in + 8 - off;
-}
-
std::size_t TotalHeaderSize(unsigned char order) {
return Align8(sizeof(Sanity) + sizeof(FixedWidthParameters) + sizeof(uint64_t) * order);
}
@@ -119,7 +113,7 @@ uint8_t *GrowForSearch(const Config &config, std::size_t vocab_pad, std::size_t
}
}
-void FinishFile(const Config &config, ModelType model_type, const std::vector<uint64_t> &counts, Backing &backing) {
+void FinishFile(const Config &config, ModelType model_type, unsigned int search_version, const std::vector<uint64_t> &counts, Backing &backing) {
if (config.write_mmap) {
if (msync(backing.search.get(), backing.search.size(), MS_SYNC) || msync(backing.vocab.get(), backing.vocab.size(), MS_SYNC))
UTIL_THROW(util::ErrnoException, "msync failed for " << config.write_mmap);
@@ -130,6 +124,7 @@ void FinishFile(const Config &config, ModelType model_type, const std::vector<ui
params.fixed.probing_multiplier = config.probing_multiplier;
params.fixed.model_type = model_type;
params.fixed.has_vocabulary = config.include_vocab;
+ params.fixed.search_version = search_version;
WriteHeader(backing.vocab.get(), params);
}
}
@@ -174,12 +169,17 @@ void ReadHeader(int fd, Parameters &out) {
ReadLoop(fd, &*out.counts.begin(), sizeof(uint64_t) * out.fixed.order);
}
-void MatchCheck(ModelType model_type, const Parameters &params) {
+void MatchCheck(ModelType model_type, unsigned int search_version, const Parameters &params) {
if (params.fixed.model_type != model_type) {
if (static_cast<unsigned int>(params.fixed.model_type) >= (sizeof(kModelNames) / sizeof(const char *)))
UTIL_THROW(FormatLoadException, "The binary file claims to be model type " << static_cast<unsigned int>(params.fixed.model_type) << " but this is not implemented for in this inference code.");
UTIL_THROW(FormatLoadException, "The binary file was built for " << kModelNames[params.fixed.model_type] << " but the inference code is trying to load " << kModelNames[model_type]);
}
+ UTIL_THROW_IF(search_version != params.fixed.search_version, FormatLoadException, "The binary file has " << kModelNames[params.fixed.model_type] << " version " << params.fixed.search_version << " but this code expects " << kModelNames[params.fixed.model_type] << " version " << search_version);
+}
+
+void SeekPastHeader(int fd, const Parameters &params) {
+ SeekOrThrow(fd, TotalHeaderSize(params.counts.size()));
}
void SeekPastHeader(int fd, const Parameters &params) {
diff --git a/klm/lm/binary_format.hh b/klm/lm/binary_format.hh
index d28cb6c5..a83f6b89 100644
--- a/klm/lm/binary_format.hh
+++ b/klm/lm/binary_format.hh
@@ -2,6 +2,7 @@
#define LM_BINARY_FORMAT__
#include "lm/config.hh"
+#include "lm/model_type.hh"
#include "lm/read_arpa.hh"
#include "util/file_piece.hh"
@@ -16,13 +17,6 @@
namespace lm {
namespace ngram {
-/* Not the best numbering system, but it grew this way for historical reasons
- * and I want to preserve existing binary files. */
-typedef enum {HASH_PROBING=0, HASH_SORTED=1, TRIE_SORTED=2, QUANT_TRIE_SORTED=3, ARRAY_TRIE_SORTED=4, QUANT_ARRAY_TRIE_SORTED=5} ModelType;
-
-const static ModelType kQuantAdd = static_cast<ModelType>(QUANT_TRIE_SORTED - TRIE_SORTED);
-const static ModelType kArrayAdd = static_cast<ModelType>(ARRAY_TRIE_SORTED - TRIE_SORTED);
-
/*Inspect a file to determine if it is a binary lm. If not, return false.
* If so, return true and set recognized to the type. This is the only API in
* this header designed for use by decoder authors.
@@ -36,8 +30,14 @@ struct FixedWidthParameters {
ModelType model_type;
// Does the end of the file have the actual strings in the vocabulary?
bool has_vocabulary;
+ unsigned int search_version;
};
+inline std::size_t Align8(std::size_t in) {
+ std::size_t off = in % 8;
+ return off ? (in + 8 - off) : in;
+}
+
// Parameters stored in the header of a binary file.
struct Parameters {
FixedWidthParameters fixed;
@@ -64,7 +64,7 @@ uint8_t *GrowForSearch(const Config &config, std::size_t vocab_pad, std::size_t
// Write header to binary file. This is done last to prevent incomplete files
// from loading.
-void FinishFile(const Config &config, ModelType model_type, const std::vector<uint64_t> &counts, Backing &backing);
+void FinishFile(const Config &config, ModelType model_type, unsigned int search_version, const std::vector<uint64_t> &counts, Backing &backing);
namespace detail {
@@ -72,7 +72,9 @@ bool IsBinaryFormat(int fd);
void ReadHeader(int fd, Parameters &params);
-void MatchCheck(ModelType model_type, const Parameters &params);
+void MatchCheck(ModelType model_type, unsigned int search_version, const Parameters &params);
+
+void SeekPastHeader(int fd, const Parameters &params);
void SeekPastHeader(int fd, const Parameters &params);
@@ -90,7 +92,7 @@ template <class To> void LoadLM(const char *file, const Config &config, To &to)
if (detail::IsBinaryFormat(backing.file.get())) {
Parameters params;
detail::ReadHeader(backing.file.get(), params);
- detail::MatchCheck(To::kModelType, params);
+ detail::MatchCheck(To::kModelType, To::kVersion, params);
// Replace the run-time configured probing_multiplier with the one in the file.
Config new_config(config);
new_config.probing_multiplier = params.fixed.probing_multiplier;
diff --git a/klm/lm/blank.hh b/klm/lm/blank.hh
index 162411a9..2fb64cd0 100644
--- a/klm/lm/blank.hh
+++ b/klm/lm/blank.hh
@@ -38,20 +38,6 @@ inline bool HasExtension(const float &backoff) {
return compare.i != interpret.i;
}
-/* Suppose "foo bar baz quux" appears in the ARPA but not "bar baz quux" or
- * "baz quux" (because they were pruned). 1.2% of n-grams generated by SRI
- * with default settings on the benchmark data set are like this. Since search
- * proceeds by finding "quux", "baz quux", "bar baz quux", and finally
- * "foo bar baz quux" and the trie needs pointer nodes anyway, blanks are
- * inserted. The blanks have probability kBlankProb and backoff kBlankBackoff.
- * A blank is recognized by kBlankProb in the probability field; kBlankBackoff
- * must be 0 so that inference asseses zero backoff from these blanks.
- */
-const float kBlankProb = -std::numeric_limits<float>::infinity();
-const float kBlankBackoff = kNoExtensionBackoff;
-const uint32_t kBlankProbQuant = 0;
-const uint32_t kBlankBackoffQuant = 0;
-
} // namespace ngram
} // namespace lm
#endif // LM_BLANK__
diff --git a/klm/lm/left.hh b/klm/lm/left.hh
new file mode 100644
index 00000000..bb3f5539
--- /dev/null
+++ b/klm/lm/left.hh
@@ -0,0 +1,251 @@
+/* Efficient left and right language model state for sentence fragments.
+ * Intended usage:
+ * Store ChartState with every chart entry.
+ * To do a rule application:
+ * 1. Make a ChartState object for your new entry.
+ * 2. Construct RuleScore.
+ * 3. Going from left to right, call Terminal or NonTerminal.
+ * For terminals, just pass the vocab id.
+ * For non-terminals, pass that non-terminal's ChartState.
+ * If your decoder expects scores inclusive of subtree scores (i.e. you
+ * label entries with the highest-scoring path), pass the non-terminal's
+ * score as prob.
+ * If your decoder expects relative scores and will walk the chart later,
+ * pass prob = 0.0.
+ * In other words, the only effect of prob is that it gets added to the
+ * returned log probability.
+ * 4. Call Finish. It returns the log probability.
+ *
+ * There's a couple more details:
+ * Do not pass <s> to Terminal as it is formally not a word in the sentence,
+ * only context. Instead, call BeginSentence. If called, it should be the
+ * first call after RuleScore is constructed (since <s> is always the
+ * leftmost).
+ *
+ * If the leftmost RHS is a non-terminal, it's faster to call BeginNonTerminal.
+ *
+ * Hashing and sorting comparison operators are provided. All state objects
+ * are POD. If you intend to use memcmp on raw state objects, you must call
+ * ZeroRemaining first, as the value of array entries beyond length is
+ * otherwise undefined.
+ *
+ * Usage is of course not limited to chart decoding. Anything that generates
+ * sentence fragments missing left context could benefit. For example, a
+ * phrase-based decoder could pre-score phrases, storing ChartState with each
+ * phrase, even if hypotheses are generated left-to-right.
+ */
+
+#ifndef LM_LEFT__
+#define LM_LEFT__
+
+#include "lm/max_order.hh"
+#include "lm/model.hh"
+#include "lm/return.hh"
+
+#include "util/murmur_hash.hh"
+
+#include <algorithm>
+
+namespace lm {
+namespace ngram {
+
+struct Left {
+ bool operator==(const Left &other) const {
+ return
+ (length == other.length) &&
+ pointers[length - 1] == other.pointers[length - 1];
+ }
+
+ int Compare(const Left &other) const {
+ if (length != other.length) return length < other.length ? -1 : 1;
+ if (pointers[length - 1] > other.pointers[length - 1]) return 1;
+ if (pointers[length - 1] < other.pointers[length - 1]) return -1;
+ return 0;
+ }
+
+ bool operator<(const Left &other) const {
+ if (length != other.length) return length < other.length;
+ return pointers[length - 1] < other.pointers[length - 1];
+ }
+
+ void ZeroRemaining() {
+ for (uint64_t * i = pointers + length; i < pointers + kMaxOrder - 1; ++i)
+ *i = 0;
+ }
+
+ unsigned char length;
+ uint64_t pointers[kMaxOrder - 1];
+};
+
+inline size_t hash_value(const Left &left) {
+ return util::MurmurHashNative(&left.length, 1, left.pointers[left.length - 1]);
+}
+
+struct ChartState {
+ bool operator==(const ChartState &other) {
+ return (left == other.left) && (right == other.right) && (full == other.full);
+ }
+
+ int Compare(const ChartState &other) const {
+ int lres = left.Compare(other.left);
+ if (lres) return lres;
+ int rres = right.Compare(other.right);
+ if (rres) return rres;
+ return (int)full - (int)other.full;
+ }
+
+ bool operator<(const ChartState &other) const {
+ return Compare(other) == -1;
+ }
+
+ void ZeroRemaining() {
+ left.ZeroRemaining();
+ right.ZeroRemaining();
+ }
+
+ Left left;
+ bool full;
+ State right;
+};
+
+inline size_t hash_value(const ChartState &state) {
+ size_t hashes[2];
+ hashes[0] = hash_value(state.left);
+ hashes[1] = hash_value(state.right);
+ return util::MurmurHashNative(hashes, sizeof(size_t), state.full);
+}
+
+template <class M> class RuleScore {
+ public:
+ explicit RuleScore(const M &model, ChartState &out) : model_(model), out_(out), left_done_(false), prob_(0.0) {
+ out.left.length = 0;
+ out.right.length = 0;
+ }
+
+ void BeginSentence() {
+ out_.right = model_.BeginSentenceState();
+ // out_.left is empty.
+ left_done_ = true;
+ }
+
+ void Terminal(WordIndex word) {
+ State copy(out_.right);
+ FullScoreReturn ret(model_.FullScore(copy, word, out_.right));
+ prob_ += ret.prob;
+ if (left_done_) return;
+ if (ret.independent_left) {
+ left_done_ = true;
+ return;
+ }
+ out_.left.pointers[out_.left.length++] = ret.extend_left;
+ if (out_.right.length != copy.length + 1)
+ left_done_ = true;
+ }
+
+ // Faster version of NonTerminal for the case where the rule begins with a non-terminal.
+ void BeginNonTerminal(const ChartState &in, float prob) {
+ prob_ = prob;
+ out_ = in;
+ left_done_ = in.full;
+ }
+
+ void NonTerminal(const ChartState &in, float prob) {
+ prob_ += prob;
+
+ if (!in.left.length) {
+ if (in.full) {
+ for (const float *i = out_.right.backoff; i < out_.right.backoff + out_.right.length; ++i) prob_ += *i;
+ left_done_ = true;
+ out_.right = in.right;
+ }
+ return;
+ }
+
+ if (!out_.right.length) {
+ out_.right = in.right;
+ if (left_done_) return;
+ if (out_.left.length) {
+ left_done_ = true;
+ } else {
+ out_.left = in.left;
+ left_done_ = in.full;
+ }
+ return;
+ }
+
+ float backoffs[kMaxOrder - 1], backoffs2[kMaxOrder - 1];
+ float *back = backoffs, *back2 = backoffs2;
+ unsigned char next_use;
+ FullScoreReturn ret;
+ ProcessRet(ret = model_.ExtendLeft(out_.right.words, out_.right.words + out_.right.length, out_.right.backoff, in.left.pointers[0], 1, back, next_use));
+ if (!next_use) {
+ left_done_ = true;
+ out_.right = in.right;
+ return;
+ }
+ unsigned char extend_length = 2;
+ for (const uint64_t *i = in.left.pointers + 1; i < in.left.pointers + in.left.length; ++i, ++extend_length) {
+ ProcessRet(ret = model_.ExtendLeft(out_.right.words, out_.right.words + next_use, back, *i, extend_length, back2, next_use));
+ if (!next_use) {
+ left_done_ = true;
+ out_.right = in.right;
+ return;
+ }
+ std::swap(back, back2);
+ }
+
+ if (in.full) {
+ for (const float *i = back; i != back + next_use; ++i) prob_ += *i;
+ left_done_ = true;
+ out_.right = in.right;
+ return;
+ }
+
+ // Right state was minimized, so it's already independent of the new words to the left.
+ if (in.right.length < in.left.length) {
+ out_.right = in.right;
+ return;
+ }
+
+ // Shift exisiting words down.
+ for (WordIndex *i = out_.right.words + next_use - 1; i >= out_.right.words; --i) {
+ *(i + in.right.length) = *i;
+ }
+ // Add words from in.right.
+ std::copy(in.right.words, in.right.words + in.right.length, out_.right.words);
+ // Assemble backoff composed on the existing state's backoff followed by the new state's backoff.
+ std::copy(in.right.backoff, in.right.backoff + in.right.length, out_.right.backoff);
+ std::copy(back, back + next_use, out_.right.backoff + in.right.length);
+ out_.right.length = in.right.length + next_use;
+ }
+
+ float Finish() {
+ // A N-1-gram might extend left and right but we should still set full to true because it's an N-1-gram.
+ out_.full = left_done_ || (out_.left.length == model_.Order() - 1);
+ return prob_;
+ }
+
+ private:
+ void ProcessRet(const FullScoreReturn &ret) {
+ prob_ += ret.prob;
+ if (left_done_) return;
+ if (ret.independent_left) {
+ left_done_ = true;
+ return;
+ }
+ out_.left.pointers[out_.left.length++] = ret.extend_left;
+ }
+
+ const M &model_;
+
+ ChartState &out_;
+
+ bool left_done_;
+
+ float prob_;
+};
+
+} // namespace ngram
+} // namespace lm
+
+#endif // LM_LEFT__
diff --git a/klm/lm/left_test.cc b/klm/lm/left_test.cc
new file mode 100644
index 00000000..8bb91cb3
--- /dev/null
+++ b/klm/lm/left_test.cc
@@ -0,0 +1,360 @@
+#include "lm/left.hh"
+#include "lm/model.hh"
+
+#include "util/tokenize_piece.hh"
+
+#include <vector>
+
+#define BOOST_TEST_MODULE LeftTest
+#include <boost/test/unit_test.hpp>
+#include <boost/test/floating_point_comparison.hpp>
+
+namespace lm {
+namespace ngram {
+namespace {
+
+#define Term(word) score.Terminal(m.GetVocabulary().Index(word));
+#define VCheck(word, value) BOOST_CHECK_EQUAL(m.GetVocabulary().Index(word), value);
+
+template <class M> void Short(const M &m) {
+ ChartState base;
+ {
+ RuleScore<M> score(m, base);
+ Term("more");
+ Term("loin");
+ BOOST_CHECK_CLOSE(-1.206319 - 0.3561665, score.Finish(), 0.001);
+ }
+ BOOST_CHECK(base.full);
+ BOOST_CHECK_EQUAL(2, base.left.length);
+ BOOST_CHECK_EQUAL(1, base.right.length);
+ VCheck("loin", base.right.words[0]);
+
+ ChartState more_left;
+ {
+ RuleScore<M> score(m, more_left);
+ Term("little");
+ score.NonTerminal(base, -1.206319 - 0.3561665);
+ // p(little more loin | null context)
+ BOOST_CHECK_CLOSE(-1.56538, score.Finish(), 0.001);
+ }
+ BOOST_CHECK_EQUAL(3, more_left.left.length);
+ BOOST_CHECK_EQUAL(1, more_left.right.length);
+ VCheck("loin", more_left.right.words[0]);
+ BOOST_CHECK(more_left.full);
+
+ ChartState shorter;
+ {
+ RuleScore<M> score(m, shorter);
+ Term("to");
+ score.NonTerminal(base, -1.206319 - 0.3561665);
+ BOOST_CHECK_CLOSE(-0.30103 - 1.687872 - 1.206319 - 0.3561665, score.Finish(), 0.01);
+ }
+ BOOST_CHECK_EQUAL(1, shorter.left.length);
+ BOOST_CHECK_EQUAL(1, shorter.right.length);
+ VCheck("loin", shorter.right.words[0]);
+ BOOST_CHECK(shorter.full);
+}
+
+template <class M> void Charge(const M &m) {
+ ChartState base;
+ {
+ RuleScore<M> score(m, base);
+ Term("on");
+ Term("more");
+ BOOST_CHECK_CLOSE(-1.509559 -0.4771212 -1.206319, score.Finish(), 0.001);
+ }
+ BOOST_CHECK_EQUAL(1, base.left.length);
+ BOOST_CHECK_EQUAL(1, base.right.length);
+ VCheck("more", base.right.words[0]);
+ BOOST_CHECK(base.full);
+
+ ChartState extend;
+ {
+ RuleScore<M> score(m, extend);
+ Term("looking");
+ score.NonTerminal(base, -1.509559 -0.4771212 -1.206319);
+ BOOST_CHECK_CLOSE(-3.91039, score.Finish(), 0.001);
+ }
+ BOOST_CHECK_EQUAL(2, extend.left.length);
+ BOOST_CHECK_EQUAL(1, extend.right.length);
+ VCheck("more", extend.right.words[0]);
+ BOOST_CHECK(extend.full);
+
+ ChartState tobos;
+ {
+ RuleScore<M> score(m, tobos);
+ score.BeginSentence();
+ score.NonTerminal(extend, -3.91039);
+ BOOST_CHECK_CLOSE(-3.471169, score.Finish(), 0.001);
+ }
+ BOOST_CHECK_EQUAL(0, tobos.left.length);
+ BOOST_CHECK_EQUAL(1, tobos.right.length);
+}
+
+template <class M> float LeftToRight(const M &m, const std::vector<WordIndex> &words) {
+ float ret = 0.0;
+ State right = m.NullContextState();
+ for (std::vector<WordIndex>::const_iterator i = words.begin(); i != words.end(); ++i) {
+ State copy(right);
+ ret += m.Score(copy, *i, right);
+ }
+ return ret;
+}
+
+template <class M> float RightToLeft(const M &m, const std::vector<WordIndex> &words) {
+ float ret = 0.0;
+ ChartState state;
+ state.left.length = 0;
+ state.right.length = 0;
+ state.full = false;
+ for (std::vector<WordIndex>::const_reverse_iterator i = words.rbegin(); i != words.rend(); ++i) {
+ ChartState copy(state);
+ RuleScore<M> score(m, state);
+ score.Terminal(*i);
+ score.NonTerminal(copy, ret);
+ ret = score.Finish();
+ }
+ return ret;
+}
+
+template <class M> float TreeMiddle(const M &m, const std::vector<WordIndex> &words) {
+ std::vector<std::pair<ChartState, float> > states(words.size());
+ for (unsigned int i = 0; i < words.size(); ++i) {
+ RuleScore<M> score(m, states[i].first);
+ score.Terminal(words[i]);
+ states[i].second = score.Finish();
+ }
+ while (states.size() > 1) {
+ std::vector<std::pair<ChartState, float> > upper((states.size() + 1) / 2);
+ for (unsigned int i = 0; i < states.size() / 2; ++i) {
+ RuleScore<M> score(m, upper[i].first);
+ score.NonTerminal(states[i*2].first, states[i*2].second);
+ score.NonTerminal(states[i*2+1].first, states[i*2+1].second);
+ upper[i].second = score.Finish();
+ }
+ if (states.size() % 2) {
+ upper.back() = states.back();
+ }
+ std::swap(states, upper);
+ }
+ return states.empty() ? 0 : states.back().second;
+}
+
+template <class M> void LookupVocab(const M &m, const StringPiece &str, std::vector<WordIndex> &out) {
+ out.clear();
+ for (util::PieceIterator<' '> i(str); i; ++i) {
+ out.push_back(m.GetVocabulary().Index(*i));
+ }
+}
+
+#define TEXT_TEST(str) \
+{ \
+ std::vector<WordIndex> words; \
+ LookupVocab(m, str, words); \
+ float expect = LeftToRight(m, words); \
+ BOOST_CHECK_CLOSE(expect, RightToLeft(m, words), 0.001); \
+ BOOST_CHECK_CLOSE(expect, TreeMiddle(m, words), 0.001); \
+}
+
+// Build sentences, or parts thereof, from right to left.
+template <class M> void GrowBig(const M &m) {
+ TEXT_TEST("in biarritz watching considering looking . on a little more loin also would consider higher to look good unknown the screening foo bar , unknown however unknown </s>");
+ TEXT_TEST("on a little more loin also would consider higher to look good unknown the screening foo bar , unknown however unknown </s>");
+ TEXT_TEST("on a little more loin also would consider higher to look good");
+ TEXT_TEST("more loin also would consider higher to look good");
+ TEXT_TEST("more loin also would consider higher to look");
+ TEXT_TEST("also would consider higher to look");
+ TEXT_TEST("also would consider higher");
+ TEXT_TEST("would consider higher to look");
+ TEXT_TEST("consider higher to look");
+ TEXT_TEST("consider higher to");
+ TEXT_TEST("consider higher");
+}
+
+template <class M> void AlsoWouldConsiderHigher(const M &m) {
+ ChartState also;
+ {
+ RuleScore<M> score(m, also);
+ score.Terminal(m.GetVocabulary().Index("also"));
+ BOOST_CHECK_CLOSE(-1.687872, score.Finish(), 0.001);
+ }
+ ChartState would;
+ {
+ RuleScore<M> score(m, would);
+ score.Terminal(m.GetVocabulary().Index("would"));
+ BOOST_CHECK_CLOSE(-1.687872, score.Finish(), 0.001);
+ }
+ ChartState combine_also_would;
+ {
+ RuleScore<M> score(m, combine_also_would);
+ score.NonTerminal(also, -1.687872);
+ score.NonTerminal(would, -1.687872);
+ BOOST_CHECK_CLOSE(-1.687872 - 2.0, score.Finish(), 0.001);
+ }
+ BOOST_CHECK_EQUAL(2, combine_also_would.right.length);
+
+ ChartState also_would;
+ {
+ RuleScore<M> score(m, also_would);
+ score.Terminal(m.GetVocabulary().Index("also"));
+ score.Terminal(m.GetVocabulary().Index("would"));
+ BOOST_CHECK_CLOSE(-1.687872 - 2.0, score.Finish(), 0.001);
+ }
+ BOOST_CHECK_EQUAL(2, also_would.right.length);
+
+ ChartState consider;
+ {
+ RuleScore<M> score(m, consider);
+ score.Terminal(m.GetVocabulary().Index("consider"));
+ BOOST_CHECK_CLOSE(-1.687872, score.Finish(), 0.001);
+ }
+ BOOST_CHECK_EQUAL(1, consider.left.length);
+ BOOST_CHECK_EQUAL(1, consider.right.length);
+ BOOST_CHECK(!consider.full);
+
+ ChartState higher;
+ float higher_score;
+ {
+ RuleScore<M> score(m, higher);
+ score.Terminal(m.GetVocabulary().Index("higher"));
+ higher_score = score.Finish();
+ }
+ BOOST_CHECK_CLOSE(-1.509559, higher_score, 0.001);
+ BOOST_CHECK_EQUAL(1, higher.left.length);
+ BOOST_CHECK_EQUAL(1, higher.right.length);
+ BOOST_CHECK(!higher.full);
+ VCheck("higher", higher.right.words[0]);
+ BOOST_CHECK_CLOSE(-0.30103, higher.right.backoff[0], 0.001);
+
+ ChartState consider_higher;
+ {
+ RuleScore<M> score(m, consider_higher);
+ score.NonTerminal(consider, -1.687872);
+ score.NonTerminal(higher, higher_score);
+ BOOST_CHECK_CLOSE(-1.509559 - 1.687872 - 0.30103, score.Finish(), 0.001);
+ }
+ BOOST_CHECK_EQUAL(2, consider_higher.left.length);
+ BOOST_CHECK(!consider_higher.full);
+
+ ChartState full;
+ {
+ RuleScore<M> score(m, full);
+ score.NonTerminal(combine_also_would, -1.687872 - 2.0);
+ score.NonTerminal(consider_higher, -1.509559 - 1.687872 - 0.30103);
+ BOOST_CHECK_CLOSE(-10.6879, score.Finish(), 0.001);
+ }
+ BOOST_CHECK_EQUAL(4, full.right.length);
+}
+
+template <class M> void GrowSmall(const M &m) {
+ TEXT_TEST("in biarritz watching considering looking . </s>");
+ TEXT_TEST("in biarritz watching considering looking .");
+ TEXT_TEST("in biarritz");
+}
+
+#define CHECK_SCORE(str, val) \
+{ \
+ float got = val; \
+ std::vector<WordIndex> indices; \
+ LookupVocab(m, str, indices); \
+ BOOST_CHECK_CLOSE(LeftToRight(m, indices), got, 0.001); \
+}
+
+template <class M> void FullGrow(const M &m) {
+ std::vector<WordIndex> words;
+ LookupVocab(m, "in biarritz watching considering looking . </s>", words);
+
+ ChartState lexical[7];
+ float lexical_scores[7];
+ for (unsigned int i = 0; i < 7; ++i) {
+ RuleScore<M> score(m, lexical[i]);
+ score.Terminal(words[i]);
+ lexical_scores[i] = score.Finish();
+ }
+ CHECK_SCORE("in", lexical_scores[0]);
+ CHECK_SCORE("biarritz", lexical_scores[1]);
+ CHECK_SCORE("watching", lexical_scores[2]);
+ CHECK_SCORE("</s>", lexical_scores[6]);
+
+ ChartState l1[4];
+ float l1_scores[4];
+ {
+ RuleScore<M> score(m, l1[0]);
+ score.NonTerminal(lexical[0], lexical_scores[0]);
+ score.NonTerminal(lexical[1], lexical_scores[1]);
+ CHECK_SCORE("in biarritz", l1_scores[0] = score.Finish());
+ }
+ {
+ RuleScore<M> score(m, l1[1]);
+ score.NonTerminal(lexical[2], lexical_scores[2]);
+ score.NonTerminal(lexical[3], lexical_scores[3]);
+ CHECK_SCORE("watching considering", l1_scores[1] = score.Finish());
+ }
+ {
+ RuleScore<M> score(m, l1[2]);
+ score.NonTerminal(lexical[4], lexical_scores[4]);
+ score.NonTerminal(lexical[5], lexical_scores[5]);
+ CHECK_SCORE("looking .", l1_scores[2] = score.Finish());
+ }
+ BOOST_CHECK_EQUAL(l1[2].left.length, 1);
+ l1[3] = lexical[6];
+ l1_scores[3] = lexical_scores[6];
+
+ ChartState l2[2];
+ float l2_scores[2];
+ {
+ RuleScore<M> score(m, l2[0]);
+ score.NonTerminal(l1[0], l1_scores[0]);
+ score.NonTerminal(l1[1], l1_scores[1]);
+ CHECK_SCORE("in biarritz watching considering", l2_scores[0] = score.Finish());
+ }
+ {
+ RuleScore<M> score(m, l2[1]);
+ score.NonTerminal(l1[2], l1_scores[2]);
+ score.NonTerminal(l1[3], l1_scores[3]);
+ CHECK_SCORE("looking . </s>", l2_scores[1] = score.Finish());
+ }
+ BOOST_CHECK_EQUAL(l2[1].left.length, 1);
+ BOOST_CHECK(l2[1].full);
+
+ ChartState top;
+ {
+ RuleScore<M> score(m, top);
+ score.NonTerminal(l2[0], l2_scores[0]);
+ score.NonTerminal(l2[1], l2_scores[1]);
+ CHECK_SCORE("in biarritz watching considering looking . </s>", score.Finish());
+ }
+}
+
+template <class M> void Everything() {
+ Config config;
+ config.messages = NULL;
+ M m("test.arpa", config);
+
+ Short(m);
+ Charge(m);
+ GrowBig(m);
+ AlsoWouldConsiderHigher(m);
+ GrowSmall(m);
+ FullGrow(m);
+}
+
+BOOST_AUTO_TEST_CASE(ProbingAll) {
+ Everything<Model>();
+}
+BOOST_AUTO_TEST_CASE(TrieAll) {
+ Everything<TrieModel>();
+}
+BOOST_AUTO_TEST_CASE(QuantTrieAll) {
+ Everything<QuantTrieModel>();
+}
+BOOST_AUTO_TEST_CASE(ArrayQuantTrieAll) {
+ Everything<QuantArrayTrieModel>();
+}
+BOOST_AUTO_TEST_CASE(ArrayTrieAll) {
+ Everything<ArrayTrieModel>();
+}
+
+} // namespace
+} // namespace ngram
+} // namespace lm
diff --git a/klm/lm/model.cc b/klm/lm/model.cc
index 27e24b1c..25f1ab7c 100644
--- a/klm/lm/model.cc
+++ b/klm/lm/model.cc
@@ -14,11 +14,6 @@
namespace lm {
namespace ngram {
-
-size_t hash_value(const State &state) {
- return util::MurmurHashNative(state.history_, sizeof(WordIndex) * state.valid_length_);
-}
-
namespace detail {
template <class Search, class VocabularyT> const ModelType GenericModel<Search, VocabularyT>::kModelType = Search::kModelType;
@@ -41,11 +36,11 @@ template <class Search, class VocabularyT> GenericModel<Search, VocabularyT>::Ge
// g++ prints warnings unless these are fully initialized.
State begin_sentence = State();
- begin_sentence.valid_length_ = 1;
- begin_sentence.history_[0] = vocab_.BeginSentence();
- begin_sentence.backoff_[0] = search_.unigram.Lookup(begin_sentence.history_[0]).backoff;
+ begin_sentence.length = 1;
+ begin_sentence.words[0] = vocab_.BeginSentence();
+ begin_sentence.backoff[0] = search_.unigram.Lookup(begin_sentence.words[0]).backoff;
State null_context = State();
- null_context.valid_length_ = 0;
+ null_context.length = 0;
P::Init(begin_sentence, null_context, vocab_, search_.MiddleEnd() - search_.MiddleBegin() + 2);
}
@@ -87,7 +82,7 @@ template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT
search_.unigram.Unknown().backoff = 0.0;
search_.unigram.Unknown().prob = config.unknown_missing_logprob;
}
- FinishFile(config, kModelType, counts, backing_);
+ FinishFile(config, kModelType, kVersion, counts, backing_);
} catch (util::Exception &e) {
e << " Byte: " << f.Offset();
throw;
@@ -95,9 +90,9 @@ template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT
}
template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::FullScore(const State &in_state, const WordIndex new_word, State &out_state) const {
- FullScoreReturn ret = ScoreExceptBackoff(in_state.history_, in_state.history_ + in_state.valid_length_, new_word, out_state);
- if (ret.ngram_length - 1 < in_state.valid_length_) {
- ret.prob = std::accumulate(in_state.backoff_ + ret.ngram_length - 1, in_state.backoff_ + in_state.valid_length_, ret.prob);
+ FullScoreReturn ret = ScoreExceptBackoff(in_state.words, in_state.words + in_state.length, new_word, out_state);
+ if (ret.ngram_length - 1 < in_state.length) {
+ ret.prob = std::accumulate(in_state.backoff + ret.ngram_length - 1, in_state.backoff + in_state.length, ret.prob);
}
return ret;
}
@@ -131,32 +126,80 @@ template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT
// Generate a state from context.
context_rend = std::min(context_rend, context_rbegin + P::Order() - 1);
if (context_rend == context_rbegin) {
- out_state.valid_length_ = 0;
+ out_state.length = 0;
return;
}
- float ignored_prob;
+ FullScoreReturn ignored;
typename Search::Node node;
- search_.LookupUnigram(*context_rbegin, ignored_prob, out_state.backoff_[0], node);
- out_state.valid_length_ = HasExtension(out_state.backoff_[0]) ? 1 : 0;
- float *backoff_out = out_state.backoff_ + 1;
+ search_.LookupUnigram(*context_rbegin, out_state.backoff[0], node, ignored);
+ out_state.length = HasExtension(out_state.backoff[0]) ? 1 : 0;
+ float *backoff_out = out_state.backoff + 1;
const typename Search::Middle *mid = search_.MiddleBegin();
for (const WordIndex *i = context_rbegin + 1; i < context_rend; ++i, ++backoff_out, ++mid) {
if (!search_.LookupMiddleNoProb(*mid, *i, *backoff_out, node)) {
- std::copy(context_rbegin, context_rbegin + out_state.valid_length_, out_state.history_);
+ std::copy(context_rbegin, context_rbegin + out_state.length, out_state.words);
return;
}
- if (HasExtension(*backoff_out)) out_state.valid_length_ = i - context_rbegin + 1;
+ if (HasExtension(*backoff_out)) out_state.length = i - context_rbegin + 1;
+ }
+ std::copy(context_rbegin, context_rbegin + out_state.length, out_state.words);
+}
+
+template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::ExtendLeft(
+ const WordIndex *add_rbegin, const WordIndex *add_rend,
+ const float *backoff_in,
+ uint64_t extend_pointer,
+ unsigned char extend_length,
+ float *backoff_out,
+ unsigned char &next_use) const {
+ FullScoreReturn ret;
+ float subtract_me;
+ typename Search::Node node(search_.Unpack(extend_pointer, extend_length, subtract_me));
+ ret.prob = subtract_me;
+ ret.ngram_length = extend_length;
+ next_use = 0;
+ // If this function is called, then it does depend on left words.
+ ret.independent_left = false;
+ ret.extend_left = extend_pointer;
+ const typename Search::Middle *mid_iter = search_.MiddleBegin() + extend_length - 1;
+ const WordIndex *i = add_rbegin;
+ for (; ; ++i, ++backoff_out, ++mid_iter) {
+ if (i == add_rend) {
+ // Ran out of words.
+ for (const float *b = backoff_in + ret.ngram_length - extend_length; b < backoff_in + (add_rend - add_rbegin); ++b) ret.prob += *b;
+ ret.prob -= subtract_me;
+ return ret;
+ }
+ if (mid_iter == search_.MiddleEnd()) break;
+ if (ret.independent_left || !search_.LookupMiddle(*mid_iter, *i, *backoff_out, node, ret)) {
+ // Didn't match a word.
+ ret.independent_left = true;
+ for (const float *b = backoff_in + ret.ngram_length - extend_length; b < backoff_in + (add_rend - add_rbegin); ++b) ret.prob += *b;
+ ret.prob -= subtract_me;
+ return ret;
+ }
+ ret.ngram_length = mid_iter - search_.MiddleBegin() + 2;
+ if (HasExtension(*backoff_out)) next_use = i - add_rbegin + 1;
+ }
+
+ if (ret.independent_left || !search_.LookupLongest(*i, ret.prob, node)) {
+ // The last backoff weight, for Order() - 1.
+ ret.prob += backoff_in[i - add_rbegin];
+ } else {
+ ret.ngram_length = P::Order();
}
- std::copy(context_rbegin, context_rbegin + out_state.valid_length_, out_state.history_);
+ ret.independent_left = true;
+ ret.prob -= subtract_me;
+ return ret;
}
namespace {
// Do a paraonoid copy of history, assuming new_word has already been copied
-// (hence the -1). out_state.valid_length_ could be zero so I avoided using
+// (hence the -1). out_state.length could be zero so I avoided using
// std::copy.
void CopyRemainingHistory(const WordIndex *from, State &out_state) {
- WordIndex *out = out_state.history_ + 1;
- const WordIndex *in_end = from + static_cast<ptrdiff_t>(out_state.valid_length_) - 1;
+ WordIndex *out = out_state.words + 1;
+ const WordIndex *in_end = from + static_cast<ptrdiff_t>(out_state.length) - 1;
for (const WordIndex *in = from; in < in_end; ++in, ++out) *out = *in;
}
} // namespace
@@ -175,17 +218,17 @@ template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search,
// ret.ngram_length contains the last known non-blank ngram length.
ret.ngram_length = 1;
+ float *backoff_out(out_state.backoff);
typename Search::Node node;
- float *backoff_out(out_state.backoff_);
- search_.LookupUnigram(new_word, ret.prob, *backoff_out, node);
- // This is the length of the context that should be used for continuation.
- out_state.valid_length_ = HasExtension(*backoff_out) ? 1 : 0;
+ search_.LookupUnigram(new_word, *backoff_out, node, ret);
+ // This is the length of the context that should be used for continuation to the right.
+ out_state.length = HasExtension(*backoff_out) ? 1 : 0;
// We'll write the word anyway since it will probably be used and does no harm being there.
- out_state.history_[0] = new_word;
+ out_state.words[0] = new_word;
if (context_rbegin == context_rend) return ret;
++backoff_out;
- // Ok now we now that the bigram contains known words. Start by looking it up.
+ // Ok start by looking up the bigram.
const WordIndex *hist_iter = context_rbegin;
const typename Search::Middle *mid_iter = search_.MiddleBegin();
for (; ; ++mid_iter, ++hist_iter, ++backoff_out) {
@@ -198,36 +241,28 @@ template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search,
if (mid_iter == search_.MiddleEnd()) break;
- float revert = ret.prob;
- if (!search_.LookupMiddle(*mid_iter, *hist_iter, ret.prob, *backoff_out, node)) {
+ if (ret.independent_left || !search_.LookupMiddle(*mid_iter, *hist_iter, *backoff_out, node, ret)) {
// Didn't find an ngram using hist_iter.
CopyRemainingHistory(context_rbegin, out_state);
- // ret.prob was already set.
+ // ret.prob was already set.
+ ret.independent_left = true;
return ret;
}
- if (ret.prob == kBlankProb) {
- // It's a blank. Go back to the old probability.
- ret.prob = revert;
- } else {
- ret.ngram_length = hist_iter - context_rbegin + 2;
- if (HasExtension(*backoff_out)) {
- out_state.valid_length_ = ret.ngram_length;
- }
+ ret.ngram_length = hist_iter - context_rbegin + 2;
+ if (HasExtension(*backoff_out)) {
+ out_state.length = ret.ngram_length;
}
}
// It passed every lookup in search_.middle. All that's left is to check search_.longest.
-
- if (!search_.LookupLongest(*hist_iter, ret.prob, node)) {
- // Failed to find a longest n-gram. Fall back to the most recent non-blank.
- CopyRemainingHistory(context_rbegin, out_state);
- // ret.prob was already set.
- return ret;
+ if (!ret.independent_left && search_.LookupLongest(*hist_iter, ret.prob, node)) {
+ // It's an P::Order()-gram.
+ // There is no blank in longest_.
+ ret.ngram_length = P::Order();
}
- // It's an P::Order()-gram.
+ // This handles (N-1)-grams and N-grams.
CopyRemainingHistory(context_rbegin, out_state);
- // There is no blank in longest_.
- ret.ngram_length = P::Order();
+ ret.independent_left = true;
return ret;
}
diff --git a/klm/lm/model.hh b/klm/lm/model.hh
index 21595321..c278acd6 100644
--- a/klm/lm/model.hh
+++ b/klm/lm/model.hh
@@ -12,6 +12,8 @@
#include "lm/vocab.hh"
#include "lm/weights.hh"
+#include "util/murmur_hash.hh"
+
#include <algorithm>
#include <vector>
@@ -27,42 +29,41 @@ namespace ngram {
class State {
public:
bool operator==(const State &other) const {
- if (valid_length_ != other.valid_length_) return false;
- const WordIndex *end = history_ + valid_length_;
- for (const WordIndex *first = history_, *second = other.history_;
- first != end; ++first, ++second) {
- if (*first != *second) return false;
- }
- // If the histories are equal, so are the backoffs.
- return true;
+ if (length != other.length) return false;
+ return !memcmp(words, other.words, length * sizeof(WordIndex));
}
// Three way comparison function.
int Compare(const State &other) const {
- if (valid_length_ == other.valid_length_) {
- return memcmp(history_, other.history_, valid_length_ * sizeof(WordIndex));
- }
- return (valid_length_ < other.valid_length_) ? -1 : 1;
+ if (length != other.length) return length < other.length ? -1 : 1;
+ return memcmp(words, other.words, length * sizeof(WordIndex));
+ }
+
+ bool operator<(const State &other) const {
+ if (length != other.length) return length < other.length;
+ return memcmp(words, other.words, length * sizeof(WordIndex)) < 0;
}
// Call this before using raw memcmp.
void ZeroRemaining() {
- for (unsigned char i = valid_length_; i < kMaxOrder - 1; ++i) {
- history_[i] = 0;
- backoff_[i] = 0.0;
+ for (unsigned char i = length; i < kMaxOrder - 1; ++i) {
+ words[i] = 0;
+ backoff[i] = 0.0;
}
}
- unsigned char ValidLength() const { return valid_length_; }
+ unsigned char Length() const { return length; }
// You shouldn't need to touch anything below this line, but the members are public so FullState will qualify as a POD.
// This order minimizes total size of the struct if WordIndex is 64 bit, float is 32 bit, and alignment of 64 bit integers is 64 bit.
- WordIndex history_[kMaxOrder - 1];
- float backoff_[kMaxOrder - 1];
- unsigned char valid_length_;
+ WordIndex words[kMaxOrder - 1];
+ float backoff[kMaxOrder - 1];
+ unsigned char length;
};
-size_t hash_value(const State &state);
+inline size_t hash_value(const State &state) {
+ return util::MurmurHashNative(state.words, sizeof(WordIndex) * state.length);
+}
namespace detail {
@@ -75,6 +76,8 @@ template <class Search, class VocabularyT> class GenericModel : public base::Mod
// This is the model type returned by RecognizeBinary.
static const ModelType kModelType;
+ static const unsigned int kVersion = Search::kVersion;
+
/* Get the size of memory that will be mapped given ngram counts. This
* does not include small non-mapped control structures, such as this class
* itself.
@@ -114,6 +117,25 @@ template <class Search, class VocabularyT> class GenericModel : public base::Mod
*/
void GetState(const WordIndex *context_rbegin, const WordIndex *context_rend, State &out_state) const;
+ /* More efficient version of FullScore where a partial n-gram has already
+ * been scored.
+ * NOTE: THE RETURNED .prob IS RELATIVE, NOT ABSOLUTE. So for example, if
+ * the n-gram does not end up extending further left, then 0 is returned.
+ */
+ FullScoreReturn ExtendLeft(
+ // Additional context in reverse order. This will update add_rend to
+ const WordIndex *add_rbegin, const WordIndex *add_rend,
+ // Backoff weights to use.
+ const float *backoff_in,
+ // extend_left returned by a previous query.
+ uint64_t extend_pointer,
+ // Length of n-gram that the pointer corresponds to.
+ unsigned char extend_length,
+ // Where to write additional backoffs for [extend_length + 1, min(Order() - 1, return.ngram_length)]
+ float *backoff_out,
+ // Amount of additional content that should be considered by the next call.
+ unsigned char &next_use) const;
+
private:
friend void LoadLM<>(const char *file, const Config &config, GenericModel<Search, VocabularyT> &to);
diff --git a/klm/lm/model_test.cc b/klm/lm/model_test.cc
index 57c7291c..3585d34b 100644
--- a/klm/lm/model_test.cc
+++ b/klm/lm/model_test.cc
@@ -10,8 +10,8 @@ namespace lm {
namespace ngram {
std::ostream &operator<<(std::ostream &o, const State &state) {
- o << "State length " << static_cast<unsigned int>(state.valid_length_) << ':';
- for (const WordIndex *i = state.history_; i < state.history_ + state.valid_length_; ++i) {
+ o << "State length " << static_cast<unsigned int>(state.length) << ':';
+ for (const WordIndex *i = state.words; i < state.words + state.length; ++i) {
o << ' ' << *i;
}
return o;
@@ -19,25 +19,26 @@ std::ostream &operator<<(std::ostream &o, const State &state) {
namespace {
-#define StartTest(word, ngram, score) \
+#define StartTest(word, ngram, score, indep_left) \
ret = model.FullScore( \
state, \
model.GetVocabulary().Index(word), \
out);\
BOOST_CHECK_CLOSE(score, ret.prob, 0.001); \
BOOST_CHECK_EQUAL(static_cast<unsigned int>(ngram), ret.ngram_length); \
- BOOST_CHECK_GE(std::min<unsigned char>(ngram, 5 - 1), out.valid_length_); \
+ BOOST_CHECK_GE(std::min<unsigned char>(ngram, 5 - 1), out.length); \
+ BOOST_CHECK_EQUAL(indep_left, ret.independent_left); \
{\
- WordIndex context[state.valid_length_ + 1]; \
+ WordIndex context[state.length + 1]; \
context[0] = model.GetVocabulary().Index(word); \
- std::copy(state.history_, state.history_ + state.valid_length_, context + 1); \
+ std::copy(state.words, state.words + state.length, context + 1); \
State get_state; \
- model.GetState(context, context + state.valid_length_ + 1, get_state); \
+ model.GetState(context, context + state.length + 1, get_state); \
BOOST_CHECK_EQUAL(out, get_state); \
}
-#define AppendTest(word, ngram, score) \
- StartTest(word, ngram, score) \
+#define AppendTest(word, ngram, score, indep_left) \
+ StartTest(word, ngram, score, indep_left) \
state = out;
template <class M> void Starters(const M &model) {
@@ -45,12 +46,12 @@ template <class M> void Starters(const M &model) {
Model::State state(model.BeginSentenceState());
Model::State out;
- StartTest("looking", 2, -0.4846522);
+ StartTest("looking", 2, -0.4846522, true);
// , probability plus <s> backoff
- StartTest(",", 1, -1.383514 + -0.4149733);
+ StartTest(",", 1, -1.383514 + -0.4149733, true);
// <unk> probability plus <s> backoff
- StartTest("this_is_not_found", 1, -1.995635 + -0.4149733);
+ StartTest("this_is_not_found", 1, -1.995635 + -0.4149733, true);
}
template <class M> void Continuation(const M &model) {
@@ -58,46 +59,64 @@ template <class M> void Continuation(const M &model) {
Model::State state(model.BeginSentenceState());
Model::State out;
- AppendTest("looking", 2, -0.484652);
- AppendTest("on", 3, -0.348837);
- AppendTest("a", 4, -0.0155266);
- AppendTest("little", 5, -0.00306122);
+ AppendTest("looking", 2, -0.484652, true);
+ AppendTest("on", 3, -0.348837, true);
+ AppendTest("a", 4, -0.0155266, true);
+ AppendTest("little", 5, -0.00306122, true);
State preserve = state;
- AppendTest("the", 1, -4.04005);
- AppendTest("biarritz", 1, -1.9889);
- AppendTest("not_found", 1, -2.29666);
- AppendTest("more", 1, -1.20632 - 20.0);
- AppendTest(".", 2, -0.51363);
- AppendTest("</s>", 3, -0.0191651);
- BOOST_CHECK_EQUAL(0, state.valid_length_);
+ AppendTest("the", 1, -4.04005, true);
+ AppendTest("biarritz", 1, -1.9889, true);
+ AppendTest("not_found", 1, -2.29666, true);
+ AppendTest("more", 1, -1.20632 - 20.0, true);
+ AppendTest(".", 2, -0.51363, true);
+ AppendTest("</s>", 3, -0.0191651, true);
+ BOOST_CHECK_EQUAL(0, state.length);
state = preserve;
- AppendTest("more", 5, -0.00181395);
- BOOST_CHECK_EQUAL(4, state.valid_length_);
- AppendTest("loin", 5, -0.0432557);
- BOOST_CHECK_EQUAL(1, state.valid_length_);
+ AppendTest("more", 5, -0.00181395, true);
+ BOOST_CHECK_EQUAL(4, state.length);
+ AppendTest("loin", 5, -0.0432557, true);
+ BOOST_CHECK_EQUAL(1, state.length);
}
template <class M> void Blanks(const M &model) {
FullScoreReturn ret;
State state(model.NullContextState());
State out;
- AppendTest("also", 1, -1.687872);
- AppendTest("would", 2, -2);
- AppendTest("consider", 3, -3);
+ AppendTest("also", 1, -1.687872, false);
+ AppendTest("would", 2, -2, true);
+ AppendTest("consider", 3, -3, true);
State preserve = state;
- AppendTest("higher", 4, -4);
- AppendTest("looking", 5, -5);
- BOOST_CHECK_EQUAL(1, state.valid_length_);
+ AppendTest("higher", 4, -4, true);
+ AppendTest("looking", 5, -5, true);
+ BOOST_CHECK_EQUAL(1, state.length);
state = preserve;
- AppendTest("not_found", 1, -1.995635 - 7.0 - 0.30103);
+ // also would consider not_found
+ AppendTest("not_found", 1, -1.995635 - 7.0 - 0.30103, true);
state = model.NullContextState();
// higher looking is a blank.
- AppendTest("higher", 1, -1.509559);
- AppendTest("looking", 1, -1.285941 - 0.30103);
- AppendTest("not_found", 1, -1.995635 - 0.4771212);
+ AppendTest("higher", 1, -1.509559, false);
+ AppendTest("looking", 2, -1.285941 - 0.30103, false);
+
+ State higher_looking = state;
+
+ BOOST_CHECK_EQUAL(1, state.length);
+ AppendTest("not_found", 1, -1.995635 - 0.4771212, true);
+
+ state = higher_looking;
+ // higher looking consider
+ AppendTest("consider", 1, -1.687872 - 0.4771212, true);
+
+ state = model.NullContextState();
+ AppendTest("would", 1, -1.687872, false);
+ BOOST_CHECK_EQUAL(1, state.length);
+ AppendTest("consider", 2, -1.687872 -0.30103, false);
+ BOOST_CHECK_EQUAL(2, state.length);
+ AppendTest("higher", 3, -1.509559 - 0.30103, false);
+ BOOST_CHECK_EQUAL(3, state.length);
+ AppendTest("looking", 4, -1.285941 - 0.30103, false);
}
template <class M> void Unknowns(const M &model) {
@@ -105,14 +124,14 @@ template <class M> void Unknowns(const M &model) {
State state(model.NullContextState());
State out;
- AppendTest("not_found", 1, -1.995635);
+ AppendTest("not_found", 1, -1.995635, false);
State preserve = state;
- AppendTest("not_found2", 2, -15.0);
- AppendTest("not_found3", 2, -15.0 - 2.0);
+ AppendTest("not_found2", 2, -15.0, true);
+ AppendTest("not_found3", 2, -15.0 - 2.0, true);
state = preserve;
- AppendTest("however", 2, -4);
- AppendTest("not_found3", 3, -6);
+ AppendTest("however", 2, -4, true);
+ AppendTest("not_found3", 3, -6, true);
}
template <class M> void MinimalState(const M &model) {
@@ -120,22 +139,66 @@ template <class M> void MinimalState(const M &model) {
State state(model.NullContextState());
State out;
- AppendTest("baz", 1, -6.535897);
- BOOST_CHECK_EQUAL(0, state.valid_length_);
+ AppendTest("baz", 1, -6.535897, true);
+ BOOST_CHECK_EQUAL(0, state.length);
state = model.NullContextState();
- AppendTest("foo", 1, -3.141592);
- BOOST_CHECK_EQUAL(1, state.valid_length_);
- AppendTest("bar", 2, -6.0);
+ AppendTest("foo", 1, -3.141592, true);
+ BOOST_CHECK_EQUAL(1, state.length);
+ AppendTest("bar", 2, -6.0, true);
// Has to include the backoff weight.
- BOOST_CHECK_EQUAL(1, state.valid_length_);
- AppendTest("bar", 1, -2.718281 + 3.0);
- BOOST_CHECK_EQUAL(1, state.valid_length_);
+ BOOST_CHECK_EQUAL(1, state.length);
+ AppendTest("bar", 1, -2.718281 + 3.0, true);
+ BOOST_CHECK_EQUAL(1, state.length);
state = model.NullContextState();
- AppendTest("to", 1, -1.687872);
- AppendTest("look", 2, -0.2922095);
- BOOST_CHECK_EQUAL(2, state.valid_length_);
- AppendTest("good", 3, -7);
+ AppendTest("to", 1, -1.687872, false);
+ AppendTest("look", 2, -0.2922095, true);
+ BOOST_CHECK_EQUAL(2, state.length);
+ AppendTest("good", 3, -7, true);
+}
+
+template <class M> void ExtendLeftTest(const M &model) {
+ State right;
+ FullScoreReturn little(model.FullScore(model.NullContextState(), model.GetVocabulary().Index("little"), right));
+ const float kLittleProb = -1.285941;
+ BOOST_CHECK_CLOSE(kLittleProb, little.prob, 0.001);
+ unsigned char next_use;
+ float backoff_out[4];
+
+ FullScoreReturn extend_none(model.ExtendLeft(NULL, NULL, NULL, little.extend_left, 1, NULL, next_use));
+ BOOST_CHECK_EQUAL(0, next_use);
+ BOOST_CHECK_EQUAL(little.extend_left, extend_none.extend_left);
+ BOOST_CHECK_CLOSE(0.0, extend_none.prob, 0.001);
+ BOOST_CHECK_EQUAL(1, extend_none.ngram_length);
+
+ const WordIndex a = model.GetVocabulary().Index("a");
+ float backoff_in = 3.14;
+ // a little
+ FullScoreReturn extend_a(model.ExtendLeft(&a, &a + 1, &backoff_in, little.extend_left, 1, backoff_out, next_use));
+ BOOST_CHECK_EQUAL(1, next_use);
+ BOOST_CHECK_CLOSE(-0.69897, backoff_out[0], 0.001);
+ BOOST_CHECK_CLOSE(-0.09132547 - kLittleProb, extend_a.prob, 0.001);
+ BOOST_CHECK_EQUAL(2, extend_a.ngram_length);
+ BOOST_CHECK(!extend_a.independent_left);
+
+ const WordIndex on = model.GetVocabulary().Index("on");
+ FullScoreReturn extend_on(model.ExtendLeft(&on, &on + 1, &backoff_in, extend_a.extend_left, 2, backoff_out, next_use));
+ BOOST_CHECK_EQUAL(1, next_use);
+ BOOST_CHECK_CLOSE(-0.4771212, backoff_out[0], 0.001);
+ BOOST_CHECK_CLOSE(-0.0283603 - -0.09132547, extend_on.prob, 0.001);
+ BOOST_CHECK_EQUAL(3, extend_on.ngram_length);
+ BOOST_CHECK(!extend_on.independent_left);
+
+ const WordIndex both[2] = {a, on};
+ float backoff_in_arr[4];
+ FullScoreReturn extend_both(model.ExtendLeft(both, both + 2, backoff_in_arr, little.extend_left, 1, backoff_out, next_use));
+ BOOST_CHECK_EQUAL(2, next_use);
+ BOOST_CHECK_CLOSE(-0.69897, backoff_out[0], 0.001);
+ BOOST_CHECK_CLOSE(-0.4771212, backoff_out[1], 0.001);
+ BOOST_CHECK_CLOSE(-0.0283603 - kLittleProb, extend_both.prob, 0.001);
+ BOOST_CHECK_EQUAL(3, extend_both.ngram_length);
+ BOOST_CHECK(!extend_both.independent_left);
+ BOOST_CHECK_EQUAL(extend_on.extend_left, extend_both.extend_left);
}
#define StatelessTest(word, provide, ngram, score) \
@@ -166,17 +229,17 @@ template <class M> void Stateless(const M &model) {
// looking
StatelessTest(1, 2, 2, -0.484652);
// on
- AppendTest("on", 3, -0.348837);
+ AppendTest("on", 3, -0.348837, true);
StatelessTest(2, 3, 3, -0.348837);
StatelessTest(2, 2, 3, -0.348837);
StatelessTest(2, 1, 2, -0.4638903);
// a
StatelessTest(3, 4, 4, -0.0155266);
// little
- AppendTest("little", 5, -0.00306122);
+ AppendTest("little", 5, -0.00306122, true);
StatelessTest(4, 5, 5, -0.00306122);
// the
- AppendTest("the", 1, -4.04005);
+ AppendTest("the", 1, -4.04005, true);
StatelessTest(5, 5, 1, -4.04005);
// No context of the.
StatelessTest(5, 0, 1, -1.687872);
@@ -189,8 +252,16 @@ template <class M> void Stateless(const M &model) {
WordIndex unk[1];
unk[0] = 0;
model.GetState(unk, unk + 1, state);
- BOOST_CHECK_EQUAL(1, state.valid_length_);
- BOOST_CHECK_EQUAL(static_cast<WordIndex>(0), state.history_[0]);
+ BOOST_CHECK_EQUAL(1, state.length);
+ BOOST_CHECK_EQUAL(static_cast<WordIndex>(0), state.words[0]);
+}
+
+template <class M> void NoUnkCheck(const M &model) {
+ WordIndex unk_index = 0;
+ State state;
+
+ FullScoreReturn ret = model.FullScoreForgotState(&unk_index, &unk_index + 1, unk_index, state);
+ BOOST_CHECK_CLOSE(-100.0, ret.prob, 0.001);
}
template <class M> void NoUnkCheck(const M &model) {
@@ -207,6 +278,7 @@ template <class M> void Everything(const M &m) {
Blanks(m);
Unknowns(m);
MinimalState(m);
+ ExtendLeftTest(m);
Stateless(m);
}
@@ -245,6 +317,7 @@ template <class ModelT> void LoadingTest() {
config.enumerate_vocab = &enumerate;
ModelT m("test.arpa", config);
enumerate.Check(m.GetVocabulary());
+ BOOST_CHECK_EQUAL((WordIndex)37, m.GetVocabulary().Bound());
Everything(m);
}
{
@@ -252,6 +325,7 @@ template <class ModelT> void LoadingTest() {
config.enumerate_vocab = &enumerate;
ModelT m("test_nounk.arpa", config);
enumerate.Check(m.GetVocabulary());
+ BOOST_CHECK_EQUAL((WordIndex)37, m.GetVocabulary().Bound());
NoUnkCheck(m);
}
}
diff --git a/klm/lm/model_type.hh b/klm/lm/model_type.hh
new file mode 100644
index 00000000..5057ed25
--- /dev/null
+++ b/klm/lm/model_type.hh
@@ -0,0 +1,16 @@
+#ifndef LM_MODEL_TYPE__
+#define LM_MODEL_TYPE__
+
+namespace lm {
+namespace ngram {
+
+/* Not the best numbering system, but it grew this way for historical reasons
+ * and I want to preserve existing binary files. */
+typedef enum {HASH_PROBING=0, HASH_SORTED=1, TRIE_SORTED=2, QUANT_TRIE_SORTED=3, ARRAY_TRIE_SORTED=4, QUANT_ARRAY_TRIE_SORTED=5} ModelType;
+
+const static ModelType kQuantAdd = static_cast<ModelType>(QUANT_TRIE_SORTED - TRIE_SORTED);
+const static ModelType kArrayAdd = static_cast<ModelType>(ARRAY_TRIE_SORTED - TRIE_SORTED);
+
+} // namespace ngram
+} // namespace lm
+#endif // LM_MODEL_TYPE__
diff --git a/klm/lm/quantize.cc b/klm/lm/quantize.cc
index fd371cc8..98a5d048 100644
--- a/klm/lm/quantize.cc
+++ b/klm/lm/quantize.cc
@@ -1,5 +1,6 @@
#include "lm/quantize.hh"
+#include "lm/binary_format.hh"
#include "lm/lm_exception.hh"
#include <algorithm>
@@ -70,8 +71,7 @@ void SeparatelyQuantize::Train(uint8_t order, std::vector<float> &prob, std::vec
void SeparatelyQuantize::TrainProb(uint8_t order, std::vector<float> &prob) {
float *centers = start_ + TableStart(order);
- *(centers++) = kBlankProb;
- MakeBins(&*prob.begin(), &*prob.end(), centers, (1ULL << prob_bits_) - 1);
+ MakeBins(&*prob.begin(), &*prob.end(), centers, (1ULL << prob_bits_));
}
void SeparatelyQuantize::FinishedLoading(const Config &config) {
diff --git a/klm/lm/quantize.hh b/klm/lm/quantize.hh
index 0b71d14a..4cf4236e 100644
--- a/klm/lm/quantize.hh
+++ b/klm/lm/quantize.hh
@@ -1,9 +1,9 @@
#ifndef LM_QUANTIZE_H__
#define LM_QUANTIZE_H__
-#include "lm/binary_format.hh" // for ModelType
#include "lm/blank.hh"
#include "lm/config.hh"
+#include "lm/model_type.hh"
#include "util/bit_packing.hh"
#include <algorithm>
@@ -36,6 +36,9 @@ class DontQuantize {
prob = util::ReadNonPositiveFloat31(base, bit_offset);
backoff = util::ReadFloat32(base, bit_offset + 31);
}
+ void ReadProb(const void *base, uint64_t bit_offset, float &prob) const {
+ prob = util::ReadNonPositiveFloat31(base, bit_offset);
+ }
void ReadBackoff(const void *base, uint64_t bit_offset, float &backoff) const {
backoff = util::ReadFloat32(base, bit_offset + 31);
}
@@ -77,7 +80,7 @@ class SeparatelyQuantize {
Bins(uint8_t bits, const float *const begin) : begin_(begin), end_(begin_ + (1ULL << bits)), bits_(bits), mask_((1ULL << bits) - 1) {}
uint64_t EncodeProb(float value) const {
- return(value == kBlankProb ? kBlankProbQuant : Encode(value, 1));
+ return Encode(value, 0);
}
uint64_t EncodeBackoff(float value) const {
@@ -132,6 +135,10 @@ class SeparatelyQuantize {
(prob_.EncodeProb(prob) << backoff_.Bits()) | backoff_.EncodeBackoff(backoff));
}
+ void ReadProb(const void *base, uint64_t bit_offset, float &prob) const {
+ prob = prob_.Decode(util::ReadInt25(base, bit_offset + backoff_.Bits(), prob_.Bits(), prob_.Mask()));
+ }
+
void Read(const void *base, uint64_t bit_offset, float &prob, float &backoff) const {
uint64_t both = util::ReadInt57(base, bit_offset, total_bits_, total_mask_);
prob = prob_.Decode(both >> backoff_.Bits());
@@ -179,7 +186,7 @@ class SeparatelyQuantize {
void SetupMemory(void *start, const Config &config);
static const bool kTrain = true;
- // Assumes kBlankProb is removed from prob and 0.0 is removed from backoff.
+ // Assumes 0.0 is removed from backoff.
void Train(uint8_t order, std::vector<float> &prob, std::vector<float> &backoff);
// Train just probabilities (for longest order).
void TrainProb(uint8_t order, std::vector<float> &prob);
diff --git a/klm/lm/return.hh b/klm/lm/return.hh
new file mode 100644
index 00000000..15571960
--- /dev/null
+++ b/klm/lm/return.hh
@@ -0,0 +1,39 @@
+#ifndef LM_RETURN__
+#define LM_RETURN__
+
+#include <inttypes.h>
+
+namespace lm {
+/* Structure returned by scoring routines. */
+struct FullScoreReturn {
+ // log10 probability
+ float prob;
+
+ /* The length of n-gram matched. Do not use this for recombination.
+ * Consider a model containing only the following n-grams:
+ * -1 foo
+ * -3.14 bar
+ * -2.718 baz -5
+ * -6 foo bar
+ *
+ * If you score ``bar'' then ngram_length is 1 and recombination state is the
+ * empty string because bar has zero backoff and does not extend to the
+ * right.
+ * If you score ``foo'' then ngram_length is 1 and recombination state is
+ * ``foo''.
+ *
+ * Ideally, keep output states around and compare them. Failing that,
+ * get out_state.ValidLength() and use that length for recombination.
+ */
+ unsigned char ngram_length;
+
+ /* Left extension information. If independent_left is set, then prob is
+ * independent of words to the left (up to additional backoff). Otherwise,
+ * extend_left indicates how to efficiently extend further to the left.
+ */
+ bool independent_left;
+ uint64_t extend_left; // Defined only if independent_left
+};
+
+} // namespace lm
+#endif // LM_RETURN__
diff --git a/klm/lm/search_hashed.cc b/klm/lm/search_hashed.cc
index 82c53ec8..334adf12 100644
--- a/klm/lm/search_hashed.cc
+++ b/klm/lm/search_hashed.cc
@@ -1,10 +1,12 @@
#include "lm/search_hashed.hh"
+#include "lm/binary_format.hh"
#include "lm/blank.hh"
#include "lm/lm_exception.hh"
#include "lm/read_arpa.hh"
#include "lm/vocab.hh"
+#include "util/bit_packing.hh"
#include "util/file_piece.hh"
#include <string>
@@ -48,30 +50,77 @@ class ActivateUnigram {
ProbBackoff *modify_;
};
-template <class Voc, class Store, class Middle, class Activate> void ReadNGrams(util::FilePiece &f, const unsigned int n, const size_t count, const Voc &vocab, std::vector<Middle> &middle, Activate activate, Store &store, PositiveProbWarn &warn) {
-
- ReadNGramHeader(f, n);
+template <class Middle> void FixSRI(int lower, float negative_lower_prob, unsigned int n, const uint64_t *keys, const WordIndex *vocab_ids, ProbBackoff *unigrams, std::vector<Middle> &middle) {
ProbBackoff blank;
- blank.prob = kBlankProb;
- blank.backoff = kBlankBackoff;
+ blank.backoff = kNoExtensionBackoff;
+ // Fix SRI's stupidity.
+ // Note that negative_lower_prob is the negative of the probability (so it's currently >= 0). We still want the sign bit off to indicate left extension, so I just do -= on the backoffs.
+ blank.prob = negative_lower_prob;
+ // An entry was found at lower (order lower + 2).
+ // We need to insert blanks starting at lower + 1 (order lower + 3).
+ unsigned int fix = static_cast<unsigned int>(lower + 1);
+ uint64_t backoff_hash = detail::CombineWordHash(static_cast<uint64_t>(vocab_ids[1]), vocab_ids[2]);
+ if (fix == 0) {
+ // Insert a missing bigram.
+ blank.prob -= unigrams[vocab_ids[1]].backoff;
+ SetExtension(unigrams[vocab_ids[1]].backoff);
+ // Bigram including a unigram's backoff
+ middle[0].Insert(Middle::Packing::Make(keys[0], blank));
+ fix = 1;
+ } else {
+ for (unsigned int i = 3; i < fix + 2; ++i) backoff_hash = detail::CombineWordHash(backoff_hash, vocab_ids[i]);
+ }
+ // fix >= 1. Insert trigrams and above.
+ for (; fix <= n - 3; ++fix) {
+ typename Middle::MutableIterator gotit;
+ if (middle[fix - 1].UnsafeMutableFind(backoff_hash, gotit)) {
+ float &backoff = gotit->MutableValue().backoff;
+ SetExtension(backoff);
+ blank.prob -= backoff;
+ }
+ middle[fix].Insert(Middle::Packing::Make(keys[fix], blank));
+ backoff_hash = detail::CombineWordHash(backoff_hash, vocab_ids[fix + 2]);
+ }
+}
+
+template <class Voc, class Store, class Middle, class Activate> void ReadNGrams(util::FilePiece &f, const unsigned int n, const size_t count, const Voc &vocab, ProbBackoff *unigrams, std::vector<Middle> &middle, Activate activate, Store &store, PositiveProbWarn &warn) {
+ ReadNGramHeader(f, n);
// vocab ids of words in reverse order
WordIndex vocab_ids[n];
uint64_t keys[n - 1];
typename Store::Packing::Value value;
- typename Middle::ConstIterator found;
+ typename Middle::MutableIterator found;
for (size_t i = 0; i < count; ++i) {
ReadNGram(f, n, vocab, vocab_ids, value, warn);
+
keys[0] = detail::CombineWordHash(static_cast<uint64_t>(*vocab_ids), vocab_ids[1]);
for (unsigned int h = 1; h < n - 1; ++h) {
keys[h] = detail::CombineWordHash(keys[h-1], vocab_ids[h+1]);
}
+ // Initially the sign bit is on, indicating it does not extend left. Most already have this but there might +0.0.
+ util::SetSign(value.prob);
store.Insert(Store::Packing::Make(keys[n-2], value));
- // Go back and insert blanks.
- for (int lower = n - 3; lower >= 0; --lower) {
- if (middle[lower].Find(keys[lower], found)) break;
- middle[lower].Insert(Middle::Packing::Make(keys[lower], blank));
+ // Go back and find the longest right-aligned entry, informing it that it extends left. Normally this will match immediately, but sometimes SRI is dumb.
+ int lower;
+ util::FloatEnc fix_prob;
+ for (lower = n - 3; ; --lower) {
+ if (lower == -1) {
+ fix_prob.f = unigrams[vocab_ids[0]].prob;
+ fix_prob.i &= ~util::kSignBit;
+ unigrams[vocab_ids[0]].prob = fix_prob.f;
+ break;
+ }
+ if (middle[lower].UnsafeMutableFind(keys[lower], found)) {
+ // Turn off sign bit to indicate that it extends left.
+ fix_prob.f = found->MutableValue().prob;
+ fix_prob.i &= ~util::kSignBit;
+ found->MutableValue().prob = fix_prob.f;
+ // We don't need to recurse further down because this entry already set the bits for lower entries.
+ break;
+ }
}
+ if (lower != static_cast<int>(n) - 3) FixSRI(lower, fix_prob.f, n, keys, vocab_ids, unigrams, middle);
activate(vocab_ids, n);
}
@@ -107,15 +156,15 @@ template <class MiddleT, class LongestT> template <class Voc> void TemplateHashe
try {
if (counts.size() > 2) {
- ReadNGrams(f, 2, counts[1], vocab, middle_, ActivateUnigram(unigram.Raw()), middle_[0], warn);
+ ReadNGrams(f, 2, counts[1], vocab, unigram.Raw(), middle_, ActivateUnigram(unigram.Raw()), middle_[0], warn);
}
for (unsigned int n = 3; n < counts.size(); ++n) {
- ReadNGrams(f, n, counts[n-1], vocab, middle_, ActivateLowerMiddle<Middle>(middle_[n-3]), middle_[n-2], warn);
+ ReadNGrams(f, n, counts[n-1], vocab, unigram.Raw(), middle_, ActivateLowerMiddle<Middle>(middle_[n-3]), middle_[n-2], warn);
}
if (counts.size() > 2) {
- ReadNGrams(f, counts.size(), counts[counts.size() - 1], vocab, middle_, ActivateLowerMiddle<Middle>(middle_.back()), longest, warn);
+ ReadNGrams(f, counts.size(), counts[counts.size() - 1], vocab, unigram.Raw(), middle_, ActivateLowerMiddle<Middle>(middle_.back()), longest, warn);
} else {
- ReadNGrams(f, counts.size(), counts[counts.size() - 1], vocab, middle_, ActivateUnigram(unigram.Raw()), longest, warn);
+ ReadNGrams(f, counts.size(), counts[counts.size() - 1], vocab, unigram.Raw(), middle_, ActivateUnigram(unigram.Raw()), longest, warn);
}
} catch (util::ProbingSizeException &e) {
UTIL_THROW(util::ProbingSizeException, "Avoid pruning n-grams like \"bar baz quux\" when \"foo bar baz quux\" is still in the model. KenLM will work when this pruning happens, but the probing model assumes these events are rare enough that using blank space in the probing hash table will cover all of them. Increase probing_multiplier (-p to build_binary) to add more blank spaces.\n");
@@ -133,7 +182,7 @@ template <class MiddleT, class LongestT> void TemplateHashedSearch<MiddleT, Long
template class TemplateHashedSearch<ProbingHashedSearch::Middle, ProbingHashedSearch::Longest>;
-template void TemplateHashedSearch<ProbingHashedSearch::Middle, ProbingHashedSearch::Longest>::InitializeFromARPA(const char *, util::FilePiece &f, const std::vector<uint64_t> &counts, const Config &, ProbingVocabulary &vocab, Backing &backing);
+template void TemplateHashedSearch<ProbingHashedSearch::Middle, ProbingHashedSearch::Longest>::InitializeFromARPA(const char *, util::FilePiece &f, const std::vector<uint64_t> &counts, const Config &, ProbingVocabulary &vocab, Backing &backing);
} // namespace detail
} // namespace ngram
diff --git a/klm/lm/search_hashed.hh b/klm/lm/search_hashed.hh
index c62985e4..e289fd11 100644
--- a/klm/lm/search_hashed.hh
+++ b/klm/lm/search_hashed.hh
@@ -1,15 +1,18 @@
#ifndef LM_SEARCH_HASHED__
#define LM_SEARCH_HASHED__
-#include "lm/binary_format.hh"
+#include "lm/model_type.hh"
#include "lm/config.hh"
#include "lm/read_arpa.hh"
+#include "lm/return.hh"
#include "lm/weights.hh"
+#include "util/bit_packing.hh"
#include "util/key_value_packing.hh"
#include "util/probing_hash_table.hh"
#include <algorithm>
+#include <iostream>
#include <vector>
namespace util { class FilePiece; }
@@ -52,9 +55,14 @@ struct HashedSearch {
Unigram unigram;
- void LookupUnigram(WordIndex word, float &prob, float &backoff, Node &next) const {
+ void LookupUnigram(WordIndex word, float &backoff, Node &next, FullScoreReturn &ret) const {
const ProbBackoff &entry = unigram.Lookup(word);
- prob = entry.prob;
+ util::FloatEnc val;
+ val.f = entry.prob;
+ ret.independent_left = (val.i & util::kSignBit);
+ ret.extend_left = static_cast<uint64_t>(word);
+ val.i |= util::kSignBit;
+ ret.prob = val.f;
backoff = entry.backoff;
next = static_cast<Node>(word);
}
@@ -67,6 +75,8 @@ template <class MiddleT, class LongestT> class TemplateHashedSearch : public Has
typedef LongestT Longest;
Longest longest;
+ static const unsigned int kVersion = 0;
+
// TODO: move probing_multiplier here with next binary file format update.
static void UpdateConfigFromBinary(int, const std::vector<uint64_t> &, Config &) {}
@@ -85,11 +95,33 @@ template <class MiddleT, class LongestT> class TemplateHashedSearch : public Has
const Middle *MiddleBegin() const { return &*middle_.begin(); }
const Middle *MiddleEnd() const { return &*middle_.end(); }
- bool LookupMiddle(const Middle &middle, WordIndex word, float &prob, float &backoff, Node &node) const {
+ Node Unpack(uint64_t extend_pointer, unsigned char extend_length, float &prob) const {
+ util::FloatEnc val;
+ if (extend_length == 1) {
+ val.f = unigram.Lookup(static_cast<uint64_t>(extend_pointer)).prob;
+ } else {
+ typename Middle::ConstIterator found;
+ if (!middle_[extend_length - 2].Find(extend_pointer, found)) {
+ std::cerr << "Extend pointer " << extend_pointer << " should have been found for length " << (unsigned) extend_length << std::endl;
+ abort();
+ }
+ val.f = found->GetValue().prob;
+ }
+ val.i |= util::kSignBit;
+ prob = val.f;
+ return extend_pointer;
+ }
+
+ bool LookupMiddle(const Middle &middle, WordIndex word, float &backoff, Node &node, FullScoreReturn &ret) const {
node = CombineWordHash(node, word);
typename Middle::ConstIterator found;
if (!middle.Find(node, found)) return false;
- prob = found->GetValue().prob;
+ util::FloatEnc enc;
+ enc.f = found->GetValue().prob;
+ ret.independent_left = (enc.i & util::kSignBit);
+ ret.extend_left = node;
+ enc.i |= util::kSignBit;
+ ret.prob = enc.f;
backoff = found->GetValue().backoff;
return true;
}
@@ -105,6 +137,7 @@ template <class MiddleT, class LongestT> class TemplateHashedSearch : public Has
}
bool LookupLongest(WordIndex word, float &prob, Node &node) const {
+ // Sign bit is always on because longest n-grams do not extend left.
node = CombineWordHash(node, word);
typename Longest::ConstIterator found;
if (!longest.Find(node, found)) return false;
diff --git a/klm/lm/search_trie.cc b/klm/lm/search_trie.cc
index 05059ffb..1bcfe27d 100644
--- a/klm/lm/search_trie.cc
+++ b/klm/lm/search_trie.cc
@@ -2,26 +2,25 @@
#include "lm/search_trie.hh"
#include "lm/bhiksha.hh"
+#include "lm/binary_format.hh"
#include "lm/blank.hh"
#include "lm/lm_exception.hh"
#include "lm/max_order.hh"
#include "lm/quantize.hh"
-#include "lm/read_arpa.hh"
#include "lm/trie.hh"
+#include "lm/trie_sort.hh"
#include "lm/vocab.hh"
#include "lm/weights.hh"
#include "lm/word_index.hh"
#include "util/ersatz_progress.hh"
-#include "util/file_piece.hh"
-#include "util/have.hh"
#include "util/proxy_iterator.hh"
#include "util/scoped.hh"
+#include "util/sized_iterator.hh"
#include <algorithm>
-#include <cmath>
#include <cstring>
#include <cstdio>
-#include <deque>
+#include <queue>
#include <limits>
#include <numeric>
#include <vector>
@@ -29,556 +28,213 @@
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
-#include <fcntl.h>
-#include <stdlib.h>
-#include <unistd.h>
namespace lm {
namespace ngram {
namespace trie {
namespace {
-/* An entry is a n-gram with probability. It consists of:
- * WordIndex[order]
- * float probability
- * backoff probability (omitted for highest order n-gram)
- * These are stored consecutively in memory. We want to sort them.
- *
- * The problem is the length depends on order (but all n-grams being compared
- * have the same order). Allocating each entry on the heap (i.e. std::vector
- * or std::string) then sorting pointers is the normal solution. But that's
- * too memory inefficient. A lot of this code is just here to force std::sort
- * to work with records where length is specified at runtime (and avoid using
- * Boost for LM code). I could have used qsort, but the point is to also
- * support __gnu_cxx:parallel_sort which doesn't have a qsort version.
- */
-
-class EntryIterator {
- public:
- EntryIterator() {}
-
- EntryIterator(void *ptr, std::size_t size) : ptr_(static_cast<uint8_t*>(ptr)), size_(size) {}
-
- bool operator==(const EntryIterator &other) const {
- return ptr_ == other.ptr_;
- }
- bool operator<(const EntryIterator &other) const {
- return ptr_ < other.ptr_;
- }
- EntryIterator &operator+=(std::ptrdiff_t amount) {
- ptr_ += amount * size_;
- return *this;
- }
- std::ptrdiff_t operator-(const EntryIterator &other) const {
- return (ptr_ - other.ptr_) / size_;
- }
-
- const void *Data() const { return ptr_; }
- void *Data() { return ptr_; }
- std::size_t EntrySize() const { return size_; }
-
- private:
- uint8_t *ptr_;
- std::size_t size_;
-};
-
-class EntryProxy {
- public:
- EntryProxy() {}
-
- EntryProxy(void *ptr, std::size_t size) : inner_(ptr, size) {}
-
- operator std::string() const {
- return std::string(reinterpret_cast<const char*>(inner_.Data()), inner_.EntrySize());
- }
-
- EntryProxy &operator=(const EntryProxy &from) {
- memcpy(inner_.Data(), from.inner_.Data(), inner_.EntrySize());
- return *this;
- }
-
- EntryProxy &operator=(const std::string &from) {
- memcpy(inner_.Data(), from.data(), inner_.EntrySize());
- return *this;
- }
-
- const WordIndex *Indices() const {
- return reinterpret_cast<const WordIndex*>(inner_.Data());
- }
-
- private:
- friend class util::ProxyIterator<EntryProxy>;
-
- typedef std::string value_type;
-
- typedef EntryIterator InnerIterator;
- InnerIterator &Inner() { return inner_; }
- const InnerIterator &Inner() const { return inner_; }
- InnerIterator inner_;
-};
-
-typedef util::ProxyIterator<EntryProxy> NGramIter;
-
-// Proxy for an entry except there is some extra cruft between the entries. This is used to sort (n-1)-grams using the same memory as the sorted n-grams.
-class PartialViewProxy {
- public:
- PartialViewProxy() : attention_size_(0), inner_() {}
-
- PartialViewProxy(void *ptr, std::size_t block_size, std::size_t attention_size) : attention_size_(attention_size), inner_(ptr, block_size) {}
-
- operator std::string() const {
- return std::string(reinterpret_cast<const char*>(inner_.Data()), attention_size_);
- }
-
- PartialViewProxy &operator=(const PartialViewProxy &from) {
- memcpy(inner_.Data(), from.inner_.Data(), attention_size_);
- return *this;
- }
-
- PartialViewProxy &operator=(const std::string &from) {
- memcpy(inner_.Data(), from.data(), attention_size_);
- return *this;
- }
-
- const WordIndex *Indices() const {
- return reinterpret_cast<const WordIndex*>(inner_.Data());
- }
-
- private:
- friend class util::ProxyIterator<PartialViewProxy>;
-
- typedef std::string value_type;
-
- const std::size_t attention_size_;
-
- typedef EntryIterator InnerIterator;
- InnerIterator &Inner() { return inner_; }
- const InnerIterator &Inner() const { return inner_; }
- InnerIterator inner_;
-};
-
-typedef util::ProxyIterator<PartialViewProxy> PartialIter;
-
-template <class Proxy> class CompareRecords : public std::binary_function<const Proxy &, const Proxy &, bool> {
- public:
- explicit CompareRecords(unsigned char order) : order_(order) {}
-
- bool operator()(const Proxy &first, const Proxy &second) const {
- return Compare(first.Indices(), second.Indices());
- }
- bool operator()(const Proxy &first, const std::string &second) const {
- return Compare(first.Indices(), reinterpret_cast<const WordIndex*>(second.data()));
- }
- bool operator()(const std::string &first, const Proxy &second) const {
- return Compare(reinterpret_cast<const WordIndex*>(first.data()), second.Indices());
- }
- bool operator()(const std::string &first, const std::string &second) const {
- return Compare(reinterpret_cast<const WordIndex*>(first.data()), reinterpret_cast<const WordIndex*>(second.data()));
- }
-
- private:
- bool Compare(const WordIndex *first, const WordIndex *second) const {
- const WordIndex *end = first + order_;
- for (; first != end; ++first, ++second) {
- if (*first < *second) return true;
- if (*first > *second) return false;
- }
- return false;
- }
-
- unsigned char order_;
-};
-
-FILE *OpenOrThrow(const char *name, const char *mode) {
- FILE *ret = fopen(name, mode);
- if (!ret) UTIL_THROW(util::ErrnoException, "Could not open " << name << " for " << mode);
- return ret;
-}
-
-void WriteOrThrow(FILE *to, const void *data, size_t size) {
- assert(size);
- if (1 != std::fwrite(data, size, 1, to)) UTIL_THROW(util::ErrnoException, "Short write; requested size " << size);
-}
-
void ReadOrThrow(FILE *from, void *data, size_t size) {
- if (1 != std::fread(data, size, 1, from)) UTIL_THROW(util::ErrnoException, "Short read; requested size " << size);
-}
-
-const std::size_t kCopyBufSize = 512;
-void CopyOrThrow(FILE *from, FILE *to, size_t size) {
- char buf[std::min<size_t>(size, kCopyBufSize)];
- for (size_t i = 0; i < size; i += kCopyBufSize) {
- std::size_t amount = std::min(size - i, kCopyBufSize);
- ReadOrThrow(from, buf, amount);
- WriteOrThrow(to, buf, amount);
- }
+ UTIL_THROW_IF(1 != std::fread(data, size, 1, from), util::ErrnoException, "Short read");
}
-void CopyRestOrThrow(FILE *from, FILE *to) {
- char buf[kCopyBufSize];
- size_t amount;
- while ((amount = fread(buf, 1, kCopyBufSize, from))) {
- WriteOrThrow(to, buf, amount);
+int Compare(unsigned char order, const void *first_void, const void *second_void) {
+ const WordIndex *first = reinterpret_cast<const WordIndex*>(first_void), *second = reinterpret_cast<const WordIndex*>(second_void);
+ const WordIndex *end = first + order;
+ for (; first != end; ++first, ++second) {
+ if (*first < *second) return -1;
+ if (*first > *second) return 1;
}
- if (!feof(from)) UTIL_THROW(util::ErrnoException, "Short read");
-}
-
-void RemoveOrThrow(const char *name) {
- if (std::remove(name)) UTIL_THROW(util::ErrnoException, "Could not remove " << name);
+ return 0;
}
-std::string DiskFlush(const void *mem_begin, const void *mem_end, const std::string &file_prefix, std::size_t batch, unsigned char order, std::size_t weights_size) {
- const std::size_t entry_size = sizeof(WordIndex) * order + weights_size;
- const std::size_t prefix_size = sizeof(WordIndex) * (order - 1);
- std::stringstream assembled;
- assembled << file_prefix << static_cast<unsigned int>(order) << '_' << batch;
- std::string ret(assembled.str());
- util::scoped_FILE out(OpenOrThrow(ret.c_str(), "w"));
- // Compress entries that being with the same (order-1) words.
- for (const uint8_t *group_begin = static_cast<const uint8_t*>(mem_begin); group_begin != static_cast<const uint8_t*>(mem_end);) {
- const uint8_t *group_end;
- for (group_end = group_begin + entry_size;
- (group_end != static_cast<const uint8_t*>(mem_end)) && !memcmp(group_begin, group_end, prefix_size);
- group_end += entry_size) {}
- WriteOrThrow(out.get(), group_begin, prefix_size);
- WordIndex group_size = (group_end - group_begin) / entry_size;
- WriteOrThrow(out.get(), &group_size, sizeof(group_size));
- for (const uint8_t *i = group_begin; i != group_end; i += entry_size) {
- WriteOrThrow(out.get(), i + prefix_size, sizeof(WordIndex));
- WriteOrThrow(out.get(), i + sizeof(WordIndex) * order, weights_size);
- }
- group_begin = group_end;
- }
- return ret;
-}
+struct ProbPointer {
+ unsigned char array;
+ uint64_t index;
+};
-class SortedFileReader {
+// Array of n-grams and float indices.
+class BackoffMessages {
public:
- SortedFileReader() : ended_(false) {}
-
- void Init(const std::string &name, unsigned char order) {
- file_.reset(OpenOrThrow(name.c_str(), "r"));
- header_.resize(order - 1);
- NextHeader();
- }
-
- // Preceding words.
- const WordIndex *Header() const {
- return &*header_.begin();
+ void Init(std::size_t entry_size) {
+ current_ = NULL;
+ allocated_ = NULL;
+ entry_size_ = entry_size;
}
- const std::vector<WordIndex> &HeaderVector() const { return header_;}
-
- std::size_t HeaderBytes() const { return header_.size() * sizeof(WordIndex); }
- void NextHeader() {
- if (1 != fread(&*header_.begin(), HeaderBytes(), 1, file_.get())) {
- if (feof(file_.get())) {
- ended_ = true;
- } else {
- UTIL_THROW(util::ErrnoException, "Short read of counts");
+ void Add(const WordIndex *to, ProbPointer index) {
+ while (current_ + entry_size_ > allocated_) {
+ std::size_t allocated_size = allocated_ - (uint8_t*)backing_.get();
+ Resize(std::max<std::size_t>(allocated_size * 2, entry_size_));
+ }
+ memcpy(current_, to, entry_size_ - sizeof(ProbPointer));
+ *reinterpret_cast<ProbPointer*>(current_ + entry_size_ - sizeof(ProbPointer)) = index;
+ current_ += entry_size_;
+ }
+
+ void Apply(float *const *const base, FILE *unigrams) {
+ FinishedAdding();
+ if (current_ == allocated_) return;
+ rewind(unigrams);
+ ProbBackoff weights;
+ WordIndex unigram = 0;
+ ReadOrThrow(unigrams, &weights, sizeof(weights));
+ for (; current_ != allocated_; current_ += entry_size_) {
+ const WordIndex &cur_word = *reinterpret_cast<const WordIndex*>(current_);
+ for (; unigram < cur_word; ++unigram) {
+ ReadOrThrow(unigrams, &weights, sizeof(weights));
+ }
+ if (!HasExtension(weights.backoff)) {
+ weights.backoff = kExtensionBackoff;
+ UTIL_THROW_IF(fseek(unigrams, -sizeof(weights), SEEK_CUR), util::ErrnoException, "Seeking backwards to denote unigram extension failed.");
+ WriteOrThrow(unigrams, &weights, sizeof(weights));
}
+ const ProbPointer &write_to = *reinterpret_cast<const ProbPointer*>(current_ + sizeof(WordIndex));
+ base[write_to.array][write_to.index] += weights.backoff;
}
+ backing_.reset();
+ }
+
+ void Apply(float *const *const base, RecordReader &reader) {
+ FinishedAdding();
+ if (current_ == allocated_) return;
+ // We'll also use the same buffer to record messages to blanks that they extend.
+ WordIndex *extend_out = reinterpret_cast<WordIndex*>(current_);
+ const unsigned char order = (entry_size_ - sizeof(ProbPointer)) / sizeof(WordIndex);
+ for (reader.Rewind(); reader && (current_ != allocated_); ) {
+ switch (Compare(order, reader.Data(), current_)) {
+ case -1:
+ ++reader;
+ break;
+ case 1:
+ // Message but nobody to receive it. Write it down at the beginning of the buffer so we can inform this blank that it extends.
+ for (const WordIndex *w = reinterpret_cast<const WordIndex *>(current_); w != reinterpret_cast<const WordIndex *>(current_) + order; ++w, ++extend_out) *extend_out = *w;
+ current_ += entry_size_;
+ break;
+ case 0:
+ float &backoff = reinterpret_cast<ProbBackoff*>((uint8_t*)reader.Data() + order * sizeof(WordIndex))->backoff;
+ if (!HasExtension(backoff)) {
+ backoff = kExtensionBackoff;
+ reader.Overwrite(&backoff, sizeof(float));
+ } else {
+ const ProbPointer &write_to = *reinterpret_cast<const ProbPointer*>(current_ + entry_size_ - sizeof(ProbPointer));
+ base[write_to.array][write_to.index] += backoff;
+ }
+ current_ += entry_size_;
+ break;
+ }
+ }
+ // Now this is a list of blanks that extend right.
+ entry_size_ = sizeof(WordIndex) * order;
+ Resize(sizeof(WordIndex) * (extend_out - (const WordIndex*)backing_.get()));
+ current_ = (uint8_t*)backing_.get();
}
- WordIndex ReadCount() {
- WordIndex ret;
- ReadOrThrow(file_.get(), &ret, sizeof(WordIndex));
- return ret;
- }
-
- WordIndex ReadWord() {
- WordIndex ret;
- ReadOrThrow(file_.get(), &ret, sizeof(WordIndex));
- return ret;
- }
-
- template <class Weights> void ReadWeights(Weights &weights) {
- ReadOrThrow(file_.get(), &weights, sizeof(Weights));
+ // Call after Apply
+ bool Extends(unsigned char order, const WordIndex *words) {
+ if (current_ == allocated_) return false;
+ assert(order * sizeof(WordIndex) == entry_size_);
+ while (true) {
+ switch(Compare(order, words, current_)) {
+ case 1:
+ current_ += entry_size_;
+ if (current_ == allocated_) return false;
+ break;
+ case -1:
+ return false;
+ case 0:
+ return true;
+ }
+ }
}
- bool Ended() const {
- return ended_;
+ private:
+ void FinishedAdding() {
+ Resize(current_ - (uint8_t*)backing_.get());
+ // Sort requests in same order as files.
+ std::sort(
+ util::SizedIterator(util::SizedProxy(backing_.get(), entry_size_)),
+ util::SizedIterator(util::SizedProxy(current_, entry_size_)),
+ util::SizedCompare<EntryCompare>(EntryCompare((entry_size_ - sizeof(ProbPointer)) / sizeof(WordIndex))));
+ current_ = (uint8_t*)backing_.get();
}
- void Rewind() {
- rewind(file_.get());
- ended_ = false;
- NextHeader();
+ void Resize(std::size_t to) {
+ std::size_t current = current_ - (uint8_t*)backing_.get();
+ backing_.call_realloc(to);
+ current_ = (uint8_t*)backing_.get() + current;
+ allocated_ = (uint8_t*)backing_.get() + to;
}
- FILE *File() { return file_.get(); }
-
- private:
- util::scoped_FILE file_;
+ util::scoped_malloc backing_;
- std::vector<WordIndex> header_;
+ uint8_t *current_, *allocated_;
- bool ended_;
+ std::size_t entry_size_;
};
-void CopyFullRecord(SortedFileReader &from, FILE *to, std::size_t weights_size) {
- WriteOrThrow(to, from.Header(), from.HeaderBytes());
- WordIndex count = from.ReadCount();
- WriteOrThrow(to, &count, sizeof(WordIndex));
-
- CopyOrThrow(from.File(), to, (weights_size + sizeof(WordIndex)) * count);
-}
-
-void MergeSortedFiles(const std::string &first_name, const std::string &second_name, const std::string &out, std::size_t weights_size, unsigned char order) {
- SortedFileReader first, second;
- first.Init(first_name.c_str(), order);
- RemoveOrThrow(first_name.c_str());
- second.Init(second_name.c_str(), order);
- RemoveOrThrow(second_name.c_str());
- util::scoped_FILE out_file(OpenOrThrow(out.c_str(), "w"));
- while (!first.Ended() && !second.Ended()) {
- if (first.HeaderVector() < second.HeaderVector()) {
- CopyFullRecord(first, out_file.get(), weights_size);
- first.NextHeader();
- continue;
- }
- if (first.HeaderVector() > second.HeaderVector()) {
- CopyFullRecord(second, out_file.get(), weights_size);
- second.NextHeader();
- continue;
- }
- // Merge at the entry level.
- WriteOrThrow(out_file.get(), first.Header(), first.HeaderBytes());
- WordIndex first_count = first.ReadCount(), second_count = second.ReadCount();
- WordIndex total_count = first_count + second_count;
- WriteOrThrow(out_file.get(), &total_count, sizeof(WordIndex));
-
- WordIndex first_word = first.ReadWord(), second_word = second.ReadWord();
- WordIndex first_index = 0, second_index = 0;
- while (true) {
- if (first_word < second_word) {
- WriteOrThrow(out_file.get(), &first_word, sizeof(WordIndex));
- CopyOrThrow(first.File(), out_file.get(), weights_size);
- if (++first_index == first_count) break;
- first_word = first.ReadWord();
- } else {
- WriteOrThrow(out_file.get(), &second_word, sizeof(WordIndex));
- CopyOrThrow(second.File(), out_file.get(), weights_size);
- if (++second_index == second_count) break;
- second_word = second.ReadWord();
- }
- }
- if (first_index == first_count) {
- WriteOrThrow(out_file.get(), &second_word, sizeof(WordIndex));
- CopyOrThrow(second.File(), out_file.get(), (second_count - second_index) * (weights_size + sizeof(WordIndex)) - sizeof(WordIndex));
- } else {
- WriteOrThrow(out_file.get(), &first_word, sizeof(WordIndex));
- CopyOrThrow(first.File(), out_file.get(), (first_count - first_index) * (weights_size + sizeof(WordIndex)) - sizeof(WordIndex));
- }
- first.NextHeader();
- second.NextHeader();
- }
-
- for (SortedFileReader &remaining = first.Ended() ? second : first; !remaining.Ended(); remaining.NextHeader()) {
- CopyFullRecord(remaining, out_file.get(), weights_size);
- }
-}
-
-const char *kContextSuffix = "_contexts";
+const float kBadProb = std::numeric_limits<float>::infinity();
-void WriteContextFile(uint8_t *begin, uint8_t *end, const std::string &ngram_file_name, std::size_t entry_size, unsigned char order) {
- const size_t context_size = sizeof(WordIndex) * (order - 1);
- // Sort just the contexts using the same memory.
- PartialIter context_begin(PartialViewProxy(begin + sizeof(WordIndex), entry_size, context_size));
- PartialIter context_end(PartialViewProxy(end + sizeof(WordIndex), entry_size, context_size));
-
- std::sort(context_begin, context_end, CompareRecords<PartialViewProxy>(order - 1));
-
- std::string name(ngram_file_name + kContextSuffix);
- util::scoped_FILE out(OpenOrThrow(name.c_str(), "w"));
-
- // Write out to file and uniqueify at the same time. Could have used unique_copy if there was an appropriate OutputIterator.
- if (context_begin == context_end) return;
- PartialIter i(context_begin);
- WriteOrThrow(out.get(), i->Indices(), context_size);
- const WordIndex *previous = i->Indices();
- ++i;
- for (; i != context_end; ++i) {
- if (memcmp(previous, i->Indices(), context_size)) {
- WriteOrThrow(out.get(), i->Indices(), context_size);
- previous = i->Indices();
- }
- }
-}
-
-class ContextReader {
+class SRISucks {
public:
- ContextReader() : valid_(false) {}
-
- ContextReader(const char *name, unsigned char order) {
- Reset(name, order);
- }
-
- void Reset(const char *name, unsigned char order) {
- file_.reset(OpenOrThrow(name, "r"));
- length_ = sizeof(WordIndex) * static_cast<size_t>(order);
- words_.resize(order);
- valid_ = true;
- ++*this;
- }
-
- ContextReader &operator++() {
- if (1 != fread(&*words_.begin(), length_, 1, file_.get())) {
- if (!feof(file_.get()))
- UTIL_THROW(util::ErrnoException, "Short read");
- valid_ = false;
+ SRISucks() {
+ for (BackoffMessages *i = messages_; i != messages_ + kMaxOrder - 1; ++i)
+ i->Init(sizeof(ProbPointer) + sizeof(WordIndex) * (i - messages_ + 1));
+ }
+
+ void Send(unsigned char begin, unsigned char order, const WordIndex *to, float prob_basis) {
+ assert(prob_basis != kBadProb);
+ ProbPointer pointer;
+ pointer.array = order - 1;
+ pointer.index = values_[order - 1].size();
+ for (unsigned char i = begin; i < order; ++i) {
+ messages_[i - 1].Add(to, pointer);
}
- return *this;
+ values_[order - 1].push_back(prob_basis);
}
- const WordIndex *operator*() const { return &*words_.begin(); }
-
- operator bool() const { return valid_; }
-
- FILE *GetFile() { return file_.get(); }
-
- private:
- util::scoped_FILE file_;
-
- size_t length_;
-
- std::vector<WordIndex> words_;
-
- bool valid_;
-};
-
-void MergeContextFiles(const std::string &first_base, const std::string &second_base, const std::string &out_base, unsigned char order) {
- const size_t context_size = sizeof(WordIndex) * (order - 1);
- std::string first_name(first_base + kContextSuffix);
- std::string second_name(second_base + kContextSuffix);
- ContextReader first(first_name.c_str(), order - 1), second(second_name.c_str(), order - 1);
- RemoveOrThrow(first_name.c_str());
- RemoveOrThrow(second_name.c_str());
- std::string out_name(out_base + kContextSuffix);
- util::scoped_FILE out(OpenOrThrow(out_name.c_str(), "w"));
- while (first && second) {
- for (const WordIndex *f = *first, *s = *second; ; ++f, ++s) {
- if (f == *first + order - 1) {
- // Equal.
- WriteOrThrow(out.get(), *first, context_size);
- ++first;
- ++second;
- break;
+ void ObtainBackoffs(unsigned char total_order, FILE *unigram_file, RecordReader *reader) {
+ for (unsigned char i = 0; i < kMaxOrder - 1; ++i) {
+ it_[i] = &*values_[i].begin();
}
- if (*f < *s) {
- // First lower
- WriteOrThrow(out.get(), *first, context_size);
- ++first;
- break;
- } else if (*f > *s) {
- WriteOrThrow(out.get(), *second, context_size);
- ++second;
- break;
+ messages_[0].Apply(it_, unigram_file);
+ BackoffMessages *messages = messages_ + 1;
+ const RecordReader *end = reader + total_order - 2 /* exclude unigrams and longest order */;
+ for (; reader != end; ++messages, ++reader) {
+ messages->Apply(it_, *reader);
}
}
- }
- ContextReader &remaining = first ? first : second;
- if (!remaining) return;
- WriteOrThrow(out.get(), *remaining, context_size);
- CopyRestOrThrow(remaining.GetFile(), out.get());
-}
-void ConvertToSorted(util::FilePiece &f, const SortedVocabulary &vocab, const std::vector<uint64_t> &counts, util::scoped_memory &mem, const std::string &file_prefix, unsigned char order, PositiveProbWarn &warn) {
- ReadNGramHeader(f, order);
- const size_t count = counts[order - 1];
- // Size of weights. Does it include backoff?
- const size_t words_size = sizeof(WordIndex) * order;
- const size_t weights_size = sizeof(float) + ((order == counts.size()) ? 0 : sizeof(float));
- const size_t entry_size = words_size + weights_size;
- const size_t batch_size = std::min(count, mem.size() / entry_size);
- uint8_t *const begin = reinterpret_cast<uint8_t*>(mem.get());
- std::deque<std::string> files;
- for (std::size_t batch = 0, done = 0; done < count; ++batch) {
- uint8_t *out = begin;
- uint8_t *out_end = out + std::min(count - done, batch_size) * entry_size;
- if (order == counts.size()) {
- for (; out != out_end; out += entry_size) {
- ReadNGram(f, order, vocab, reinterpret_cast<WordIndex*>(out), *reinterpret_cast<Prob*>(out + words_size), warn);
- }
- } else {
- for (; out != out_end; out += entry_size) {
- ReadNGram(f, order, vocab, reinterpret_cast<WordIndex*>(out), *reinterpret_cast<ProbBackoff*>(out + words_size), warn);
- }
+ ProbBackoff GetBlank(unsigned char total_order, unsigned char order, const WordIndex *indices) {
+ assert(order > 1);
+ ProbBackoff ret;
+ ret.prob = *(it_[order - 1]++);
+ ret.backoff = ((order != total_order - 1) && messages_[order - 1].Extends(order, indices)) ? kExtensionBackoff : kNoExtensionBackoff;
+ return ret;
}
- // Sort full records by full n-gram.
- EntryProxy proxy_begin(begin, entry_size), proxy_end(out_end, entry_size);
- // parallel_sort uses too much RAM
- std::sort(NGramIter(proxy_begin), NGramIter(proxy_end), CompareRecords<EntryProxy>(order));
- files.push_back(DiskFlush(begin, out_end, file_prefix, batch, order, weights_size));
- WriteContextFile(begin, out_end, files.back(), entry_size, order);
- done += (out_end - begin) / entry_size;
- }
-
- // All individual files created. Merge them.
-
- std::size_t merge_count = 0;
- while (files.size() > 1) {
- std::stringstream assembled;
- assembled << file_prefix << static_cast<unsigned int>(order) << "_merge_" << (merge_count++);
- files.push_back(assembled.str());
- MergeSortedFiles(files[0], files[1], files.back(), weights_size, order);
- MergeContextFiles(files[0], files[1], files.back(), order);
- files.pop_front();
- files.pop_front();
- }
- if (!files.empty()) {
- std::stringstream assembled;
- assembled << file_prefix << static_cast<unsigned int>(order) << "_merged";
- std::string merged_name(assembled.str());
- if (std::rename(files[0].c_str(), merged_name.c_str())) UTIL_THROW(util::ErrnoException, "Could not rename " << files[0].c_str() << " to " << merged_name.c_str());
- std::string context_name = files[0] + kContextSuffix;
- merged_name += kContextSuffix;
- if (std::rename(context_name.c_str(), merged_name.c_str())) UTIL_THROW(util::ErrnoException, "Could not rename " << context_name << " to " << merged_name.c_str());
- }
-}
-
-void ARPAToSortedFiles(const Config &config, util::FilePiece &f, std::vector<uint64_t> &counts, size_t buffer, const std::string &file_prefix, SortedVocabulary &vocab) {
- PositiveProbWarn warn(config.positive_log_probability);
- {
- std::string unigram_name = file_prefix + "unigrams";
- util::scoped_fd unigram_file;
- // In case <unk> appears.
- size_t file_out = (counts[0] + 1) * sizeof(ProbBackoff);
- util::scoped_mmap unigram_mmap(util::MapZeroedWrite(unigram_name.c_str(), file_out, unigram_file), file_out);
- Read1Grams(f, counts[0], vocab, reinterpret_cast<ProbBackoff*>(unigram_mmap.get()), warn);
- CheckSpecials(config, vocab);
- if (!vocab.SawUnk()) ++counts[0];
- }
+ const std::vector<float> &Values(unsigned char order) const {
+ return values_[order - 1];
+ }
- // Only use as much buffer as we need.
- size_t buffer_use = 0;
- for (unsigned int order = 2; order < counts.size(); ++order) {
- buffer_use = std::max<size_t>(buffer_use, static_cast<size_t>((sizeof(WordIndex) * order + 2 * sizeof(float)) * counts[order - 1]));
- }
- buffer_use = std::max<size_t>(buffer_use, static_cast<size_t>((sizeof(WordIndex) * counts.size() + sizeof(float)) * counts.back()));
- buffer = std::min<size_t>(buffer, buffer_use);
+ private:
+ // This used to be one array. Then I needed to separate it by order for quantization to work.
+ std::vector<float> values_[kMaxOrder - 1];
+ BackoffMessages messages_[kMaxOrder - 1];
- util::scoped_memory mem;
- mem.reset(malloc(buffer), buffer, util::scoped_memory::MALLOC_ALLOCATED);
- if (!mem.get()) UTIL_THROW(util::ErrnoException, "malloc failed for sort buffer size " << buffer);
+ float *it_[kMaxOrder - 1];
+};
- for (unsigned char order = 2; order <= counts.size(); ++order) {
- ConvertToSorted(f, vocab, counts, mem, file_prefix, order, warn);
- }
- ReadEnd(f);
-}
+class FindBlanks {
+ public:
+ FindBlanks(uint64_t *counts, unsigned char order, const ProbBackoff *unigrams, SRISucks &messages)
+ : counts_(counts), longest_counts_(counts + order - 1), unigrams_(unigrams), sri_(messages) {}
-bool HeadMatch(const WordIndex *words, const WordIndex *const words_end, const WordIndex *header) {
- for (; words != words_end; ++words, ++header) {
- if (*words != *header) {
- //assert(*words <= *header);
- return false;
+ float UnigramProb(WordIndex index) const {
+ return unigrams_[index].prob;
}
- }
- return true;
-}
+<<<<<<< HEAD
// Phase to count n-grams, including blanks inserted because they were pruned but have extensions
class JustCount {
public:
@@ -587,17 +243,22 @@ class JustCount {
void Unigrams(WordIndex begin, WordIndex end) {
counts_[0] += end - begin;
+=======
+ void Unigram(WordIndex /*index*/) {
+ ++counts_[0];
+>>>>>>> upstream/master
}
- void MiddleBlank(const unsigned char mid_idx, WordIndex /* idx */) {
- ++counts_[mid_idx + 1];
+ void MiddleBlank(const unsigned char order, const WordIndex *indices, unsigned char lower, float prob_basis) {
+ sri_.Send(lower, order, indices + 1, prob_basis);
+ ++counts_[order - 1];
}
- void Middle(const unsigned char mid_idx, const WordIndex * /*before*/, WordIndex /*key*/, const ProbBackoff &/*weights*/) {
- ++counts_[mid_idx + 1];
+ void Middle(const unsigned char order, const void * /*data*/) {
+ ++counts_[order - 1];
}
- void Longest(WordIndex /*key*/, Prob /*prob*/) {
+ void Longest(const void * /*data*/) {
++*longest_counts_;
}
@@ -608,167 +269,168 @@ class JustCount {
private:
uint64_t *const counts_, *const longest_counts_;
+
+ const ProbBackoff *unigrams_;
+
+ SRISucks &sri_;
};
// Phase to actually write n-grams to the trie.
template <class Quant, class Bhiksha> class WriteEntries {
public:
+<<<<<<< HEAD
WriteEntries(ContextReader *contexts, UnigramValue *unigrams, BitPackedMiddle<typename Quant::Middle, Bhiksha> *middle, BitPackedLongest<typename Quant::Longest> &longest, const uint64_t * /*counts*/, unsigned char order) :
+=======
+ WriteEntries(RecordReader *contexts, UnigramValue *unigrams, BitPackedMiddle<typename Quant::Middle, Bhiksha> *middle, BitPackedLongest<typename Quant::Longest> &longest, unsigned char order, SRISucks &sri) :
+>>>>>>> upstream/master
contexts_(contexts),
unigrams_(unigrams),
middle_(middle),
longest_(longest),
- bigram_pack_((order == 2) ? static_cast<BitPacked&>(longest_) : static_cast<BitPacked&>(*middle_)) {}
+ bigram_pack_((order == 2) ? static_cast<BitPacked&>(longest_) : static_cast<BitPacked&>(*middle_)),
+ order_(order),
+ sri_(sri) {}
- void Unigrams(WordIndex begin, WordIndex end) {
- uint64_t next = bigram_pack_.InsertIndex();
- for (UnigramValue *i = unigrams_ + begin; i < unigrams_ + end; ++i) {
- i->next = next;
- }
+ float UnigramProb(WordIndex index) const { return unigrams_[index].weights.prob; }
+
+ void Unigram(WordIndex word) {
+ unigrams_[word].next = bigram_pack_.InsertIndex();
}
- void MiddleBlank(const unsigned char mid_idx, WordIndex key) {
- middle_[mid_idx].Insert(key, kBlankProb, kBlankBackoff);
+ void MiddleBlank(const unsigned char order, const WordIndex *indices, unsigned char /*lower*/, float /*prob_base*/) {
+ ProbBackoff weights = sri_.GetBlank(order_, order, indices);
+ middle_[order - 2].Insert(indices[order - 1], weights.prob, weights.backoff);
}
- void Middle(const unsigned char mid_idx, const WordIndex *before, WordIndex key, ProbBackoff weights) {
- // Order (mid_idx+2).
- ContextReader &context = contexts_[mid_idx + 1];
- if (context && !memcmp(before, *context, sizeof(WordIndex) * (mid_idx + 1)) && (*context)[mid_idx + 1] == key) {
+ void Middle(const unsigned char order, const void *data) {
+ RecordReader &context = contexts_[order - 1];
+ const WordIndex *words = reinterpret_cast<const WordIndex*>(data);
+ ProbBackoff weights = *reinterpret_cast<const ProbBackoff*>(words + order);
+ if (context && !memcmp(data, context.Data(), sizeof(WordIndex) * order)) {
SetExtension(weights.backoff);
++context;
}
- middle_[mid_idx].Insert(key, weights.prob, weights.backoff);
+ middle_[order - 2].Insert(words[order - 1], weights.prob, weights.backoff);
}
- void Longest(WordIndex key, Prob prob) {
- longest_.Insert(key, prob.prob);
+ void Longest(const void *data) {
+ const WordIndex *words = reinterpret_cast<const WordIndex*>(data);
+ longest_.Insert(words[order_ - 1], reinterpret_cast<const Prob*>(words + order_)->prob);
}
void Cleanup() {}
private:
- ContextReader *contexts_;
+ RecordReader *contexts_;
UnigramValue *const unigrams_;
BitPackedMiddle<typename Quant::Middle, Bhiksha> *const middle_;
BitPackedLongest<typename Quant::Longest> &longest_;
BitPacked &bigram_pack_;
+ const unsigned char order_;
+ SRISucks &sri_;
};
+<<<<<<< HEAD
template <class Doing> class RecursiveInsert {
public:
template <class MiddleT, class LongestT> RecursiveInsert(SortedFileReader *inputs, ContextReader *contexts, UnigramValue *unigrams, MiddleT *middle, LongestT &longest, uint64_t *counts, unsigned char order) :
doing_(contexts, unigrams, middle, longest, counts, order), inputs_(inputs), inputs_end_(inputs + order - 1), order_minus_2_(order - 2) {
}
+=======
+struct Gram {
+ Gram(const WordIndex *in_begin, unsigned char order) : begin(in_begin), end(in_begin + order) {}
+>>>>>>> upstream/master
- // Outer unigram loop.
- void Apply(std::ostream *progress_out, const char *message, WordIndex unigram_count) {
- util::ErsatzProgress progress(progress_out, message, unigram_count + 1);
- for (words_[0] = 0; ; ++words_[0]) {
- progress.Set(words_[0]);
- WordIndex min_continue = unigram_count;
- for (SortedFileReader *other = inputs_; other != inputs_end_; ++other) {
- if (other->Ended()) continue;
- min_continue = std::min(min_continue, other->Header()[0]);
- }
- // This will write at unigram_count. This is by design so that the next pointers will make sense.
- doing_.Unigrams(words_[0], min_continue + 1);
- if (min_continue == unigram_count) break;
- words_[0] = min_continue;
- Middle(0);
- }
- doing_.Cleanup();
- }
+ const WordIndex *begin, *end;
- private:
- void Middle(const unsigned char mid_idx) {
- // (mid_idx + 2)-gram.
- if (mid_idx == order_minus_2_) {
- Longest();
- return;
- }
- // Orders [2, order)
+ // For queue, this is the direction we want.
+ bool operator<(const Gram &other) const {
+ return std::lexicographical_compare(other.begin, other.end, begin, end);
+ }
+};
- SortedFileReader &reader = inputs_[mid_idx];
+template <class Doing> class BlankManager {
+ public:
+ BlankManager(unsigned char total_order, Doing &doing) : total_order_(total_order), been_length_(0), doing_(doing) {
+ for (float *i = basis_; i != basis_ + kMaxOrder - 1; ++i) *i = kBadProb;
+ }
- if (reader.Ended() || !HeadMatch(words_, words_ + mid_idx + 1, reader.Header())) {
- // This order doesn't have a header match, but longer ones might.
- MiddleAllBlank(mid_idx);
+ void Visit(const WordIndex *to, unsigned char length, float prob) {
+ basis_[length - 1] = prob;
+ unsigned char overlap = std::min<unsigned char>(length - 1, been_length_);
+ const WordIndex *cur;
+ WordIndex *pre;
+ for (cur = to, pre = been_; cur != to + overlap; ++cur, ++pre) {
+ if (*pre != *cur) break;
+ }
+ if (cur == to + length - 1) {
+ *pre = *cur;
+ been_length_ = length;
return;
}
-
- // There is a header match.
- WordIndex count = reader.ReadCount();
- WordIndex current = reader.ReadWord();
- while (count) {
- WordIndex min_continue = std::numeric_limits<WordIndex>::max();
- for (SortedFileReader *other = inputs_ + mid_idx + 1; other < inputs_end_; ++other) {
- if (!other->Ended() && HeadMatch(words_, words_ + mid_idx + 1, other->Header()))
- min_continue = std::min(min_continue, other->Header()[mid_idx + 1]);
- }
- while (true) {
- if (current > min_continue) {
- doing_.MiddleBlank(mid_idx, min_continue);
- words_[mid_idx + 1] = min_continue;
- Middle(mid_idx + 1);
- break;
- }
- ProbBackoff weights;
- reader.ReadWeights(weights);
- doing_.Middle(mid_idx, words_, current, weights);
- --count;
- if (current == min_continue) {
- words_[mid_idx + 1] = min_continue;
- Middle(mid_idx + 1);
- if (count) current = reader.ReadWord();
- break;
- }
- if (!count) break;
- current = reader.ReadWord();
- }
+ // There are blanks to insert starting with order blank.
+ unsigned char blank = cur - to + 1;
+ UTIL_THROW_IF(blank == 1, FormatLoadException, "Missing a unigram that appears as context.");
+ const float *lower_basis;
+ for (lower_basis = basis_ + blank - 2; *lower_basis == kBadProb; --lower_basis) {}
+ unsigned char based_on = lower_basis - basis_ + 1;
+ for (; cur != to + length - 1; ++blank, ++cur, ++pre) {
+ assert(*lower_basis != kBadProb);
+ doing_.MiddleBlank(blank, to, based_on, *lower_basis);
+ *pre = *cur;
+ // Mark that the probability is a blank so it shouldn't be used as the basis for a later n-gram.
+ basis_[blank - 1] = kBadProb;
}
- // Count is now zero. Finish off remaining blanks.
- MiddleAllBlank(mid_idx);
- reader.NextHeader();
+ been_length_ = length;
}
- void MiddleAllBlank(const unsigned char mid_idx) {
- while (true) {
- WordIndex min_continue = std::numeric_limits<WordIndex>::max();
- for (SortedFileReader *other = inputs_ + mid_idx + 1; other < inputs_end_; ++other) {
- if (!other->Ended() && HeadMatch(words_, words_ + mid_idx + 1, other->Header()))
- min_continue = std::min(min_continue, other->Header()[mid_idx + 1]);
- }
- if (min_continue == std::numeric_limits<WordIndex>::max()) return;
- doing_.MiddleBlank(mid_idx, min_continue);
- words_[mid_idx + 1] = min_continue;
- Middle(mid_idx + 1);
- }
- }
-
- void Longest() {
- SortedFileReader &reader = *(inputs_end_ - 1);
- if (reader.Ended() || !HeadMatch(words_, words_ + order_minus_2_ + 1, reader.Header())) return;
- WordIndex count = reader.ReadCount();
- for (WordIndex i = 0; i < count; ++i) {
- WordIndex word = reader.ReadWord();
- Prob prob;
- reader.ReadWeights(prob);
- doing_.Longest(word, prob);
- }
- reader.NextHeader();
- return;
- }
+ private:
+ const unsigned char total_order_;
- Doing doing_;
+ WordIndex been_[kMaxOrder];
+ unsigned char been_length_;
- SortedFileReader *inputs_;
- SortedFileReader *inputs_end_;
+ float basis_[kMaxOrder];
+
+ Doing &doing_;
+};
- WordIndex words_[kMaxOrder];
+template <class Doing> void RecursiveInsert(const unsigned char total_order, const WordIndex unigram_count, RecordReader *input, std::ostream *progress_out, const char *message, Doing &doing) {
+ util::ErsatzProgress progress(progress_out, message, unigram_count + 1);
+ unsigned int unigram = 0;
+ std::priority_queue<Gram> grams;
+ grams.push(Gram(&unigram, 1));
+ for (unsigned char i = 2; i <= total_order; ++i) {
+ if (input[i-2]) grams.push(Gram(reinterpret_cast<const WordIndex*>(input[i-2].Data()), i));
+ }
- const unsigned char order_minus_2_;
-};
+ BlankManager<Doing> blank(total_order, doing);
+
+ while (true) {
+ Gram top = grams.top();
+ grams.pop();
+ unsigned char order = top.end - top.begin;
+ if (order == 1) {
+ blank.Visit(&unigram, 1, doing.UnigramProb(unigram));
+ doing.Unigram(unigram);
+ progress.Set(unigram);
+ if (++unigram == unigram_count + 1) break;
+ grams.push(top);
+ } else {
+ if (order == total_order) {
+ blank.Visit(top.begin, order, reinterpret_cast<const Prob*>(top.end)->prob);
+ doing.Longest(top.begin);
+ } else {
+ blank.Visit(top.begin, order, reinterpret_cast<const ProbBackoff*>(top.end)->prob);
+ doing.Middle(order, top.begin);
+ }
+ RecordReader &reader = input[order - 2];
+ if (++reader) grams.push(top);
+ }
+ }
+ assert(grams.empty());
+ doing.Cleanup();
+}
void SanityCheckCounts(const std::vector<uint64_t> &initial, const std::vector<uint64_t> &fixed) {
if (fixed[0] != initial[0]) UTIL_THROW(util::Exception, "Unigram count should be constant but initial is " << initial[0] << " and recounted is " << fixed[0]);
@@ -778,6 +440,7 @@ void SanityCheckCounts(const std::vector<uint64_t> &initial, const std::vector<u
}
}
+<<<<<<< HEAD
bool IsDirectory(const char *path) {
struct stat info;
if (0 != stat(path, &info)) return false;
@@ -799,10 +462,22 @@ template <class Quant> void TrainQuantizer(uint8_t order, uint64_t count, Sorted
if (weights.backoff != 0.0) backoffs.push_back(weights.backoff);
++progress;
}
+=======
+template <class Quant> void TrainQuantizer(uint8_t order, uint64_t count, const std::vector<float> &additional, RecordReader &reader, util::ErsatzProgress &progress, Quant &quant) {
+ std::vector<float> probs(additional), backoffs;
+ probs.reserve(count + additional.size());
+ backoffs.reserve(count);
+ for (reader.Rewind(); reader; ++reader) {
+ const ProbBackoff &weights = *reinterpret_cast<const ProbBackoff*>(reinterpret_cast<const uint8_t*>(reader.Data()) + sizeof(WordIndex) * order);
+ probs.push_back(weights.prob);
+ if (weights.backoff != 0.0) backoffs.push_back(weights.backoff);
+ ++progress;
+>>>>>>> upstream/master
}
quant.Train(order, probs, backoffs);
}
+<<<<<<< HEAD
template <class Quant> void TrainProbQuantizer(uint8_t order, uint64_t count, SortedFileReader &reader, util::ErsatzProgress &progress, Quant &quant) {
Prob weights;
std::vector<float> probs, backoffs;
@@ -816,37 +491,82 @@ template <class Quant> void TrainProbQuantizer(uint8_t order, uint64_t count, So
probs.push_back(weights.prob);
++progress;
}
+=======
+template <class Quant> void TrainProbQuantizer(uint8_t order, uint64_t count, RecordReader &reader, util::ErsatzProgress &progress, Quant &quant) {
+ std::vector<float> probs, backoffs;
+ probs.reserve(count);
+ for (reader.Rewind(); reader; ++reader) {
+ const Prob &weights = *reinterpret_cast<const Prob*>(reinterpret_cast<const uint8_t*>(reader.Data()) + sizeof(WordIndex) * order);
+ probs.push_back(weights.prob);
+ ++progress;
+>>>>>>> upstream/master
}
quant.TrainProb(order, probs);
}
+<<<<<<< HEAD
} // namespace
template <class Quant, class Bhiksha> void BuildTrie(const std::string &file_prefix, std::vector<uint64_t> &counts, const Config &config, TrieSearch<Quant, Bhiksha> &out, Quant &quant, const SortedVocabulary &vocab, Backing &backing) {
std::vector<SortedFileReader> inputs(counts.size() - 1);
std::vector<ContextReader> contexts(counts.size() - 1);
+=======
+void PopulateUnigramWeights(FILE *file, WordIndex unigram_count, RecordReader &contexts, UnigramValue *unigrams) {
+ // Fill unigram probabilities.
+ try {
+ rewind(file);
+ for (WordIndex i = 0; i < unigram_count; ++i) {
+ ReadOrThrow(file, &unigrams[i].weights, sizeof(ProbBackoff));
+ if (contexts && *reinterpret_cast<const WordIndex*>(contexts.Data()) == i) {
+ SetExtension(unigrams[i].weights.backoff);
+ ++contexts;
+ }
+ }
+ } catch (util::Exception &e) {
+ e << " while re-reading unigram probabilities";
+ throw;
+ }
+}
+
+} // namespace
+
+template <class Quant, class Bhiksha> void BuildTrie(const std::string &file_prefix, std::vector<uint64_t> &counts, const Config &config, TrieSearch<Quant, Bhiksha> &out, Quant &quant, const SortedVocabulary &vocab, Backing &backing) {
+ RecordReader inputs[kMaxOrder - 1];
+ RecordReader contexts[kMaxOrder - 1];
+>>>>>>> upstream/master
for (unsigned char i = 2; i <= counts.size(); ++i) {
std::stringstream assembled;
assembled << file_prefix << static_cast<unsigned int>(i) << "_merged";
- inputs[i-2].Init(assembled.str(), i);
- RemoveOrThrow(assembled.str().c_str());
+ inputs[i-2].Init(assembled.str(), i * sizeof(WordIndex) + (i == counts.size() ? sizeof(Prob) : sizeof(ProbBackoff)));
+ util::RemoveOrThrow(assembled.str().c_str());
assembled << kContextSuffix;
- contexts[i-2].Reset(assembled.str().c_str(), i-1);
- RemoveOrThrow(assembled.str().c_str());
+ contexts[i-2].Init(assembled.str(), (i-1) * sizeof(WordIndex));
+ util::RemoveOrThrow(assembled.str().c_str());
}
+ SRISucks sri;
std::vector<uint64_t> fixed_counts(counts.size());
{
+<<<<<<< HEAD
RecursiveInsert<JustCount> counter(&*inputs.begin(), &*contexts.begin(), NULL, out.middle_begin_, out.longest, &*fixed_counts.begin(), counts.size());
counter.Apply(config.messages, "Counting n-grams that should not have been pruned", counts[0]);
+=======
+ std::string temp(file_prefix); temp += "unigrams";
+ util::scoped_fd unigram_file(util::OpenReadOrThrow(temp.c_str()));
+ util::scoped_memory unigrams;
+ MapRead(util::POPULATE_OR_READ, unigram_file.get(), 0, counts[0] * sizeof(ProbBackoff), unigrams);
+ FindBlanks finder(&*fixed_counts.begin(), counts.size(), reinterpret_cast<const ProbBackoff*>(unigrams.get()), sri);
+ RecursiveInsert(counts.size(), counts[0], inputs, config.messages, "Identifying n-grams omitted by SRI", finder);
+>>>>>>> upstream/master
}
- for (std::vector<SortedFileReader>::const_iterator i = inputs.begin(); i != inputs.end(); ++i) {
- if (!i->Ended()) UTIL_THROW(FormatLoadException, "There's a bug in the trie implementation: the " << (i - inputs.begin() + 2) << "-gram table did not complete reading");
+ for (const RecordReader *i = inputs; i != inputs + counts.size() - 2; ++i) {
+ if (*i) UTIL_THROW(FormatLoadException, "There's a bug in the trie implementation: the " << (i - inputs + 2) << "-gram table did not complete reading");
}
SanityCheckCounts(counts, fixed_counts);
counts = fixed_counts;
+<<<<<<< HEAD
out.SetupMemory(GrowForSearch(config, vocab.UnkCountChangePadding(), TrieSearch<Quant, Bhiksha>::Size(fixed_counts, config), backing), fixed_counts, config);
if (Quant::kTrain) {
@@ -857,13 +577,40 @@ template <class Quant, class Bhiksha> void BuildTrie(const std::string &file_pre
TrainProbQuantizer(counts.size(), counts.back(), inputs[counts.size() - 2], progress, quant);
quant.FinishedLoading(config);
}
+=======
+ util::scoped_FILE unigram_file;
+ {
+ std::string name(file_prefix + "unigrams");
+ unigram_file.reset(OpenOrThrow(name.c_str(), "r"));
+ util::RemoveOrThrow(name.c_str());
+ }
+ sri.ObtainBackoffs(counts.size(), unigram_file.get(), inputs);
+
+ out.SetupMemory(GrowForSearch(config, vocab.UnkCountChangePadding(), TrieSearch<Quant, Bhiksha>::Size(fixed_counts, config), backing), fixed_counts, config);
+>>>>>>> upstream/master
for (unsigned char i = 2; i <= counts.size(); ++i) {
inputs[i-2].Rewind();
}
+ if (Quant::kTrain) {
+ util::ErsatzProgress progress(config.messages, "Quantizing", std::accumulate(counts.begin() + 1, counts.end(), 0));
+ for (unsigned char i = 2; i < counts.size(); ++i) {
+ TrainQuantizer(i, counts[i-1], sri.Values(i), inputs[i-2], progress, quant);
+ }
+ TrainProbQuantizer(counts.size(), counts.back(), inputs[counts.size() - 2], progress, quant);
+ quant.FinishedLoading(config);
+ }
+
UnigramValue *unigrams = out.unigram.Raw();
+ PopulateUnigramWeights(unigram_file.get(), counts[0], contexts[0], unigrams);
+ unigram_file.reset();
+
+ for (unsigned char i = 2; i <= counts.size(); ++i) {
+ inputs[i-2].Rewind();
+ }
// Fill entries except unigram probabilities.
{
+<<<<<<< HEAD
RecursiveInsert<WriteEntries<Quant, Bhiksha> > inserter(&*inputs.begin(), &*contexts.begin(), unigrams, out.middle_begin_, out.longest, &*fixed_counts.begin(), counts.size());
inserter.Apply(config.messages, "Building trie", fixed_counts[0]);
}
@@ -883,15 +630,20 @@ template <class Quant, class Bhiksha> void BuildTrie(const std::string &file_pre
} catch (util::Exception &e) {
e << " while re-reading unigram probabilities";
throw;
+=======
+ WriteEntries<Quant, Bhiksha> writer(contexts, unigrams, out.middle_begin_, out.longest, counts.size(), sri);
+ RecursiveInsert(counts.size(), counts[0], inputs, config.messages, "Writing trie", writer);
+>>>>>>> upstream/master
}
// Do not disable this error message or else too little state will be returned. Both WriteEntries::Middle and returning state based on found n-grams will need to be fixed to handle this situation.
for (unsigned char order = 2; order <= counts.size(); ++order) {
- const ContextReader &context = contexts[order - 2];
+ const RecordReader &context = contexts[order - 2];
if (context) {
FormatLoadException e;
- e << "An " << static_cast<unsigned int>(order) << "-gram has the context (i.e. all but the last word):";
- for (const WordIndex *i = *context; i != *context + order - 1; ++i) {
+ e << "A " << static_cast<unsigned int>(order) << "-gram has context";
+ const WordIndex *ctx = reinterpret_cast<const WordIndex*>(context.Data());
+ for (const WordIndex *i = ctx; i != ctx + order - 1; ++i) {
e << ' ' << *i;
}
e << " so this context must appear in the model as a " << static_cast<unsigned int>(order - 1) << "-gram but it does not";
@@ -935,6 +687,17 @@ template <class Quant, class Bhiksha> uint8_t *TrieSearch<Quant, Bhiksha>::Setup
}
longest.Init(start, quant_.Long(counts.size()), counts[0]);
return start + Longest::Size(Quant::LongestBits(config), counts.back(), counts[0]);
+<<<<<<< HEAD
+}
+
+template <class Quant, class Bhiksha> void TrieSearch<Quant, Bhiksha>::LoadedBinary() {
+ unigram.LoadedBinary();
+ for (Middle *i = middle_begin_; i != middle_end_; ++i) {
+ i->LoadedBinary();
+ }
+ longest.LoadedBinary();
+}
+=======
}
template <class Quant, class Bhiksha> void TrieSearch<Quant, Bhiksha>::LoadedBinary() {
@@ -945,6 +708,15 @@ template <class Quant, class Bhiksha> void TrieSearch<Quant, Bhiksha>::LoadedBin
longest.LoadedBinary();
}
+namespace {
+bool IsDirectory(const char *path) {
+ struct stat info;
+ if (0 != stat(path, &info)) return false;
+ return S_ISDIR(info.st_mode);
+}
+} // namespace
+>>>>>>> upstream/master
+
template <class Quant, class Bhiksha> void TrieSearch<Quant, Bhiksha>::InitializeFromARPA(const char *file, util::FilePiece &f, std::vector<uint64_t> &counts, const Config &config, SortedVocabulary &vocab, Backing &backing) {
std::string temporary_directory;
if (config.temporary_directory_prefix) {
diff --git a/klm/lm/search_trie.hh b/klm/lm/search_trie.hh
index 2f39c09f..33ae8cff 100644
--- a/klm/lm/search_trie.hh
+++ b/klm/lm/search_trie.hh
@@ -1,10 +1,16 @@
#ifndef LM_SEARCH_TRIE__
#define LM_SEARCH_TRIE__
-#include "lm/binary_format.hh"
+#include "lm/config.hh"
+#include "lm/model_type.hh"
+#include "lm/return.hh"
#include "lm/trie.hh"
#include "lm/weights.hh"
+#include "util/file_piece.hh"
+
+#include <vector>
+
#include <assert.h>
namespace lm {
@@ -30,6 +36,8 @@ template <class Quant, class Bhiksha> class TrieSearch {
static const ModelType kModelType = static_cast<ModelType>(TRIE_SORTED + Quant::kModelTypeAdd + Bhiksha::kModelTypeAdd);
+ static const unsigned int kVersion = 1;
+
static void UpdateConfigFromBinary(int fd, const std::vector<uint64_t> &counts, Config &config) {
Quant::UpdateConfigFromBinary(fd, counts, config);
AdvanceOrThrow(fd, Quant::Size(counts.size(), config) + Unigram::Size(counts[0]));
@@ -57,12 +65,16 @@ template <class Quant, class Bhiksha> class TrieSearch {
void InitializeFromARPA(const char *file, util::FilePiece &f, std::vector<uint64_t> &counts, const Config &config, SortedVocabulary &vocab, Backing &backing);
- void LookupUnigram(WordIndex word, float &prob, float &backoff, Node &node) const {
- unigram.Find(word, prob, backoff, node);
+ void LookupUnigram(WordIndex word, float &backoff, Node &node, FullScoreReturn &ret) const {
+ unigram.Find(word, ret.prob, backoff, node);
+ ret.independent_left = (node.begin == node.end);
+ ret.extend_left = static_cast<uint64_t>(word);
}
- bool LookupMiddle(const Middle &mid, WordIndex word, float &prob, float &backoff, Node &node) const {
- return mid.Find(word, prob, backoff, node);
+ bool LookupMiddle(const Middle &mid, WordIndex word, float &backoff, Node &node, FullScoreReturn &ret) const {
+ if (!mid.Find(word, ret.prob, backoff, node, ret.extend_left)) return false;
+ ret.independent_left = (node.begin == node.end);
+ return true;
}
bool LookupMiddleNoProb(const Middle &mid, WordIndex word, float &backoff, Node &node) const {
@@ -76,14 +88,25 @@ template <class Quant, class Bhiksha> class TrieSearch {
bool FastMakeNode(const WordIndex *begin, const WordIndex *end, Node &node) const {
// TODO: don't decode backoff.
assert(begin != end);
- float ignored_prob, ignored_backoff;
- LookupUnigram(*begin, ignored_prob, ignored_backoff, node);
+ FullScoreReturn ignored;
+ float ignored_backoff;
+ LookupUnigram(*begin, ignored_backoff, node, ignored);
for (const WordIndex *i = begin + 1; i < end; ++i) {
if (!LookupMiddleNoProb(middle_begin_[i - begin - 1], *i, ignored_backoff, node)) return false;
}
return true;
}
+ Node Unpack(uint64_t extend_pointer, unsigned char extend_length, float &prob) const {
+ if (extend_length == 1) {
+ float ignored;
+ Node ret;
+ unigram.Find(static_cast<WordIndex>(extend_pointer), prob, ignored, ret);
+ return ret;
+ }
+ return middle_begin_[extend_length - 2].ReadEntry(extend_pointer, prob);
+ }
+
private:
friend void BuildTrie<Quant, Bhiksha>(const std::string &file_prefix, std::vector<uint64_t> &counts, const Config &config, TrieSearch<Quant, Bhiksha> &out, Quant &quant, const SortedVocabulary &vocab, Backing &backing);
diff --git a/klm/lm/trie.cc b/klm/lm/trie.cc
index 8c536e66..a1136b6f 100644
--- a/klm/lm/trie.cc
+++ b/klm/lm/trie.cc
@@ -86,11 +86,12 @@ template <class Quant, class Bhiksha> void BitPackedMiddle<Quant, Bhiksha>::Inse
++insert_index_;
}
-template <class Quant, class Bhiksha> bool BitPackedMiddle<Quant, Bhiksha>::Find(WordIndex word, float &prob, float &backoff, NodeRange &range) const {
+template <class Quant, class Bhiksha> bool BitPackedMiddle<Quant, Bhiksha>::Find(WordIndex word, float &prob, float &backoff, NodeRange &range, uint64_t &pointer) const {
uint64_t at_pointer;
if (!FindBitPacked(base_, word_mask_, word_bits_, total_bits_, range.begin, range.end, max_vocab_, word, at_pointer)) {
return false;
}
+<<<<<<< HEAD
uint64_t index = at_pointer;
at_pointer *= total_bits_;
at_pointer += word_bits_;
@@ -98,6 +99,16 @@ template <class Quant, class Bhiksha> bool BitPackedMiddle<Quant, Bhiksha>::Find
at_pointer += quant_.TotalBits();
bhiksha_.ReadNext(base_, at_pointer, index, total_bits_, range);
+=======
+ pointer = at_pointer;
+ at_pointer *= total_bits_;
+ at_pointer += word_bits_;
+
+ quant_.Read(base_, at_pointer, prob, backoff);
+ at_pointer += quant_.TotalBits();
+
+ bhiksha_.ReadNext(base_, at_pointer, pointer, total_bits_, range);
+>>>>>>> upstream/master
return true;
}
diff --git a/klm/lm/trie.hh b/klm/lm/trie.hh
index 53612064..06cc96ac 100644
--- a/klm/lm/trie.hh
+++ b/klm/lm/trie.hh
@@ -94,10 +94,19 @@ template <class Quant, class Bhiksha> class BitPackedMiddle : public BitPacked {
void LoadedBinary() { bhiksha_.LoadedBinary(); }
- bool Find(WordIndex word, float &prob, float &backoff, NodeRange &range) const;
+ bool Find(WordIndex word, float &prob, float &backoff, NodeRange &range, uint64_t &pointer) const;
bool FindNoProb(WordIndex word, float &backoff, NodeRange &range) const;
+ NodeRange ReadEntry(uint64_t pointer, float &prob) {
+ uint64_t addr = pointer * total_bits_;
+ addr += word_bits_;
+ quant_.ReadProb(base_, addr, prob);
+ NodeRange ret;
+ bhiksha_.ReadNext(base_, addr + quant_.TotalBits(), pointer, total_bits_, ret);
+ return ret;
+ }
+
private:
Quant quant_;
Bhiksha bhiksha_;
diff --git a/klm/lm/trie_sort.cc b/klm/lm/trie_sort.cc
new file mode 100644
index 00000000..bb126f18
--- /dev/null
+++ b/klm/lm/trie_sort.cc
@@ -0,0 +1,261 @@
+#include "lm/trie_sort.hh"
+
+#include "lm/config.hh"
+#include "lm/lm_exception.hh"
+#include "lm/read_arpa.hh"
+#include "lm/vocab.hh"
+#include "lm/weights.hh"
+#include "lm/word_index.hh"
+#include "util/file_piece.hh"
+#include "util/mmap.hh"
+#include "util/proxy_iterator.hh"
+#include "util/sized_iterator.hh"
+
+#include <algorithm>
+#include <cstring>
+#include <cstdio>
+#include <deque>
+#include <limits>
+#include <vector>
+
+namespace lm {
+namespace ngram {
+namespace trie {
+
+const char *kContextSuffix = "_contexts";
+
+FILE *OpenOrThrow(const char *name, const char *mode) {
+ FILE *ret = fopen(name, mode);
+ if (!ret) UTIL_THROW(util::ErrnoException, "Could not open " << name << " for " << mode);
+ return ret;
+}
+
+void WriteOrThrow(FILE *to, const void *data, size_t size) {
+ assert(size);
+ if (1 != std::fwrite(data, size, 1, to)) UTIL_THROW(util::ErrnoException, "Short write; requested size " << size);
+}
+
+namespace {
+
+typedef util::SizedIterator NGramIter;
+
+// Proxy for an entry except there is some extra cruft between the entries. This is used to sort (n-1)-grams using the same memory as the sorted n-grams.
+class PartialViewProxy {
+ public:
+ PartialViewProxy() : attention_size_(0), inner_() {}
+
+ PartialViewProxy(void *ptr, std::size_t block_size, std::size_t attention_size) : attention_size_(attention_size), inner_(ptr, block_size) {}
+
+ operator std::string() const {
+ return std::string(reinterpret_cast<const char*>(inner_.Data()), attention_size_);
+ }
+
+ PartialViewProxy &operator=(const PartialViewProxy &from) {
+ memcpy(inner_.Data(), from.inner_.Data(), attention_size_);
+ return *this;
+ }
+
+ PartialViewProxy &operator=(const std::string &from) {
+ memcpy(inner_.Data(), from.data(), attention_size_);
+ return *this;
+ }
+
+ const void *Data() const { return inner_.Data(); }
+ void *Data() { return inner_.Data(); }
+
+ private:
+ friend class util::ProxyIterator<PartialViewProxy>;
+
+ typedef std::string value_type;
+
+ const std::size_t attention_size_;
+
+ typedef util::SizedInnerIterator InnerIterator;
+ InnerIterator &Inner() { return inner_; }
+ const InnerIterator &Inner() const { return inner_; }
+ InnerIterator inner_;
+};
+
+typedef util::ProxyIterator<PartialViewProxy> PartialIter;
+
+std::string DiskFlush(const void *mem_begin, const void *mem_end, const std::string &file_prefix, std::size_t batch, unsigned char order) {
+ std::stringstream assembled;
+ assembled << file_prefix << static_cast<unsigned int>(order) << '_' << batch;
+ std::string ret(assembled.str());
+ util::scoped_fd out(util::CreateOrThrow(ret.c_str()));
+ util::WriteOrThrow(out.get(), mem_begin, (uint8_t*)mem_end - (uint8_t*)mem_begin);
+ return ret;
+}
+
+void WriteContextFile(uint8_t *begin, uint8_t *end, const std::string &ngram_file_name, std::size_t entry_size, unsigned char order) {
+ const size_t context_size = sizeof(WordIndex) * (order - 1);
+ // Sort just the contexts using the same memory.
+ PartialIter context_begin(PartialViewProxy(begin + sizeof(WordIndex), entry_size, context_size));
+ PartialIter context_end(PartialViewProxy(end + sizeof(WordIndex), entry_size, context_size));
+
+ std::sort(context_begin, context_end, util::SizedCompare<EntryCompare, PartialViewProxy>(EntryCompare(order - 1)));
+
+ std::string name(ngram_file_name + kContextSuffix);
+ util::scoped_FILE out(OpenOrThrow(name.c_str(), "w"));
+
+ // Write out to file and uniqueify at the same time. Could have used unique_copy if there was an appropriate OutputIterator.
+ if (context_begin == context_end) return;
+ PartialIter i(context_begin);
+ WriteOrThrow(out.get(), i->Data(), context_size);
+ const void *previous = i->Data();
+ ++i;
+ for (; i != context_end; ++i) {
+ if (memcmp(previous, i->Data(), context_size)) {
+ WriteOrThrow(out.get(), i->Data(), context_size);
+ previous = i->Data();
+ }
+ }
+}
+
+struct ThrowCombine {
+ void operator()(std::size_t /*entry_size*/, const void * /*first*/, const void * /*second*/, FILE * /*out*/) const {
+ UTIL_THROW(FormatLoadException, "Duplicate n-gram detected.");
+ }
+};
+
+// Useful for context files that just contain records with no value.
+struct FirstCombine {
+ void operator()(std::size_t entry_size, const void *first, const void * /*second*/, FILE *out) const {
+ WriteOrThrow(out, first, entry_size);
+ }
+};
+
+template <class Combine> void MergeSortedFiles(const std::string &first_name, const std::string &second_name, const std::string &out, std::size_t weights_size, unsigned char order, const Combine &combine = ThrowCombine()) {
+ std::size_t entry_size = sizeof(WordIndex) * order + weights_size;
+ RecordReader first, second;
+ first.Init(first_name.c_str(), entry_size);
+ util::RemoveOrThrow(first_name.c_str());
+ second.Init(second_name.c_str(), entry_size);
+ util::RemoveOrThrow(second_name.c_str());
+ util::scoped_FILE out_file(OpenOrThrow(out.c_str(), "w"));
+ EntryCompare less(order);
+ while (first && second) {
+ if (less(first.Data(), second.Data())) {
+ WriteOrThrow(out_file.get(), first.Data(), entry_size);
+ ++first;
+ } else if (less(second.Data(), first.Data())) {
+ WriteOrThrow(out_file.get(), second.Data(), entry_size);
+ ++second;
+ } else {
+ combine(entry_size, first.Data(), second.Data(), out_file.get());
+ ++first; ++second;
+ }
+ }
+ for (RecordReader &remains = (first ? first : second); remains; ++remains) {
+ WriteOrThrow(out_file.get(), remains.Data(), entry_size);
+ }
+}
+
+void ConvertToSorted(util::FilePiece &f, const SortedVocabulary &vocab, const std::vector<uint64_t> &counts, util::scoped_memory &mem, const std::string &file_prefix, unsigned char order, PositiveProbWarn &warn) {
+ ReadNGramHeader(f, order);
+ const size_t count = counts[order - 1];
+ // Size of weights. Does it include backoff?
+ const size_t words_size = sizeof(WordIndex) * order;
+ const size_t weights_size = sizeof(float) + ((order == counts.size()) ? 0 : sizeof(float));
+ const size_t entry_size = words_size + weights_size;
+ const size_t batch_size = std::min(count, mem.size() / entry_size);
+ uint8_t *const begin = reinterpret_cast<uint8_t*>(mem.get());
+ std::deque<std::string> files;
+ for (std::size_t batch = 0, done = 0; done < count; ++batch) {
+ uint8_t *out = begin;
+ uint8_t *out_end = out + std::min(count - done, batch_size) * entry_size;
+ if (order == counts.size()) {
+ for (; out != out_end; out += entry_size) {
+ ReadNGram(f, order, vocab, reinterpret_cast<WordIndex*>(out), *reinterpret_cast<Prob*>(out + words_size), warn);
+ }
+ } else {
+ for (; out != out_end; out += entry_size) {
+ ReadNGram(f, order, vocab, reinterpret_cast<WordIndex*>(out), *reinterpret_cast<ProbBackoff*>(out + words_size), warn);
+ }
+ }
+ // Sort full records by full n-gram.
+ util::SizedProxy proxy_begin(begin, entry_size), proxy_end(out_end, entry_size);
+ // parallel_sort uses too much RAM
+ std::sort(NGramIter(proxy_begin), NGramIter(proxy_end), util::SizedCompare<EntryCompare>(EntryCompare(order)));
+ files.push_back(DiskFlush(begin, out_end, file_prefix, batch, order));
+ WriteContextFile(begin, out_end, files.back(), entry_size, order);
+
+ done += (out_end - begin) / entry_size;
+ }
+
+ // All individual files created. Merge them.
+
+ std::size_t merge_count = 0;
+ while (files.size() > 1) {
+ std::stringstream assembled;
+ assembled << file_prefix << static_cast<unsigned int>(order) << "_merge_" << (merge_count++);
+ files.push_back(assembled.str());
+ MergeSortedFiles(files[0], files[1], files.back(), weights_size, order, ThrowCombine());
+ MergeSortedFiles(files[0] + kContextSuffix, files[1] + kContextSuffix, files.back() + kContextSuffix, 0, order - 1, FirstCombine());
+ files.pop_front();
+ files.pop_front();
+ }
+ if (!files.empty()) {
+ std::stringstream assembled;
+ assembled << file_prefix << static_cast<unsigned int>(order) << "_merged";
+ std::string merged_name(assembled.str());
+ if (std::rename(files[0].c_str(), merged_name.c_str())) UTIL_THROW(util::ErrnoException, "Could not rename " << files[0].c_str() << " to " << merged_name.c_str());
+ std::string context_name = files[0] + kContextSuffix;
+ merged_name += kContextSuffix;
+ if (std::rename(context_name.c_str(), merged_name.c_str())) UTIL_THROW(util::ErrnoException, "Could not rename " << context_name << " to " << merged_name.c_str());
+ }
+}
+
+} // namespace
+
+void RecordReader::Init(const std::string &name, std::size_t entry_size) {
+ file_.reset(OpenOrThrow(name.c_str(), "r+"));
+ data_.reset(malloc(entry_size));
+ UTIL_THROW_IF(!data_.get(), util::ErrnoException, "Failed to malloc read buffer");
+ remains_ = true;
+ entry_size_ = entry_size;
+ ++*this;
+}
+
+void RecordReader::Overwrite(const void *start, std::size_t amount) {
+ long internal = (uint8_t*)start - (uint8_t*)data_.get();
+ UTIL_THROW_IF(fseek(file_.get(), internal - entry_size_, SEEK_CUR), util::ErrnoException, "Couldn't seek backwards for revision");
+ WriteOrThrow(file_.get(), start, amount);
+ long forward = entry_size_ - internal - amount;
+ if (forward) UTIL_THROW_IF(fseek(file_.get(), forward, SEEK_CUR), util::ErrnoException, "Couldn't seek forwards past revision");
+}
+
+void ARPAToSortedFiles(const Config &config, util::FilePiece &f, std::vector<uint64_t> &counts, size_t buffer, const std::string &file_prefix, SortedVocabulary &vocab) {
+ PositiveProbWarn warn(config.positive_log_probability);
+ {
+ std::string unigram_name = file_prefix + "unigrams";
+ util::scoped_fd unigram_file;
+ // In case <unk> appears.
+ size_t file_out = (counts[0] + 1) * sizeof(ProbBackoff);
+ util::scoped_mmap unigram_mmap(util::MapZeroedWrite(unigram_name.c_str(), file_out, unigram_file), file_out);
+ Read1Grams(f, counts[0], vocab, reinterpret_cast<ProbBackoff*>(unigram_mmap.get()), warn);
+ CheckSpecials(config, vocab);
+ if (!vocab.SawUnk()) ++counts[0];
+ }
+
+ // Only use as much buffer as we need.
+ size_t buffer_use = 0;
+ for (unsigned int order = 2; order < counts.size(); ++order) {
+ buffer_use = std::max<size_t>(buffer_use, static_cast<size_t>((sizeof(WordIndex) * order + 2 * sizeof(float)) * counts[order - 1]));
+ }
+ buffer_use = std::max<size_t>(buffer_use, static_cast<size_t>((sizeof(WordIndex) * counts.size() + sizeof(float)) * counts.back()));
+ buffer = std::min<size_t>(buffer, buffer_use);
+
+ util::scoped_memory mem;
+ mem.reset(malloc(buffer), buffer, util::scoped_memory::MALLOC_ALLOCATED);
+ if (!mem.get()) UTIL_THROW(util::ErrnoException, "malloc failed for sort buffer size " << buffer);
+
+ for (unsigned char order = 2; order <= counts.size(); ++order) {
+ ConvertToSorted(f, vocab, counts, mem, file_prefix, order, warn);
+ }
+ ReadEnd(f);
+}
+
+} // namespace trie
+} // namespace ngram
+} // namespace lm
diff --git a/klm/lm/trie_sort.hh b/klm/lm/trie_sort.hh
new file mode 100644
index 00000000..a6916483
--- /dev/null
+++ b/klm/lm/trie_sort.hh
@@ -0,0 +1,94 @@
+#ifndef LM_TRIE_SORT__
+#define LM_TRIE_SORT__
+
+#include "lm/word_index.hh"
+
+#include "util/file.hh"
+#include "util/scoped.hh"
+
+#include <cstddef>
+#include <functional>
+#include <string>
+#include <vector>
+
+#include <inttypes.h>
+
+namespace util { class FilePiece; }
+
+// Step of trie builder: create sorted files.
+namespace lm {
+namespace ngram {
+class SortedVocabulary;
+class Config;
+
+namespace trie {
+
+extern const char *kContextSuffix;
+FILE *OpenOrThrow(const char *name, const char *mode);
+void WriteOrThrow(FILE *to, const void *data, size_t size);
+
+class EntryCompare : public std::binary_function<const void*, const void*, bool> {
+ public:
+ explicit EntryCompare(unsigned char order) : order_(order) {}
+
+ bool operator()(const void *first_void, const void *second_void) const {
+ const WordIndex *first = static_cast<const WordIndex*>(first_void);
+ const WordIndex *second = static_cast<const WordIndex*>(second_void);
+ const WordIndex *end = first + order_;
+ for (; first != end; ++first, ++second) {
+ if (*first < *second) return true;
+ if (*first > *second) return false;
+ }
+ return false;
+ }
+ private:
+ unsigned char order_;
+};
+
+class RecordReader {
+ public:
+ RecordReader() : remains_(true) {}
+
+ void Init(const std::string &name, std::size_t entry_size);
+
+ void *Data() { return data_.get(); }
+ const void *Data() const { return data_.get(); }
+
+ RecordReader &operator++() {
+ std::size_t ret = fread(data_.get(), entry_size_, 1, file_.get());
+ if (!ret) {
+ UTIL_THROW_IF(!feof(file_.get()), util::ErrnoException, "Error reading temporary file");
+ remains_ = false;
+ }
+ return *this;
+ }
+
+ operator bool() const { return remains_; }
+
+ void Rewind() {
+ rewind(file_.get());
+ remains_ = true;
+ ++*this;
+ }
+
+ std::size_t EntrySize() const { return entry_size_; }
+
+ void Overwrite(const void *start, std::size_t amount);
+
+ private:
+ util::scoped_malloc data_;
+
+ bool remains_;
+
+ std::size_t entry_size_;
+
+ util::scoped_FILE file_;
+};
+
+void ARPAToSortedFiles(const Config &config, util::FilePiece &f, std::vector<uint64_t> &counts, size_t buffer, const std::string &file_prefix, SortedVocabulary &vocab);
+
+} // namespace trie
+} // namespace ngram
+} // namespace lm
+
+#endif // LM_TRIE_SORT__
diff --git a/klm/lm/virtual_interface.hh b/klm/lm/virtual_interface.hh
index 08627efd..6a5a0196 100644
--- a/klm/lm/virtual_interface.hh
+++ b/klm/lm/virtual_interface.hh
@@ -1,37 +1,13 @@
#ifndef LM_VIRTUAL_INTERFACE__
#define LM_VIRTUAL_INTERFACE__
+#include "lm/return.hh"
#include "lm/word_index.hh"
#include "util/string_piece.hh"
#include <string>
namespace lm {
-
-/* Structure returned by scoring routines. */
-struct FullScoreReturn {
- // log10 probability
- float prob;
-
- /* The length of n-gram matched. Do not use this for recombination.
- * Consider a model containing only the following n-grams:
- * -1 foo
- * -3.14 bar
- * -2.718 baz -5
- * -6 foo bar
- *
- * If you score ``bar'' then ngram_length is 1 and recombination state is the
- * empty string because bar has zero backoff and does not extend to the
- * right.
- * If you score ``foo'' then ngram_length is 1 and recombination state is
- * ``foo''.
- *
- * Ideally, keep output states around and compare them. Failing that,
- * get out_state.ValidLength() and use that length for recombination.
- */
- unsigned char ngram_length;
-};
-
namespace base {
template <class T, class U, class V> class ModelFacade;
diff --git a/klm/lm/vocab.cc b/klm/lm/vocab.cc
index 04979d51..03b0767a 100644
--- a/klm/lm/vocab.cc
+++ b/klm/lm/vocab.cc
@@ -1,5 +1,6 @@
#include "lm/vocab.hh"
+#include "lm/binary_format.hh"
#include "lm/enumerate_vocab.hh"
#include "lm/lm_exception.hh"
#include "lm/config.hh"
@@ -56,16 +57,6 @@ WordIndex ReadWords(int fd, EnumerateVocab *enumerate) {
}
}
-void WriteOrThrow(int fd, const void *data_void, std::size_t size) {
- const uint8_t *data = static_cast<const uint8_t*>(data_void);
- while (size) {
- ssize_t ret = write(fd, data, size);
- if (ret < 1) UTIL_THROW(util::ErrnoException, "Write failed");
- data += ret;
- size -= ret;
- }
-}
-
} // namespace
WriteWordsWrapper::WriteWordsWrapper(EnumerateVocab *inner) : inner_(inner) {}
@@ -80,7 +71,7 @@ void WriteWordsWrapper::Add(WordIndex index, const StringPiece &str) {
void WriteWordsWrapper::Write(int fd) {
if ((off_t)-1 == lseek(fd, 0, SEEK_END))
UTIL_THROW(util::ErrnoException, "Failed to seek in binary to vocab words");
- WriteOrThrow(fd, buffer_.data(), buffer_.size());
+ util::WriteOrThrow(fd, buffer_.data(), buffer_.size());
}
SortedVocabulary::SortedVocabulary() : begin_(NULL), end_(NULL), enumerate_(NULL) {}
@@ -146,15 +137,28 @@ void SortedVocabulary::LoadedBinary(int fd, EnumerateVocab *to) {
SetSpecial(Index("<s>"), Index("</s>"), 0);
}
+namespace {
+const unsigned int kProbingVocabularyVersion = 0;
+} // namespace
+
+namespace detail {
+struct ProbingVocabularyHeader {
+ // Lowest unused vocab id. This is also the number of words, including <unk>.
+ unsigned int version;
+ WordIndex bound;
+};
+} // namespace detail
+
ProbingVocabulary::ProbingVocabulary() : enumerate_(NULL) {}
std::size_t ProbingVocabulary::Size(std::size_t entries, const Config &config) {
- return Lookup::Size(entries, config.probing_multiplier);
+ return Align8(sizeof(detail::ProbingVocabularyHeader)) + Lookup::Size(entries, config.probing_multiplier);
}
void ProbingVocabulary::SetupMemory(void *start, std::size_t allocated, std::size_t /*entries*/, const Config &/*config*/) {
- lookup_ = Lookup(start, allocated);
- available_ = 1;
+ header_ = static_cast<detail::ProbingVocabularyHeader*>(start);
+ lookup_ = Lookup(static_cast<uint8_t*>(start) + Align8(sizeof(detail::ProbingVocabularyHeader)), allocated);
+ bound_ = 1;
saw_unk_ = false;
}
@@ -172,20 +176,24 @@ WordIndex ProbingVocabulary::Insert(const StringPiece &str) {
saw_unk_ = true;
return 0;
} else {
- if (enumerate_) enumerate_->Add(available_, str);
- lookup_.Insert(Lookup::Packing::Make(hashed, available_));
- return available_++;
+ if (enumerate_) enumerate_->Add(bound_, str);
+ lookup_.Insert(Lookup::Packing::Make(hashed, bound_));
+ return bound_++;
}
}
void ProbingVocabulary::FinishedLoading(ProbBackoff * /*reorder_vocab*/) {
lookup_.FinishedInserting();
+ header_->bound = bound_;
+ header_->version = kProbingVocabularyVersion;
SetSpecial(Index("<s>"), Index("</s>"), 0);
}
void ProbingVocabulary::LoadedBinary(int fd, EnumerateVocab *to) {
+ UTIL_THROW_IF(header_->version != kProbingVocabularyVersion, FormatLoadException, "The binary file has probing version " << header_->version << " but the code expects version " << kProbingVocabularyVersion << ". Please rerun build_binary using the same version of the code.");
lookup_.LoadedBinary();
- available_ = ReadWords(fd, to);
+ ReadWords(fd, to);
+ bound_ = header_->bound;
SetSpecial(Index("<s>"), Index("</s>"), 0);
}
diff --git a/klm/lm/vocab.hh b/klm/lm/vocab.hh
index 9d218fff..41e97052 100644
--- a/klm/lm/vocab.hh
+++ b/klm/lm/vocab.hh
@@ -25,6 +25,7 @@ uint64_t HashForVocab(const char *str, std::size_t len);
inline uint64_t HashForVocab(const StringPiece &str) {
return HashForVocab(str.data(), str.length());
}
+class ProbingVocabularyHeader;
} // namespace detail
class WriteWordsWrapper : public EnumerateVocab {
@@ -113,10 +114,7 @@ class ProbingVocabulary : public base::Vocabulary {
static size_t Size(std::size_t entries, const Config &config);
// Vocab words are [0, Bound()).
- // WARNING WARNING: returns UINT_MAX when loading binary and not enumerating vocabulary.
- // Fixing this bug requires a binary file format change and will be fixed with the next binary file format update.
- // Specifically, the binary file format does not currently indicate whether <unk> is in count or not.
- WordIndex Bound() const { return available_; }
+ WordIndex Bound() const { return bound_; }
// Everything else is for populating. I'm too lazy to hide and friend these, but you'll only get a const reference anyway.
void SetupMemory(void *start, std::size_t allocated, std::size_t entries, const Config &config);
@@ -141,11 +139,13 @@ class ProbingVocabulary : public base::Vocabulary {
Lookup lookup_;
- WordIndex available_;
+ WordIndex bound_;
bool saw_unk_;
EnumerateVocab *enumerate_;
+
+ detail::ProbingVocabularyHeader *header_;
};
void MissingUnknown(const Config &config) throw(SpecialWordMissingException);
diff --git a/klm/test.sh b/klm/test.sh
index d02a3dc9..fb33300a 100755
--- a/klm/test.sh
+++ b/klm/test.sh
@@ -2,7 +2,7 @@
#Run tests. Requires Boost.
set -e
./compile.sh
-for i in util/{bit_packing,file_piece,joint_sort,key_value_packing,probing_hash_table,sorted_uniform}_test lm/model_test; do
+for i in util/{bit_packing,file_piece,joint_sort,key_value_packing,probing_hash_table,sorted_uniform}_test lm/{model,left}_test; do
g++ -I. -O3 $CXXFLAGS $i.cc {lm,util}/*.o -lboost_test_exec_monitor -lz -o $i
pushd $(dirname $i) >/dev/null && ./$(basename $i) || echo "$i failed"; popd >/dev/null
done
diff --git a/klm/util/Makefile.am b/klm/util/Makefile.am
index f4f7d158..a8d6299b 100644
--- a/klm/util/Makefile.am
+++ b/klm/util/Makefile.am
@@ -22,9 +22,9 @@ libklm_util_a_SOURCES = \
ersatz_progress.cc \
bit_packing.cc \
exception.cc \
+ file.cc \
file_piece.cc \
mmap.cc \
- murmur_hash.cc \
- scoped.cc
+ murmur_hash.cc
AM_CPPFLAGS = -W -Wall -Wno-sign-compare $(GTEST_CPPFLAGS) -I..
diff --git a/klm/util/bit_packing.hh b/klm/util/bit_packing.hh
index 9f47d559..33266b94 100644
--- a/klm/util/bit_packing.hh
+++ b/klm/util/bit_packing.hh
@@ -86,6 +86,20 @@ inline void WriteFloat32(void *base, uint64_t bit_off, float value) {
const uint32_t kSignBit = 0x80000000;
+inline void SetSign(float &to) {
+ FloatEnc enc;
+ enc.f = to;
+ enc.i |= kSignBit;
+ to = enc.f;
+}
+
+inline void UnsetSign(float &to) {
+ FloatEnc enc;
+ enc.f = to;
+ enc.i &= ~kSignBit;
+ to = enc.f;
+}
+
inline float ReadNonPositiveFloat31(const void *base, uint64_t bit_off) {
FloatEnc encoded;
encoded.i = ReadOff(base, bit_off) >> BitPackShift(bit_off & 7, 31);
diff --git a/klm/util/exception.cc b/klm/util/exception.cc
index 62280970..96951495 100644
--- a/klm/util/exception.cc
+++ b/klm/util/exception.cc
@@ -79,4 +79,9 @@ ErrnoException::ErrnoException() throw() : errno_(errno) {
ErrnoException::~ErrnoException() throw() {}
+EndOfFileException::EndOfFileException() throw() {
+ *this << "End of file";
+}
+EndOfFileException::~EndOfFileException() throw() {}
+
} // namespace util
diff --git a/klm/util/exception.hh b/klm/util/exception.hh
index 81675a57..6d6a37cb 100644
--- a/klm/util/exception.hh
+++ b/klm/util/exception.hh
@@ -105,6 +105,12 @@ class ErrnoException : public Exception {
int errno_;
};
+class EndOfFileException : public Exception {
+ public:
+ EndOfFileException() throw();
+ ~EndOfFileException() throw();
+};
+
} // namespace util
#endif // UTIL_EXCEPTION__
diff --git a/klm/util/file.cc b/klm/util/file.cc
new file mode 100644
index 00000000..d707568e
--- /dev/null
+++ b/klm/util/file.cc
@@ -0,0 +1,74 @@
+#include "util/file.hh"
+
+#include "util/exception.hh"
+
+#include <cstdlib>
+#include <cstdio>
+#include <iostream>
+
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+#include <unistd.h>
+#include <inttypes.h>
+
+namespace util {
+
+scoped_fd::~scoped_fd() {
+ if (fd_ != -1 && close(fd_)) {
+ std::cerr << "Could not close file " << fd_ << std::endl;
+ std::abort();
+ }
+}
+
+scoped_FILE::~scoped_FILE() {
+ if (file_ && std::fclose(file_)) {
+ std::cerr << "Could not close file " << std::endl;
+ std::abort();
+ }
+}
+
+int OpenReadOrThrow(const char *name) {
+ int ret;
+ UTIL_THROW_IF(-1 == (ret = open(name, O_RDONLY)), ErrnoException, "while opening " << name);
+ return ret;
+}
+
+int CreateOrThrow(const char *name) {
+ int ret;
+ UTIL_THROW_IF(-1 == (ret = open(name, O_CREAT | O_TRUNC | O_RDWR, S_IRUSR | S_IWUSR)), ErrnoException, "while creating " << name);
+ return ret;
+}
+
+off_t SizeFile(int fd) {
+ struct stat sb;
+ if (fstat(fd, &sb) == -1 || (!sb.st_size && !S_ISREG(sb.st_mode))) return kBadSize;
+ return sb.st_size;
+}
+
+void ReadOrThrow(int fd, void *to_void, std::size_t amount) {
+ uint8_t *to = static_cast<uint8_t*>(to_void);
+ while (amount) {
+ ssize_t ret = read(fd, to, amount);
+ if (ret == -1) UTIL_THROW(ErrnoException, "Reading " << amount << " from fd " << fd << " failed.");
+ if (ret == 0) UTIL_THROW(Exception, "Hit EOF in fd " << fd << " but there should be " << amount << " more bytes to read.");
+ amount -= ret;
+ to += ret;
+ }
+}
+
+void WriteOrThrow(int fd, const void *data_void, std::size_t size) {
+ const uint8_t *data = static_cast<const uint8_t*>(data_void);
+ while (size) {
+ ssize_t ret = write(fd, data, size);
+ if (ret < 1) UTIL_THROW(util::ErrnoException, "Write failed");
+ data += ret;
+ size -= ret;
+ }
+}
+
+void RemoveOrThrow(const char *name) {
+ UTIL_THROW_IF(std::remove(name), util::ErrnoException, "Could not remove " << name);
+}
+
+} // namespace util
diff --git a/klm/util/file.hh b/klm/util/file.hh
new file mode 100644
index 00000000..d6cca41d
--- /dev/null
+++ b/klm/util/file.hh
@@ -0,0 +1,74 @@
+#ifndef UTIL_FILE__
+#define UTIL_FILE__
+
+#include <cstdio>
+#include <unistd.h>
+
+namespace util {
+
+class scoped_fd {
+ public:
+ scoped_fd() : fd_(-1) {}
+
+ explicit scoped_fd(int fd) : fd_(fd) {}
+
+ ~scoped_fd();
+
+ void reset(int to) {
+ scoped_fd other(fd_);
+ fd_ = to;
+ }
+
+ int get() const { return fd_; }
+
+ int operator*() const { return fd_; }
+
+ int release() {
+ int ret = fd_;
+ fd_ = -1;
+ return ret;
+ }
+
+ operator bool() { return fd_ != -1; }
+
+ private:
+ int fd_;
+
+ scoped_fd(const scoped_fd &);
+ scoped_fd &operator=(const scoped_fd &);
+};
+
+class scoped_FILE {
+ public:
+ explicit scoped_FILE(std::FILE *file = NULL) : file_(file) {}
+
+ ~scoped_FILE();
+
+ std::FILE *get() { return file_; }
+ const std::FILE *get() const { return file_; }
+
+ void reset(std::FILE *to = NULL) {
+ scoped_FILE other(file_);
+ file_ = to;
+ }
+
+ private:
+ std::FILE *file_;
+};
+
+int OpenReadOrThrow(const char *name);
+
+int CreateOrThrow(const char *name);
+
+// Return value for SizeFile when it can't size properly.
+const off_t kBadSize = -1;
+off_t SizeFile(int fd);
+
+void ReadOrThrow(int fd, void *to, std::size_t size);
+void WriteOrThrow(int fd, const void *data_void, std::size_t size);
+
+void RemoveOrThrow(const char *name);
+
+} // namespace util
+
+#endif // UTIL_FILE__
diff --git a/klm/util/file_piece.cc b/klm/util/file_piece.cc
index cbe4234f..b57582a0 100644
--- a/klm/util/file_piece.cc
+++ b/klm/util/file_piece.cc
@@ -1,6 +1,7 @@
#include "util/file_piece.hh"
#include "util/exception.hh"
+#include "util/file.hh"
#include <iostream>
#include <string>
@@ -21,11 +22,6 @@
namespace util {
-EndOfFileException::EndOfFileException() throw() {
- *this << "End of file";
-}
-EndOfFileException::~EndOfFileException() throw() {}
-
ParseNumberException::ParseNumberException(StringPiece value) throw() {
*this << "Could not parse \"" << value << "\" into a number";
}
@@ -40,18 +36,6 @@ GZException::GZException(void *file) {
// Sigh this is the only way I could come up with to do a _const_ bool. It has ' ', '\f', '\n', '\r', '\t', and '\v' (same as isspace on C locale).
const bool kSpaces[256] = {0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
-int OpenReadOrThrow(const char *name) {
- int ret;
- UTIL_THROW_IF(-1 == (ret = open(name, O_RDONLY)), ErrnoException, "while opening " << name);
- return ret;
-}
-
-off_t SizeFile(int fd) {
- struct stat sb;
- if (fstat(fd, &sb) == -1 || (!sb.st_size && !S_ISREG(sb.st_mode))) return kBadSize;
- return sb.st_size;
-}
-
FilePiece::FilePiece(const char *name, std::ostream *show_progress, off_t min_buffer) :
file_(OpenReadOrThrow(name)), total_size_(SizeFile(file_.get())), page_(sysconf(_SC_PAGE_SIZE)),
progress_(total_size_ == kBadSize ? NULL : show_progress, std::string("Reading ") + name, total_size_) {
diff --git a/klm/util/file_piece.hh b/klm/util/file_piece.hh
index a5c00910..a627f38c 100644
--- a/klm/util/file_piece.hh
+++ b/klm/util/file_piece.hh
@@ -3,9 +3,9 @@
#include "util/ersatz_progress.hh"
#include "util/exception.hh"
+#include "util/file.hh"
#include "util/have.hh"
#include "util/mmap.hh"
-#include "util/scoped.hh"
#include "util/string_piece.hh"
#include <string>
@@ -14,12 +14,6 @@
namespace util {
-class EndOfFileException : public Exception {
- public:
- EndOfFileException() throw();
- ~EndOfFileException() throw();
-};
-
class ParseNumberException : public Exception {
public:
explicit ParseNumberException(StringPiece value) throw();
@@ -33,14 +27,8 @@ class GZException : public Exception {
~GZException() throw() {}
};
-int OpenReadOrThrow(const char *name);
-
extern const bool kSpaces[256];
-// Return value for SizeFile when it can't size properly.
-const off_t kBadSize = -1;
-off_t SizeFile(int fd);
-
// Memory backing the returned StringPiece may vanish on the next call.
class FilePiece {
public:
diff --git a/klm/util/mmap.cc b/klm/util/mmap.cc
index e7c0643b..5ce7adc9 100644
--- a/klm/util/mmap.cc
+++ b/klm/util/mmap.cc
@@ -1,6 +1,6 @@
#include "util/exception.hh"
+#include "util/file.hh"
#include "util/mmap.hh"
-#include "util/scoped.hh"
#include <iostream>
@@ -66,20 +66,6 @@ void *MapOrThrow(std::size_t size, bool for_write, int flags, bool prefault, int
return ret;
}
-namespace {
-void ReadAll(int fd, void *to_void, std::size_t amount) {
- uint8_t *to = static_cast<uint8_t*>(to_void);
- while (amount) {
- ssize_t ret = read(fd, to, amount);
- if (ret == -1) UTIL_THROW(ErrnoException, "Reading " << amount << " from fd " << fd << " failed.");
- if (ret == 0) UTIL_THROW(Exception, "Hit EOF in fd " << fd << " but there should be " << amount << " more bytes to read.");
- amount -= ret;
- to += ret;
- }
-}
-
-} // namespace
-
const int kFileFlags =
#ifdef MAP_FILE
MAP_FILE | MAP_SHARED
@@ -106,7 +92,7 @@ void MapRead(LoadMethod method, int fd, off_t offset, std::size_t size, scoped_m
out.reset(malloc(size), size, scoped_memory::MALLOC_ALLOCATED);
if (!out.get()) UTIL_THROW(util::ErrnoException, "Allocating " << size << " bytes with malloc");
if (-1 == lseek(fd, offset, SEEK_SET)) UTIL_THROW(ErrnoException, "lseek to " << offset << " in fd " << fd << " failed.");
- ReadAll(fd, out.get(), size);
+ ReadOrThrow(fd, out.get(), size);
break;
}
}
diff --git a/klm/util/mmap.hh b/klm/util/mmap.hh
index e4439fa4..b0eb6672 100644
--- a/klm/util/mmap.hh
+++ b/klm/util/mmap.hh
@@ -2,8 +2,6 @@
#define UTIL_MMAP__
// Utilities for mmaped files.
-#include "util/scoped.hh"
-
#include <cstddef>
#include <inttypes.h>
@@ -11,6 +9,8 @@
namespace util {
+class scoped_fd;
+
// (void*)-1 is MAP_FAILED; this is done to avoid including the mmap header here.
class scoped_mmap {
public:
diff --git a/klm/util/scoped.cc b/klm/util/scoped.cc
deleted file mode 100644
index a4cc5016..00000000
--- a/klm/util/scoped.cc
+++ /dev/null
@@ -1,24 +0,0 @@
-#include "util/scoped.hh"
-
-#include <iostream>
-
-#include <stdlib.h>
-#include <unistd.h>
-
-namespace util {
-
-scoped_fd::~scoped_fd() {
- if (fd_ != -1 && close(fd_)) {
- std::cerr << "Could not close file " << fd_ << std::endl;
- abort();
- }
-}
-
-scoped_FILE::~scoped_FILE() {
- if (file_ && fclose(file_)) {
- std::cerr << "Could not close file " << std::endl;
- abort();
- }
-}
-
-} // namespace util
diff --git a/klm/util/scoped.hh b/klm/util/scoped.hh
index d36a7df3..93e2e817 100644
--- a/klm/util/scoped.hh
+++ b/klm/util/scoped.hh
@@ -1,10 +1,11 @@
#ifndef UTIL_SCOPED__
#define UTIL_SCOPED__
-/* Other scoped objects in the style of scoped_ptr. */
+#include "util/exception.hh"
+/* Other scoped objects in the style of scoped_ptr. */
#include <cstddef>
-#include <cstdio>
+#include <cstdlib>
namespace util {
@@ -34,52 +35,33 @@ template <class T, class R, R (*Free)(T*)> class scoped_thing {
scoped_thing &operator=(const scoped_thing &);
};
-class scoped_fd {
+class scoped_malloc {
public:
- scoped_fd() : fd_(-1) {}
+ scoped_malloc() : p_(NULL) {}
- explicit scoped_fd(int fd) : fd_(fd) {}
+ scoped_malloc(void *p) : p_(p) {}
- ~scoped_fd();
+ ~scoped_malloc() { std::free(p_); }
- void reset(int to) {
- scoped_fd other(fd_);
- fd_ = to;
+ void reset(void *p = NULL) {
+ scoped_malloc other(p_);
+ p_ = p;
}
- int get() const { return fd_; }
-
- int operator*() const { return fd_; }
-
- int release() {
- int ret = fd_;
- fd_ = -1;
- return ret;
+ void call_realloc(std::size_t to) {
+ void *ret;
+ UTIL_THROW_IF(!(ret = std::realloc(p_, to)) && to, util::ErrnoException, "realloc to " << to << " bytes failed.");
+ p_ = ret;
}
- private:
- int fd_;
-
- scoped_fd(const scoped_fd &);
- scoped_fd &operator=(const scoped_fd &);
-};
-
-class scoped_FILE {
- public:
- explicit scoped_FILE(std::FILE *file = NULL) : file_(file) {}
-
- ~scoped_FILE();
-
- std::FILE *get() { return file_; }
- const std::FILE *get() const { return file_; }
-
- void reset(std::FILE *to = NULL) {
- scoped_FILE other(file_);
- file_ = to;
- }
+ void *get() { return p_; }
+ const void *get() const { return p_; }
private:
- std::FILE *file_;
+ void *p_;
+
+ scoped_malloc(const scoped_malloc &);
+ scoped_malloc &operator=(const scoped_malloc &);
};
// Hat tip to boost.
diff --git a/klm/util/sized_iterator.hh b/klm/util/sized_iterator.hh
new file mode 100644
index 00000000..47dfc245
--- /dev/null
+++ b/klm/util/sized_iterator.hh
@@ -0,0 +1,107 @@
+#ifndef UTIL_SIZED_ITERATOR__
+#define UTIL_SIZED_ITERATOR__
+
+#include "util/proxy_iterator.hh"
+
+#include <functional>
+#include <string>
+
+#include <inttypes.h>
+#include <string.h>
+
+namespace util {
+
+class SizedInnerIterator {
+ public:
+ SizedInnerIterator() {}
+
+ SizedInnerIterator(void *ptr, std::size_t size) : ptr_(static_cast<uint8_t*>(ptr)), size_(size) {}
+
+ bool operator==(const SizedInnerIterator &other) const {
+ return ptr_ == other.ptr_;
+ }
+ bool operator<(const SizedInnerIterator &other) const {
+ return ptr_ < other.ptr_;
+ }
+ SizedInnerIterator &operator+=(std::ptrdiff_t amount) {
+ ptr_ += amount * size_;
+ return *this;
+ }
+ std::ptrdiff_t operator-(const SizedInnerIterator &other) const {
+ return (ptr_ - other.ptr_) / size_;
+ }
+
+ const void *Data() const { return ptr_; }
+ void *Data() { return ptr_; }
+ std::size_t EntrySize() const { return size_; }
+
+ private:
+ uint8_t *ptr_;
+ std::size_t size_;
+};
+
+class SizedProxy {
+ public:
+ SizedProxy() {}
+
+ SizedProxy(void *ptr, std::size_t size) : inner_(ptr, size) {}
+
+ operator std::string() const {
+ return std::string(reinterpret_cast<const char*>(inner_.Data()), inner_.EntrySize());
+ }
+
+ SizedProxy &operator=(const SizedProxy &from) {
+ memcpy(inner_.Data(), from.inner_.Data(), inner_.EntrySize());
+ return *this;
+ }
+
+ SizedProxy &operator=(const std::string &from) {
+ memcpy(inner_.Data(), from.data(), inner_.EntrySize());
+ return *this;
+ }
+
+ const void *Data() const { return inner_.Data(); }
+ void *Data() { return inner_.Data(); }
+
+ private:
+ friend class util::ProxyIterator<SizedProxy>;
+
+ typedef std::string value_type;
+
+ typedef SizedInnerIterator InnerIterator;
+
+ InnerIterator &Inner() { return inner_; }
+ const InnerIterator &Inner() const { return inner_; }
+ InnerIterator inner_;
+};
+
+typedef ProxyIterator<SizedProxy> SizedIterator;
+
+inline SizedIterator SizedIt(void *ptr, std::size_t size) { return SizedIterator(SizedProxy(ptr, size)); }
+
+// Useful wrapper for a comparison function i.e. sort.
+template <class Delegate, class Proxy = SizedProxy> class SizedCompare : public std::binary_function<const Proxy &, const Proxy &, bool> {
+ public:
+ explicit SizedCompare(const Delegate &delegate = Delegate()) : delegate_(delegate) {}
+
+ bool operator()(const Proxy &first, const Proxy &second) const {
+ return delegate_(first.Data(), second.Data());
+ }
+ bool operator()(const Proxy &first, const std::string &second) const {
+ return delegate_(first.Data(), second.data());
+ }
+ bool operator()(const std::string &first, const Proxy &second) const {
+ return delegate_(first.data(), second.Data());
+ }
+ bool operator()(const std::string &first, const std::string &second) const {
+ return delegate_(first.data(), second.data());
+ }
+
+ const Delegate &GetDelegate() const { return delegate_; }
+
+ private:
+ const Delegate delegate_;
+};
+
+} // namespace util
+#endif // UTIL_SIZED_ITERATOR__
diff --git a/klm/util/tokenize_piece.hh b/klm/util/tokenize_piece.hh
new file mode 100644
index 00000000..ee1c7ab2
--- /dev/null
+++ b/klm/util/tokenize_piece.hh
@@ -0,0 +1,69 @@
+#ifndef UTIL_TOKENIZE_PIECE__
+#define UTIL_TOKENIZE_PIECE__
+
+#include "util/string_piece.hh"
+
+#include <boost/iterator/iterator_facade.hpp>
+
+/* Usage:
+ *
+ * for (PieceIterator<' '> i(" foo \r\n bar "); i; ++i) {
+ * std::cout << *i << "\n";
+ * }
+ *
+ */
+
+namespace util {
+
+// Tokenize a StringPiece using an iterator interface. boost::tokenizer doesn't work with StringPiece.
+template <char d> class PieceIterator : public boost::iterator_facade<PieceIterator<d>, const StringPiece, boost::forward_traversal_tag> {
+ public:
+ // Default construct is end, which is also accessed by kEndPieceIterator;
+ PieceIterator() {}
+
+ explicit PieceIterator(const StringPiece &str)
+ : after_(str) {
+ increment();
+ }
+
+ bool operator!() const {
+ return after_.data() == 0;
+ }
+ operator bool() const {
+ return after_.data() != 0;
+ }
+
+ static PieceIterator<d> end() {
+ return PieceIterator<d>();
+ }
+
+ private:
+ friend class boost::iterator_core_access;
+
+ void increment() {
+ const char *start = after_.data();
+ for (; (start != after_.data() + after_.size()) && (d == *start); ++start) {}
+ if (start == after_.data() + after_.size()) {
+ // End condition.
+ after_.clear();
+ return;
+ }
+ const char *finish = start;
+ for (; (finish != after_.data() + after_.size()) && (d != *finish); ++finish) {}
+ current_ = StringPiece(start, finish - start);
+ after_ = StringPiece(finish, after_.data() + after_.size() - finish);
+ }
+
+ bool equal(const PieceIterator &other) const {
+ return after_.data() == other.after_.data();
+ }
+
+ const StringPiece &dereference() const { return current_; }
+
+ StringPiece current_;
+ StringPiece after_;
+};
+
+} // namespace util
+
+#endif // UTIL_TOKENIZE_PIECE__
diff --git a/m4/acx_pthread.m4 b/m4/acx_pthread.m4
new file mode 100644
index 00000000..2cf20de1
--- /dev/null
+++ b/m4/acx_pthread.m4
@@ -0,0 +1,363 @@
+# This was retrieved from
+# http://svn.0pointer.de/viewvc/trunk/common/acx_pthread.m4?revision=1277&root=avahi
+# See also (perhaps for new versions?)
+# http://svn.0pointer.de/viewvc/trunk/common/acx_pthread.m4?root=avahi
+#
+# We've rewritten the inconsistency check code (from avahi), to work
+# more broadly. In particular, it no longer assumes ld accepts -zdefs.
+# This caused a restructing of the code, but the functionality has only
+# changed a little.
+
+dnl @synopsis ACX_PTHREAD([ACTION-IF-FOUND[, ACTION-IF-NOT-FOUND]])
+dnl
+dnl @summary figure out how to build C programs using POSIX threads
+dnl
+dnl This macro figures out how to build C programs using POSIX threads.
+dnl It sets the PTHREAD_LIBS output variable to the threads library and
+dnl linker flags, and the PTHREAD_CFLAGS output variable to any special
+dnl C compiler flags that are needed. (The user can also force certain
+dnl compiler flags/libs to be tested by setting these environment
+dnl variables.)
+dnl
+dnl Also sets PTHREAD_CC to any special C compiler that is needed for
+dnl multi-threaded programs (defaults to the value of CC otherwise).
+dnl (This is necessary on AIX to use the special cc_r compiler alias.)
+dnl
+dnl NOTE: You are assumed to not only compile your program with these
+dnl flags, but also link it with them as well. e.g. you should link
+dnl with $PTHREAD_CC $CFLAGS $PTHREAD_CFLAGS $LDFLAGS ... $PTHREAD_LIBS
+dnl $LIBS
+dnl
+dnl If you are only building threads programs, you may wish to use
+dnl these variables in your default LIBS, CFLAGS, and CC:
+dnl
+dnl LIBS="$PTHREAD_LIBS $LIBS"
+dnl CFLAGS="$CFLAGS $PTHREAD_CFLAGS"
+dnl CC="$PTHREAD_CC"
+dnl
+dnl In addition, if the PTHREAD_CREATE_JOINABLE thread-attribute
+dnl constant has a nonstandard name, defines PTHREAD_CREATE_JOINABLE to
+dnl that name (e.g. PTHREAD_CREATE_UNDETACHED on AIX).
+dnl
+dnl ACTION-IF-FOUND is a list of shell commands to run if a threads
+dnl library is found, and ACTION-IF-NOT-FOUND is a list of commands to
+dnl run it if it is not found. If ACTION-IF-FOUND is not specified, the
+dnl default action will define HAVE_PTHREAD.
+dnl
+dnl Please let the authors know if this macro fails on any platform, or
+dnl if you have any other suggestions or comments. This macro was based
+dnl on work by SGJ on autoconf scripts for FFTW (www.fftw.org) (with
+dnl help from M. Frigo), as well as ac_pthread and hb_pthread macros
+dnl posted by Alejandro Forero Cuervo to the autoconf macro repository.
+dnl We are also grateful for the helpful feedback of numerous users.
+dnl
+dnl @category InstalledPackages
+dnl @author Steven G. Johnson <stevenj@alum.mit.edu>
+dnl @version 2006-05-29
+dnl @license GPLWithACException
+dnl
+dnl Checks for GCC shared/pthread inconsistency based on work by
+dnl Marcin Owsiany <marcin@owsiany.pl>
+
+
+AC_DEFUN([ACX_PTHREAD], [
+AC_REQUIRE([AC_CANONICAL_HOST])
+AC_LANG_SAVE
+AC_LANG_C
+acx_pthread_ok=no
+
+# We used to check for pthread.h first, but this fails if pthread.h
+# requires special compiler flags (e.g. on True64 or Sequent).
+# It gets checked for in the link test anyway.
+
+# First of all, check if the user has set any of the PTHREAD_LIBS,
+# etcetera environment variables, and if threads linking works using
+# them:
+if test x"$PTHREAD_LIBS$PTHREAD_CFLAGS" != x; then
+ save_CFLAGS="$CFLAGS"
+ CFLAGS="$CFLAGS $PTHREAD_CFLAGS"
+ save_LIBS="$LIBS"
+ LIBS="$PTHREAD_LIBS $LIBS"
+ AC_MSG_CHECKING([for pthread_join in LIBS=$PTHREAD_LIBS with CFLAGS=$PTHREAD_CFLAGS])
+ AC_TRY_LINK_FUNC(pthread_join, acx_pthread_ok=yes)
+ AC_MSG_RESULT($acx_pthread_ok)
+ if test x"$acx_pthread_ok" = xno; then
+ PTHREAD_LIBS=""
+ PTHREAD_CFLAGS=""
+ fi
+ LIBS="$save_LIBS"
+ CFLAGS="$save_CFLAGS"
+fi
+
+# We must check for the threads library under a number of different
+# names; the ordering is very important because some systems
+# (e.g. DEC) have both -lpthread and -lpthreads, where one of the
+# libraries is broken (non-POSIX).
+
+# Create a list of thread flags to try. Items starting with a "-" are
+# C compiler flags, and other items are library names, except for "none"
+# which indicates that we try without any flags at all, and "pthread-config"
+# which is a program returning the flags for the Pth emulation library.
+
+acx_pthread_flags="pthreads none -Kthread -kthread lthread -pthread -pthreads -mthreads pthread --thread-safe -mt pthread-config"
+
+# The ordering *is* (sometimes) important. Some notes on the
+# individual items follow:
+
+# pthreads: AIX (must check this before -lpthread)
+# none: in case threads are in libc; should be tried before -Kthread and
+# other compiler flags to prevent continual compiler warnings
+# -Kthread: Sequent (threads in libc, but -Kthread needed for pthread.h)
+# -kthread: FreeBSD kernel threads (preferred to -pthread since SMP-able)
+# lthread: LinuxThreads port on FreeBSD (also preferred to -pthread)
+# -pthread: Linux/gcc (kernel threads), BSD/gcc (userland threads)
+# -pthreads: Solaris/gcc
+# -mthreads: Mingw32/gcc, Lynx/gcc
+# -mt: Sun Workshop C (may only link SunOS threads [-lthread], but it
+# doesn't hurt to check since this sometimes defines pthreads too;
+# also defines -D_REENTRANT)
+# ... -mt is also the pthreads flag for HP/aCC
+# pthread: Linux, etcetera
+# --thread-safe: KAI C++
+# pthread-config: use pthread-config program (for GNU Pth library)
+
+case "${host_cpu}-${host_os}" in
+ *solaris*)
+
+ # On Solaris (at least, for some versions), libc contains stubbed
+ # (non-functional) versions of the pthreads routines, so link-based
+ # tests will erroneously succeed. (We need to link with -pthreads/-mt/
+ # -lpthread.) (The stubs are missing pthread_cleanup_push, or rather
+ # a function called by this macro, so we could check for that, but
+ # who knows whether they'll stub that too in a future libc.) So,
+ # we'll just look for -pthreads and -lpthread first:
+
+ acx_pthread_flags="-pthreads pthread -mt -pthread $acx_pthread_flags"
+ ;;
+esac
+
+if test x"$acx_pthread_ok" = xno; then
+for flag in $acx_pthread_flags; do
+
+ case $flag in
+ none)
+ AC_MSG_CHECKING([whether pthreads work without any flags])
+ ;;
+
+ -*)
+ AC_MSG_CHECKING([whether pthreads work with $flag])
+ PTHREAD_CFLAGS="$flag"
+ ;;
+
+ pthread-config)
+ AC_CHECK_PROG(acx_pthread_config, pthread-config, yes, no)
+ if test x"$acx_pthread_config" = xno; then continue; fi
+ PTHREAD_CFLAGS="`pthread-config --cflags`"
+ PTHREAD_LIBS="`pthread-config --ldflags` `pthread-config --libs`"
+ ;;
+
+ *)
+ AC_MSG_CHECKING([for the pthreads library -l$flag])
+ PTHREAD_LIBS="-l$flag"
+ ;;
+ esac
+
+ save_LIBS="$LIBS"
+ save_CFLAGS="$CFLAGS"
+ LIBS="$PTHREAD_LIBS $LIBS"
+ CFLAGS="$CFLAGS $PTHREAD_CFLAGS"
+
+ # Check for various functions. We must include pthread.h,
+ # since some functions may be macros. (On the Sequent, we
+ # need a special flag -Kthread to make this header compile.)
+ # We check for pthread_join because it is in -lpthread on IRIX
+ # while pthread_create is in libc. We check for pthread_attr_init
+ # due to DEC craziness with -lpthreads. We check for
+ # pthread_cleanup_push because it is one of the few pthread
+ # functions on Solaris that doesn't have a non-functional libc stub.
+ # We try pthread_create on general principles.
+ AC_TRY_LINK([#include <pthread.h>],
+ [pthread_t th; pthread_join(th, 0);
+ pthread_attr_init(0); pthread_cleanup_push(0, 0);
+ pthread_create(0,0,0,0); pthread_cleanup_pop(0); ],
+ [acx_pthread_ok=yes])
+
+ LIBS="$save_LIBS"
+ CFLAGS="$save_CFLAGS"
+
+ AC_MSG_RESULT($acx_pthread_ok)
+ if test "x$acx_pthread_ok" = xyes; then
+ break;
+ fi
+
+ PTHREAD_LIBS=""
+ PTHREAD_CFLAGS=""
+done
+fi
+
+# Various other checks:
+if test "x$acx_pthread_ok" = xyes; then
+ save_LIBS="$LIBS"
+ LIBS="$PTHREAD_LIBS $LIBS"
+ save_CFLAGS="$CFLAGS"
+ CFLAGS="$CFLAGS $PTHREAD_CFLAGS"
+
+ # Detect AIX lossage: JOINABLE attribute is called UNDETACHED.
+ AC_MSG_CHECKING([for joinable pthread attribute])
+ attr_name=unknown
+ for attr in PTHREAD_CREATE_JOINABLE PTHREAD_CREATE_UNDETACHED; do
+ AC_TRY_LINK([#include <pthread.h>], [int attr=$attr; return attr;],
+ [attr_name=$attr; break])
+ done
+ AC_MSG_RESULT($attr_name)
+ if test "$attr_name" != PTHREAD_CREATE_JOINABLE; then
+ AC_DEFINE_UNQUOTED(PTHREAD_CREATE_JOINABLE, $attr_name,
+ [Define to necessary symbol if this constant
+ uses a non-standard name on your system.])
+ fi
+
+ AC_MSG_CHECKING([if more special flags are required for pthreads])
+ flag=no
+ case "${host_cpu}-${host_os}" in
+ *-aix* | *-freebsd* | *-darwin*) flag="-D_THREAD_SAFE";;
+ *solaris* | *-osf* | *-hpux*) flag="-D_REENTRANT";;
+ esac
+ AC_MSG_RESULT(${flag})
+ if test "x$flag" != xno; then
+ PTHREAD_CFLAGS="$flag $PTHREAD_CFLAGS"
+ fi
+
+ LIBS="$save_LIBS"
+ CFLAGS="$save_CFLAGS"
+ # More AIX lossage: must compile with xlc_r or cc_r
+ if test x"$GCC" != xyes; then
+ AC_CHECK_PROGS(PTHREAD_CC, xlc_r cc_r, ${CC})
+ else
+ PTHREAD_CC=$CC
+ fi
+
+ # The next part tries to detect GCC inconsistency with -shared on some
+ # architectures and systems. The problem is that in certain
+ # configurations, when -shared is specified, GCC "forgets" to
+ # internally use various flags which are still necessary.
+
+ #
+ # Prepare the flags
+ #
+ save_CFLAGS="$CFLAGS"
+ save_LIBS="$LIBS"
+ save_CC="$CC"
+
+ # Try with the flags determined by the earlier checks.
+ #
+ # -Wl,-z,defs forces link-time symbol resolution, so that the
+ # linking checks with -shared actually have any value
+ #
+ # FIXME: -fPIC is required for -shared on many architectures,
+ # so we specify it here, but the right way would probably be to
+ # properly detect whether it is actually required.
+ CFLAGS="-shared -fPIC -Wl,-z,defs $CFLAGS $PTHREAD_CFLAGS"
+ LIBS="$PTHREAD_LIBS $LIBS"
+ CC="$PTHREAD_CC"
+
+ # In order not to create several levels of indentation, we test
+ # the value of "$done" until we find the cure or run out of ideas.
+ done="no"
+
+ # First, make sure the CFLAGS we added are actually accepted by our
+ # compiler. If not (and OS X's ld, for instance, does not accept -z),
+ # then we can't do this test.
+ if test x"$done" = xno; then
+ AC_MSG_CHECKING([whether to check for GCC pthread/shared inconsistencies])
+ AC_TRY_LINK(,, , [done=yes])
+
+ if test "x$done" = xyes ; then
+ AC_MSG_RESULT([no])
+ else
+ AC_MSG_RESULT([yes])
+ fi
+ fi
+
+ if test x"$done" = xno; then
+ AC_MSG_CHECKING([whether -pthread is sufficient with -shared])
+ AC_TRY_LINK([#include <pthread.h>],
+ [pthread_t th; pthread_join(th, 0);
+ pthread_attr_init(0); pthread_cleanup_push(0, 0);
+ pthread_create(0,0,0,0); pthread_cleanup_pop(0); ],
+ [done=yes])
+
+ if test "x$done" = xyes; then
+ AC_MSG_RESULT([yes])
+ else
+ AC_MSG_RESULT([no])
+ fi
+ fi
+
+ #
+ # Linux gcc on some architectures such as mips/mipsel forgets
+ # about -lpthread
+ #
+ if test x"$done" = xno; then
+ AC_MSG_CHECKING([whether -lpthread fixes that])
+ LIBS="-lpthread $PTHREAD_LIBS $save_LIBS"
+ AC_TRY_LINK([#include <pthread.h>],
+ [pthread_t th; pthread_join(th, 0);
+ pthread_attr_init(0); pthread_cleanup_push(0, 0);
+ pthread_create(0,0,0,0); pthread_cleanup_pop(0); ],
+ [done=yes])
+
+ if test "x$done" = xyes; then
+ AC_MSG_RESULT([yes])
+ PTHREAD_LIBS="-lpthread $PTHREAD_LIBS"
+ else
+ AC_MSG_RESULT([no])
+ fi
+ fi
+ #
+ # FreeBSD 4.10 gcc forgets to use -lc_r instead of -lc
+ #
+ if test x"$done" = xno; then
+ AC_MSG_CHECKING([whether -lc_r fixes that])
+ LIBS="-lc_r $PTHREAD_LIBS $save_LIBS"
+ AC_TRY_LINK([#include <pthread.h>],
+ [pthread_t th; pthread_join(th, 0);
+ pthread_attr_init(0); pthread_cleanup_push(0, 0);
+ pthread_create(0,0,0,0); pthread_cleanup_pop(0); ],
+ [done=yes])
+
+ if test "x$done" = xyes; then
+ AC_MSG_RESULT([yes])
+ PTHREAD_LIBS="-lc_r $PTHREAD_LIBS"
+ else
+ AC_MSG_RESULT([no])
+ fi
+ fi
+ if test x"$done" = xno; then
+ # OK, we have run out of ideas
+ AC_MSG_WARN([Impossible to determine how to use pthreads with shared libraries])
+
+ # so it's not safe to assume that we may use pthreads
+ acx_pthread_ok=no
+ fi
+
+ CFLAGS="$save_CFLAGS"
+ LIBS="$save_LIBS"
+ CC="$save_CC"
+else
+ PTHREAD_CC="$CC"
+fi
+
+AC_SUBST(PTHREAD_LIBS)
+AC_SUBST(PTHREAD_CFLAGS)
+AC_SUBST(PTHREAD_CC)
+
+# Finally, execute ACTION-IF-FOUND/ACTION-IF-NOT-FOUND:
+if test x"$acx_pthread_ok" = xyes; then
+ ifelse([$1],,AC_DEFINE(HAVE_PTHREAD,1,[Define if you have POSIX threads libraries and header files.]),[$1])
+ :
+else
+ acx_pthread_ok=no
+ $2
+fi
+AC_LANG_RESTORE
+])dnl ACX_PTHREAD
diff --git a/m4/gtest.m4 b/m4/gtest.m4
index b015ddeb..28ccd2de 100644
--- a/m4/gtest.m4
+++ b/m4/gtest.m4
@@ -12,10 +12,10 @@ AC_DEFUN([GTEST_LIB_CHECK],
dnl Provide a flag to enable or disable Google Test usage.
AC_ARG_ENABLE([gtest],
[AS_HELP_STRING([--enable-gtest],
- [Enable tests using the Google C++ Testing Framework.]
- [(Default is enabled.)])],
+ [Enable tests using the Google C++ Testing Framework.
+ (Default is enabled.)])],
[],
- [enable_gtest=check])
+ [enable_gtest=])
AC_ARG_VAR([GTEST_CONFIG],
[The exact path of Google Test's 'gtest-config' script.])
AC_ARG_VAR([GTEST_CPPFLAGS],
@@ -29,33 +29,46 @@ AC_ARG_VAR([GTEST_LIBS],
AC_ARG_VAR([GTEST_VERSION],
[The version of Google Test available.])
HAVE_GTEST="no"
-AS_IF([test "x$enable_gtest" != "xno"],
- [AC_PATH_PROG([GTEST_CONFIG], [gtest-config])
- AS_IF([test -x "$GTEST_CONFIG"],
- [AS_IF([test "x$1" != "x"],
- [_min_version="--min-version=$1"
+AS_IF([test "x${enable_gtest}" != "xno"],
+ [AC_MSG_CHECKING([for 'gtest-config'])
+ AS_IF([test "x${enable_gtest}" != "xyes"],
+ [AS_IF([test -x "${enable_gtest}/scripts/gtest-config"],
+ [GTEST_CONFIG="${enable_gtest}/scripts/gtest-config"],
+ [GTEST_CONFIG="${enable_gtest}/bin/gtest-config"])
+ AS_IF([test -x "${GTEST_CONFIG}"], [],
+ [AC_MSG_RESULT([no])
+ AC_MSG_ERROR([dnl
+Unable to locate either a built or installed Google Test.
+The specific location '${enable_gtest}' was provided for a built or installed
+Google Test, but no 'gtest-config' script could be found at this location.])
+ ])],
+ [AC_PATH_PROG([GTEST_CONFIG], [gtest-config])])
+ AS_IF([test -x "${GTEST_CONFIG}"],
+ [AC_MSG_RESULT([${GTEST_CONFIG}])
+ m4_ifval([$1],
+ [_gtest_min_version="--min-version=$1"
AC_MSG_CHECKING([for Google Test at least version >= $1])],
- [_min_version="--min-version=0"
+ [_gtest_min_version="--min-version=0"
AC_MSG_CHECKING([for Google Test])])
- AS_IF([$GTEST_CONFIG $_min_version],
+ AS_IF([${GTEST_CONFIG} ${_gtest_min_version}],
[AC_MSG_RESULT([yes])
- HAVE_GTEST="yes"],
- [AC_MSG_RESULT([no])])])
- AS_IF([test "x$HAVE_GTEST" = "xyes"],
- [GTEST_CPPFLAGS=$($GTEST_CONFIG --cppflags)
- GTEST_CXXFLAGS=$($GTEST_CONFIG --cxxflags)
- GTEST_LDFLAGS=$($GTEST_CONFIG --ldflags)
- GTEST_LIBS=$($GTEST_CONFIG --libs | sed 's/la/a/')
- GTEST_VERSION=$($GTEST_CONFIG --version)
+ HAVE_GTEST='yes'],
+ [AC_MSG_RESULT([no])])],
+ [AC_MSG_RESULT([no])])
+ AS_IF([test "x${HAVE_GTEST}" = "xyes"],
+ [GTEST_CPPFLAGS=`${GTEST_CONFIG} --cppflags`
+ GTEST_CXXFLAGS=`${GTEST_CONFIG} --cxxflags`
+ GTEST_LDFLAGS=`${GTEST_CONFIG} --ldflags`
+ GTEST_LIBS=`${GTEST_CONFIG} --libs`
+ GTEST_VERSION=`${GTEST_CONFIG} --version`
AC_DEFINE([HAVE_GTEST],[1],[Defined when Google Test is available.])],
- [AS_IF([test "x$enable_gtest" = "xyes"],
- [AC_MSG_ERROR([
- The Google C++ Testing Framework was explicitly enabled, but a viable version
- could not be found on the system.
-])])])])
+ [AS_IF([test "x${enable_gtest}" = "xyes"],
+ [AC_MSG_ERROR([dnl
+Google Test was enabled, but no viable version could be found.])
+ ])])])
AC_SUBST([HAVE_GTEST])
AM_CONDITIONAL([HAVE_GTEST],[test "x$HAVE_GTEST" = "xyes"])
-AS_IF([test "x$HAVE_GTEST" = "xyes"],
- [AS_IF([test "x$2" != "x"],[$2],[:])],
- [AS_IF([test "x$3" != "x"],[$3],[:])])
+dnl AS_IF([test "x$HAVE_GTEST" = "xyes"], [] [])
+dnl [m4_ifval([$2], [$2])],
+dnl [m4_ifval([$3], [$3])])
])
diff --git a/mira/kbest_mira.cc b/mira/kbest_mira.cc
index 6918a9a1..459a5e6f 100644
--- a/mira/kbest_mira.cc
+++ b/mira/kbest_mira.cc
@@ -32,21 +32,6 @@ namespace po = boost::program_options;
bool invert_score;
boost::shared_ptr<MT19937> rng;
-void SanityCheck(const vector<double>& w) {
- for (int i = 0; i < w.size(); ++i) {
- assert(!isnan(w[i]));
- assert(!isinf(w[i]));
- }
-}
-
-struct FComp {
- const vector<double>& w_;
- FComp(const vector<double>& w) : w_(w) {}
- bool operator()(int a, int b) const {
- return fabs(w_[a]) > fabs(w_[b]);
- }
-};
-
void RandomPermutation(int len, vector<int>* p_ids) {
vector<int>& ids = *p_ids;
ids.resize(len);
@@ -58,21 +43,6 @@ void RandomPermutation(int len, vector<int>* p_ids) {
}
}
-void ShowLargestFeatures(const vector<double>& w) {
- vector<int> fnums(w.size());
- for (int i = 0; i < w.size(); ++i)
- fnums[i] = i;
- vector<int>::iterator mid = fnums.begin();
- mid += (w.size() > 10 ? 10 : w.size());
- partial_sort(fnums.begin(), mid, fnums.end(), FComp(w));
- cerr << "TOP FEATURES:";
- --mid;
- for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) {
- cerr << ' ' << FD::Convert(*i) << '=' << w[*i];
- }
- cerr << endl;
-}
-
bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
@@ -209,14 +179,16 @@ int main(int argc, char** argv) {
cerr << "Mismatched number of references (" << ds.size() << ") and sources (" << corpus.size() << ")\n";
return 1;
}
- // load initial weights
- Weights weights;
- weights.InitFromFile(conf["input_weights"].as<string>());
- SparseVector<double> lambdas;
- weights.InitSparseVector(&lambdas);
ReadFile ini_rf(conf["decoder_config"].as<string>());
Decoder decoder(ini_rf.stream());
+
+ // load initial weights
+ vector<weight_t>& dense_weights = decoder.CurrentWeightVector();
+ SparseVector<weight_t> lambdas;
+ Weights::InitFromFile(conf["input_weights"].as<string>(), &dense_weights);
+ Weights::InitSparseVector(dense_weights, &lambdas);
+
const double max_step_size = conf["max_step_size"].as<double>();
const double mt_metric_scale = conf["mt_metric_scale"].as<double>();
@@ -230,7 +202,6 @@ int main(int argc, char** argv) {
double tot_loss = 0;
int dots = 0;
int cur_pass = 0;
- vector<double> dense_weights;
SparseVector<double> tot;
tot += lambdas; // initial weights
normalizer++; // count for initial weights
@@ -240,27 +211,22 @@ int main(int argc, char** argv) {
vector<int> order;
RandomPermutation(corpus.size(), &order);
while (lcount <= max_iteration) {
- dense_weights.clear();
- weights.InitFromVector(lambdas);
- weights.InitVector(&dense_weights);
- decoder.SetWeights(dense_weights);
+ lambdas.init_vector(&dense_weights);
if ((cur_sent * 40 / corpus.size()) > dots) { ++dots; cerr << '.'; }
if (corpus.size() == cur_sent) {
cerr << " [AVG METRIC LAST PASS=" << (tot_loss / corpus.size()) << "]\n";
- ShowLargestFeatures(dense_weights);
+ Weights::ShowLargestFeatures(dense_weights);
cur_sent = 0;
tot_loss = 0;
dots = 0;
ostringstream os;
os << "weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << ".gz";
- weights.WriteToFile(os.str(), true, &msg);
SparseVector<double> x = tot;
x /= normalizer;
ostringstream sa;
sa << "weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "-avg.gz";
- Weights ww;
- ww.InitFromVector(x);
- ww.WriteToFile(sa.str(), true, &msga);
+ x.init_vector(&dense_weights);
+ Weights::WriteToFile(os.str(), dense_weights, true, &msg);
++cur_pass;
RandomPermutation(corpus.size(), &order);
}
@@ -294,11 +260,11 @@ int main(int argc, char** argv) {
++cur_sent;
}
cerr << endl;
- weights.WriteToFile("weights.mira-final.gz", true, &msg);
+ Weights::WriteToFile("weights.mira-final.gz", dense_weights, true, &msg);
tot /= normalizer;
- weights.InitFromVector(tot);
+ tot.init_vector(dense_weights);
msg = "# MIRA tuned weights (averaged vector)";
- weights.WriteToFile("weights.mira-final-avg.gz", true, &msg);
+ Weights::WriteToFile("weights.mira-final-avg.gz", dense_weights, true, &msg);
cerr << "Optimization complete.\nAVERAGED WEIGHTS: weights.mira-final-avg.gz\n";
return 0;
}
diff --git a/mteval/mbr_kbest.cc b/mteval/mbr_kbest.cc
index 2867b36b..64a6a8bf 100644
--- a/mteval/mbr_kbest.cc
+++ b/mteval/mbr_kbest.cc
@@ -32,7 +32,7 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
}
struct LossComparer {
- bool operator()(const pair<vector<WordID>, double>& a, const pair<vector<WordID>, double>& b) const {
+ bool operator()(const pair<vector<WordID>, prob_t>& a, const pair<vector<WordID>, prob_t>& b) const {
return a.second < b.second;
}
};
@@ -108,7 +108,7 @@ int main(int argc, char** argv) {
ScoreP s = scorer->ScoreCandidate(list[j].first);
double loss = 1.0 - s->ComputeScore();
if (type == TER || type == AER) loss = 1.0 - loss;
- double weighted_loss = loss * (joints[j] / marginal);
+ double weighted_loss = loss * (joints[j] / marginal).as_float();
wl_acc += weighted_loss;
if ((!output_list) && wl_acc > mbr_loss) break;
}
diff --git a/mteval/scorer.cc b/mteval/scorer.cc
index 2daa0daa..a83b9e2f 100644
--- a/mteval/scorer.cc
+++ b/mteval/scorer.cc
@@ -430,6 +430,7 @@ float BLEUScore::ComputeScore(vector<float>* precs, float* bp) const {
float log_bleu = 0;
if (precs) precs->clear();
int count = 0;
+ vector<float> total_precs(N());
for (int i = 0; i < N(); ++i) {
if (hyp_ngram_counts[i] > 0) {
float cor_count = correct_ngram_hit_counts[i];
@@ -440,14 +441,21 @@ float BLEUScore::ComputeScore(vector<float>* precs, float* bp) const {
log_bleu += lprec;
++count;
}
+ total_precs[i] = log_bleu;
}
- log_bleu /= static_cast<float>(count);
+ vector<float> bleus(N());
float lbp = 0.0;
if (hyp_len < ref_len)
lbp = (hyp_len - ref_len) / hyp_len;
log_bleu += lbp;
if (bp) *bp = exp(lbp);
- return exp(log_bleu);
+ float wb = 0;
+ for (int i = 0; i < N(); ++i) {
+ bleus[i] = exp(total_precs[i] / (i+1) + lbp);
+ wb += bleus[i] / pow(2.0, 4.0 - i);
+ }
+ //return wb;
+ return bleus.back();
}
diff --git a/phrasinator/Makefile.am b/phrasinator/Makefile.am
index 0b15a250..aba98601 100644
--- a/phrasinator/Makefile.am
+++ b/phrasinator/Makefile.am
@@ -1,6 +1,14 @@
-bin_PROGRAMS = gibbs_train_plm
+bin_PROGRAMS = gibbs_train_plm gibbs_train_plm_notables
+
+#head_bigram_model
+
+gibbs_train_plm_notables_SOURCES = gibbs_train_plm.notables.cc
+gibbs_train_plm_notables_LDADD = $(top_srcdir)/utils/libutils.a -lz
gibbs_train_plm_SOURCES = gibbs_train_plm.cc
gibbs_train_plm_LDADD = $(top_srcdir)/utils/libutils.a -lz
+#head_bigram_model_SOURCES = head_bigram_model.cc
+#head_bigram_model_LDADD = $(top_srcdir)/utils/libutils.a -lz
+
AM_CPPFLAGS = -funroll-loops -W -Wall -Wno-sign-compare $(GTEST_CPPFLAGS) -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval
diff --git a/phrasinator/ccrp_nt.h b/phrasinator/ccrp_nt.h
new file mode 100644
index 00000000..811bce73
--- /dev/null
+++ b/phrasinator/ccrp_nt.h
@@ -0,0 +1,170 @@
+#ifndef _CCRP_NT_H_
+#define _CCRP_NT_H_
+
+#include <numeric>
+#include <cassert>
+#include <cmath>
+#include <list>
+#include <iostream>
+#include <vector>
+#include <tr1/unordered_map>
+#include <boost/functional/hash.hpp>
+#include "sampler.h"
+#include "slice_sampler.h"
+
+// Chinese restaurant process (Pitman-Yor parameters) with table tracking.
+
+template <typename Dish, typename DishHash = boost::hash<Dish> >
+class CCRP_NoTable {
+ public:
+ explicit CCRP_NoTable(double conc) :
+ num_customers_(),
+ concentration_(conc),
+ concentration_prior_shape_(std::numeric_limits<double>::quiet_NaN()),
+ concentration_prior_rate_(std::numeric_limits<double>::quiet_NaN()) {}
+
+ CCRP_NoTable(double c_shape, double c_rate, double c = 10.0) :
+ num_customers_(),
+ concentration_(c),
+ concentration_prior_shape_(c_shape),
+ concentration_prior_rate_(c_rate) {}
+
+ double concentration() const { return concentration_; }
+
+ bool has_concentration_prior() const {
+ return !std::isnan(concentration_prior_shape_);
+ }
+
+ void clear() {
+ num_customers_ = 0;
+ custs_.clear();
+ }
+
+ unsigned num_customers() const {
+ return num_customers_;
+ }
+
+ unsigned num_customers(const Dish& dish) const {
+ const typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator it = custs_.find(dish);
+ if (it == custs_.end()) return 0;
+ return it->second;
+ }
+
+ int increment(const Dish& dish) {
+ int table_diff = 0;
+ if (++custs_[dish] == 1)
+ table_diff = 1;
+ ++num_customers_;
+ return table_diff;
+ }
+
+ int decrement(const Dish& dish) {
+ int table_diff = 0;
+ int nc = --custs_[dish];
+ if (nc == 0) {
+ custs_.erase(dish);
+ table_diff = -1;
+ } else if (nc < 0) {
+ std::cerr << "Dish counts dropped below zero for: " << dish << std::endl;
+ abort();
+ }
+ --num_customers_;
+ return table_diff;
+ }
+
+ double prob(const Dish& dish, const double& p0) const {
+ const unsigned at_table = num_customers(dish);
+ return (at_table + p0 * concentration_) / (num_customers_ + concentration_);
+ }
+
+ double logprob(const Dish& dish, const double& logp0) const {
+ const unsigned at_table = num_customers(dish);
+ return log(at_table + exp(logp0 + log(concentration_))) - log(num_customers_ + concentration_);
+ }
+
+ double log_crp_prob() const {
+ return log_crp_prob(concentration_);
+ }
+
+ static double log_gamma_density(const double& x, const double& shape, const double& rate) {
+ assert(x >= 0.0);
+ assert(shape > 0.0);
+ assert(rate > 0.0);
+ const double lp = (shape-1)*log(x) - shape*log(rate) - x/rate - lgamma(shape);
+ return lp;
+ }
+
+ // taken from http://en.wikipedia.org/wiki/Chinese_restaurant_process
+ // does not include P_0's
+ double log_crp_prob(const double& concentration) const {
+ double lp = 0.0;
+ if (has_concentration_prior())
+ lp += log_gamma_density(concentration, concentration_prior_shape_, concentration_prior_rate_);
+ assert(lp <= 0.0);
+ if (num_customers_) {
+ lp += lgamma(concentration) - lgamma(concentration + num_customers_) +
+ custs_.size() * log(concentration);
+ assert(std::isfinite(lp));
+ for (typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator it = custs_.begin();
+ it != custs_.end(); ++it) {
+ lp += lgamma(it->second);
+ }
+ }
+ assert(std::isfinite(lp));
+ return lp;
+ }
+
+ void resample_hyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) {
+ assert(has_concentration_prior());
+ ConcentrationResampler cr(*this);
+ for (int iter = 0; iter < nloop; ++iter) {
+ concentration_ = slice_sampler1d(cr, concentration_, *rng, 0.0,
+ std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
+ }
+ }
+
+ struct ConcentrationResampler {
+ ConcentrationResampler(const CCRP_NoTable& crp) : crp_(crp) {}
+ const CCRP_NoTable& crp_;
+ double operator()(const double& proposed_concentration) const {
+ return crp_.log_crp_prob(proposed_concentration);
+ }
+ };
+
+ void Print(std::ostream* out) const {
+ (*out) << "DP(alpha=" << concentration_ << ") customers=" << num_customers_ << std::endl;
+ int cc = 0;
+ for (typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator it = custs_.begin();
+ it != custs_.end(); ++it) {
+ (*out) << " " << it->first << "(" << it->second << " eating)";
+ ++cc;
+ if (cc > 10) { (*out) << " ..."; break; }
+ }
+ (*out) << std::endl;
+ }
+
+ unsigned num_customers_;
+ std::tr1::unordered_map<Dish, unsigned, DishHash> custs_;
+
+ typedef typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator const_iterator;
+ const_iterator begin() const {
+ return custs_.begin();
+ }
+ const_iterator end() const {
+ return custs_.end();
+ }
+
+ double concentration_;
+
+ // optional gamma prior on concentration_ (NaN if no prior)
+ double concentration_prior_shape_;
+ double concentration_prior_rate_;
+};
+
+template <typename T,typename H>
+std::ostream& operator<<(std::ostream& o, const CCRP_NoTable<T,H>& c) {
+ c.Print(&o);
+ return o;
+}
+
+#endif
diff --git a/phrasinator/gibbs_train_plm.notables.cc b/phrasinator/gibbs_train_plm.notables.cc
new file mode 100644
index 00000000..4b431b90
--- /dev/null
+++ b/phrasinator/gibbs_train_plm.notables.cc
@@ -0,0 +1,335 @@
+#include <iostream>
+#include <tr1/memory>
+
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "filelib.h"
+#include "dict.h"
+#include "sampler.h"
+#include "ccrp.h"
+#include "ccrp_nt.h"
+
+using namespace std;
+using namespace std::tr1;
+namespace po = boost::program_options;
+
+Dict d; // global dictionary
+
+string Join(char joiner, const vector<int>& phrase) {
+ ostringstream os;
+ for (int i = 0; i < phrase.size(); ++i) {
+ if (i > 0) os << joiner;
+ os << d.Convert(phrase[i]);
+ }
+ return os.str();
+}
+
+template <typename BType>
+void WriteSeg(const vector<int>& line, const vector<BType>& label, const Dict& d) {
+ assert(line.size() == label.size());
+ assert(label.back());
+ int prev = 0;
+ int cur = 0;
+ while (cur < line.size()) {
+ if (label[cur]) {
+ if (prev) cout << ' ';
+ cout << "{{";
+ for (int i = prev; i <= cur; ++i)
+ cout << (i == prev ? "" : " ") << d.Convert(line[i]);
+ cout << "}}:" << label[cur];
+ prev = cur + 1;
+ }
+ ++cur;
+ }
+ cout << endl;
+}
+
+ostream& operator<<(ostream& os, const vector<int>& phrase) {
+ for (int i = 0; i < phrase.size(); ++i)
+ os << (i == 0 ? "" : " ") << d.Convert(phrase[i]);
+ return os;
+}
+
+struct UnigramLM {
+ explicit UnigramLM(const string& fname) {
+ ifstream in(fname.c_str());
+ assert(in);
+ }
+
+ double logprob(int word) const {
+ assert(word < freqs_.size());
+ return freqs_[word];
+ }
+
+ vector<double> freqs_;
+};
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
+ ("input,i",po::value<string>(),"Read file from")
+ ("random_seed,S",po::value<uint32_t>(), "Random seed")
+ ("write_cdec_grammar,g", po::value<string>(), "Write cdec grammar to this file")
+ ("write_cdec_weights,w", po::value<string>(), "Write cdec weights to this file")
+ ("poisson_length,p", "Use a Poisson distribution as the length of a phrase in the base distribuion")
+ ("no_hyperparameter_inference,N", "Disable hyperparameter inference");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || (conf->count("input") == 0)) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+void ReadCorpus(const string& filename, vector<vector<int> >* c, set<int>* vocab) {
+ c->clear();
+ istream* in;
+ if (filename == "-")
+ in = &cin;
+ else
+ in = new ifstream(filename.c_str());
+ assert(*in);
+ string line;
+ while(*in) {
+ getline(*in, line);
+ if (line.empty() && !*in) break;
+ c->push_back(vector<int>());
+ vector<int>& v = c->back();
+ d.ConvertWhitespaceDelimitedLine(line, &v);
+ for (int i = 0; i < v.size(); ++i) vocab->insert(v[i]);
+ }
+ if (in != &cin) delete in;
+}
+
+double log_poisson(unsigned x, const double& lambda) {
+ assert(lambda > 0.0);
+ return log(lambda) * x - lgamma(x + 1) - lambda;
+}
+
+struct UniphraseLM {
+ UniphraseLM(const vector<vector<int> >& corpus,
+ const set<int>& vocab,
+ const po::variables_map& conf) :
+ phrases_(1,1),
+ gen_(1,1),
+ corpus_(corpus),
+ uniform_word_(1.0 / vocab.size()),
+ gen_p0_(0.5),
+ p_end_(0.5),
+ use_poisson_(conf.count("poisson_length") > 0) {}
+
+ double p0(const vector<int>& phrase) const {
+ static vector<double> p0s(10000, 0.0);
+ assert(phrase.size() < 10000);
+ double& p = p0s[phrase.size()];
+ if (p) return p;
+ p = exp(log_p0(phrase));
+ if (!p) {
+ cerr << "0 prob phrase: " << phrase << "\nAssigning std::numeric_limits<double>::min()\n";
+ p = std::numeric_limits<double>::min();
+ }
+ return p;
+ }
+
+ double log_p0(const vector<int>& phrase) const {
+ double len_logprob;
+ if (use_poisson_)
+ len_logprob = log_poisson(phrase.size(), 1.0);
+ else
+ len_logprob = log(1 - p_end_) * (phrase.size() -1) + log(p_end_);
+ return log(uniform_word_) * phrase.size() + len_logprob;
+ }
+
+ double llh() const {
+ double llh = gen_.log_crp_prob();
+ llh += log(gen_p0_) + log(1 - gen_p0_);
+ double llhr = phrases_.log_crp_prob();
+ for (CCRP_NoTable<vector<int> >::const_iterator it = phrases_.begin(); it != phrases_.end(); ++it) {
+ llhr += log_p0(it->first);
+ //llhr += log_p0(it->first);
+ if (!isfinite(llh)) {
+ cerr << it->first << endl;
+ cerr << log_p0(it->first) << endl;
+ abort();
+ }
+ }
+ return llh + llhr;
+ }
+
+ void Sample(unsigned int samples, bool hyp_inf, MT19937* rng) {
+ cerr << "Initializing...\n";
+ z_.resize(corpus_.size());
+ int tc = 0;
+ for (int i = 0; i < corpus_.size(); ++i) {
+ const vector<int>& line = corpus_[i];
+ const int ls = line.size();
+ const int last_pos = ls - 1;
+ vector<bool>& z = z_[i];
+ z.resize(ls);
+ int prev = 0;
+ for (int j = 0; j < ls; ++j) {
+ z[j] = rng->next() < 0.5;
+ if (j == last_pos) z[j] = true; // break phrase at the end of the sentence
+ if (z[j]) {
+ const vector<int> p(line.begin() + prev, line.begin() + j + 1);
+ phrases_.increment(p);
+ //cerr << p << ": " << p0(p) << endl;
+ prev = j + 1;
+ gen_.increment(false);
+ ++tc; // remove
+ }
+ }
+ ++tc;
+ gen_.increment(true); // end of utterance
+ }
+ cerr << "TC: " << tc << endl;
+ cerr << "Initial LLH: " << llh() << endl;
+ cerr << "Sampling...\n";
+ cerr << gen_ << endl;
+ for (int s = 1; s < samples; ++s) {
+ cerr << '.';
+ if (s % 10 == 0) {
+ cerr << " [" << s;
+ if (hyp_inf) ResampleHyperparameters(rng);
+ cerr << " LLH=" << llh() << "]\n";
+ vector<int> z(z_[0].size(), 0);
+ //for (int j = 0; j < z.size(); ++j) z[j] = z_[0][j];
+ //SegCorpus::Write(corpus_[0], z, d);
+ }
+ for (int i = 0; i < corpus_.size(); ++i) {
+ const vector<int>& line = corpus_[i];
+ const int ls = line.size();
+ const int last_pos = ls - 1;
+ vector<bool>& z = z_[i];
+ int prev = 0;
+ for (int j = 0; j < last_pos; ++j) { // don't resample last position
+ int next = j+1; while(!z[next]) { ++next; }
+ const vector<int> p1p2(line.begin() + prev, line.begin() + next + 1);
+ const vector<int> p1(line.begin() + prev, line.begin() + j + 1);
+ const vector<int> p2(line.begin() + j + 1, line.begin() + next + 1);
+
+ if (z[j]) {
+ phrases_.decrement(p1);
+ phrases_.decrement(p2);
+ gen_.decrement(false);
+ gen_.decrement(false);
+ } else {
+ phrases_.decrement(p1p2);
+ gen_.decrement(false);
+ }
+
+ const double d1 = phrases_.prob(p1p2, p0(p1p2)) * gen_.prob(false, gen_p0_);
+ double d2 = phrases_.prob(p1, p0(p1)) * gen_.prob(false, gen_p0_);
+ phrases_.increment(p1);
+ gen_.increment(false);
+ d2 *= phrases_.prob(p2, p0(p2)) * gen_.prob(false, gen_p0_);
+ phrases_.decrement(p1);
+ gen_.decrement(false);
+ z[j] = rng->SelectSample(d1, d2);
+
+ if (z[j]) {
+ phrases_.increment(p1);
+ phrases_.increment(p2);
+ gen_.increment(false);
+ gen_.increment(false);
+ prev = j + 1;
+ } else {
+ phrases_.increment(p1p2);
+ gen_.increment(false);
+ }
+ }
+ }
+ }
+// cerr << endl << endl << gen_ << endl << phrases_ << endl;
+ cerr << gen_.prob(false, gen_p0_) << " " << gen_.prob(true, 1 - gen_p0_) << endl;
+ }
+
+ void WriteCdecGrammarForCurrentSample(ostream* os) const {
+ CCRP_NoTable<vector<int> >::const_iterator it = phrases_.begin();
+ for (; it != phrases_.end(); ++it) {
+ (*os) << "[X] ||| " << Join(' ', it->first) << " ||| "
+ << Join('_', it->first) << " ||| C=1 P="
+ << log(phrases_.prob(it->first, p0(it->first))) << endl;
+ }
+ }
+
+ double OOVUnigramLogProb() const {
+ vector<int> x(1,99999999);
+ return log(phrases_.prob(x, p0(x)));
+ }
+
+ void ResampleHyperparameters(MT19937* rng) {
+ phrases_.resample_hyperparameters(rng);
+ gen_.resample_hyperparameters(rng);
+ cerr << " " << phrases_.concentration();
+ }
+
+ CCRP_NoTable<vector<int> > phrases_;
+ CCRP_NoTable<bool> gen_;
+ vector<vector<bool> > z_; // z_[i] is there a phrase boundary after the ith word
+ const vector<vector<int> >& corpus_;
+ const double uniform_word_;
+ const double gen_p0_;
+ const double p_end_; // in base length distribution, p of the end of a phrase
+ const bool use_poisson_;
+};
+
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ shared_ptr<MT19937> prng;
+ if (conf.count("random_seed"))
+ prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ prng.reset(new MT19937);
+ MT19937& rng = *prng;
+
+ vector<vector<int> > corpus;
+ set<int> vocab;
+ ReadCorpus(conf["input"].as<string>(), &corpus, &vocab);
+ cerr << "Corpus size: " << corpus.size() << " sentences\n";
+ cerr << "Vocabulary size: " << vocab.size() << " types\n";
+
+ UniphraseLM ulm(corpus, vocab, conf);
+ ulm.Sample(conf["samples"].as<unsigned>(), conf.count("no_hyperparameter_inference") == 0, &rng);
+ cerr << "OOV unigram prob: " << ulm.OOVUnigramLogProb() << endl;
+
+ for (int i = 0; i < corpus.size(); ++i)
+ WriteSeg(corpus[i], ulm.z_[i], d);
+
+ if (conf.count("write_cdec_grammar")) {
+ string fname = conf["write_cdec_grammar"].as<string>();
+ cerr << "Writing model to " << fname << " ...\n";
+ WriteFile wf(fname);
+ ulm.WriteCdecGrammarForCurrentSample(wf.stream());
+ }
+
+ if (conf.count("write_cdec_weights")) {
+ string fname = conf["write_cdec_weights"].as<string>();
+ cerr << "Writing weights to " << fname << " .\n";
+ WriteFile wf(fname);
+ ostream& os = *wf.stream();
+ os << "# make C smaller to use more phrases\nP 1\nPassThrough " << ulm.OOVUnigramLogProb() << "\nC -3\n";
+ }
+
+
+
+ return 0;
+}
+
diff --git a/phrasinator/train-phrasinator.pl b/phrasinator/train-phrasinator.pl
index de258caf..c50b8e68 100755
--- a/phrasinator/train-phrasinator.pl
+++ b/phrasinator/train-phrasinator.pl
@@ -5,7 +5,7 @@ use Getopt::Long;
use File::Spec qw (rel2abs);
my $DECODER = "$script_dir/../decoder/cdec";
-my $TRAINER = "$script_dir/gibbs_train_plm";
+my $TRAINER = "$script_dir/gibbs_train_plm_notables";
die "Can't find $TRAINER" unless -f $TRAINER;
die "Can't execute $TRAINER" unless -x $TRAINER;
diff --git a/pro-train/Makefile.am b/pro-train/Makefile.am
new file mode 100644
index 00000000..fdaf43e2
--- /dev/null
+++ b/pro-train/Makefile.am
@@ -0,0 +1,13 @@
+bin_PROGRAMS = \
+ mr_pro_map \
+ mr_pro_reduce
+
+TESTS = lo_test
+
+mr_pro_map_SOURCES = mr_pro_map.cc
+mr_pro_map_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a -lz
+
+mr_pro_reduce_SOURCES = mr_pro_reduce.cc
+mr_pro_reduce_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/training/optimize.o $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a -lz
+
+AM_CPPFLAGS = -W -Wall -Wno-sign-compare $(GTEST_CPPFLAGS) -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval -I$(top_srcdir)/training
diff --git a/pro-train/README.shared-mem b/pro-train/README.shared-mem
new file mode 100644
index 00000000..7728efc0
--- /dev/null
+++ b/pro-train/README.shared-mem
@@ -0,0 +1,9 @@
+If you want to run dist-vest.pl on a very large shared memory machine, do the
+following:
+
+ ./dist-vest.pl --use-make I --decode-nodes J --weights weights.init --source-file=dev.src --ref-files=dev.ref.* cdec.ini
+
+This will use I jobs for doing the line search and J jobs to run the decoder. Typically, since the
+decoder must load grammars, language models, etc., J should be smaller than I, but this will depend
+on the system you are running on and the complexity of the models used for decoding.
+
diff --git a/pro-train/dist-pro.pl b/pro-train/dist-pro.pl
new file mode 100755
index 00000000..dbfa329a
--- /dev/null
+++ b/pro-train/dist-pro.pl
@@ -0,0 +1,657 @@
+#!/usr/bin/env perl
+use strict;
+my @ORIG_ARGV=@ARGV;
+use Cwd qw(getcwd);
+my $SCRIPT_DIR; BEGIN { use Cwd qw/ abs_path /; use File::Basename; $SCRIPT_DIR = dirname(abs_path($0)); push @INC, $SCRIPT_DIR, "$SCRIPT_DIR/../environment"; }
+
+# Skip local config (used for distributing jobs) if we're running in local-only mode
+use LocalConfig;
+use Getopt::Long;
+use IPC::Open2;
+use POSIX ":sys_wait_h";
+my $QSUB_CMD = qsub_args(mert_memory());
+
+my $VEST_DIR="$SCRIPT_DIR/../vest";
+require "$VEST_DIR/libcall.pl";
+
+# Default settings
+my $srcFile;
+my $refFiles;
+my $bin_dir = $SCRIPT_DIR;
+die "Bin directory $bin_dir missing/inaccessible" unless -d $bin_dir;
+my $FAST_SCORE="$bin_dir/../mteval/fast_score";
+die "Can't execute $FAST_SCORE" unless -x $FAST_SCORE;
+my $MAPINPUT = "$bin_dir/mr_pro_generate_mapper_input.pl";
+my $MAPPER = "$bin_dir/mr_pro_map";
+my $REDUCER = "$bin_dir/mr_pro_reduce";
+my $parallelize = "$VEST_DIR/parallelize.pl";
+my $libcall = "$VEST_DIR/libcall.pl";
+my $sentserver = "$VEST_DIR/sentserver";
+my $sentclient = "$VEST_DIR/sentclient";
+my $LocalConfig = "$SCRIPT_DIR/../environment/LocalConfig.pm";
+
+my $SCORER = $FAST_SCORE;
+die "Can't find $MAPPER" unless -x $MAPPER;
+my $cdec = "$bin_dir/../decoder/cdec";
+die "Can't find decoder in $cdec" unless -x $cdec;
+die "Can't find $parallelize" unless -x $parallelize;
+die "Can't find $libcall" unless -e $libcall;
+my $decoder = $cdec;
+my $lines_per_mapper = 30;
+my $iteration = 1;
+my $run_local = 0;
+my $best_weights;
+my $max_iterations = 30;
+my $decode_nodes = 15; # number of decode nodes
+my $pmem = "4g";
+my $disable_clean = 0;
+my %seen_weights;
+my $help = 0;
+my $epsilon = 0.0001;
+my $dryrun = 0;
+my $last_score = -10000000;
+my $metric = "ibm_bleu";
+my $dir;
+my $iniFile;
+my $weights;
+my $use_make; # use make to parallelize
+my $usefork;
+my $initial_weights;
+my $pass_suffix = '';
+my $cpbin=1;
+
+# regularization strength
+my $tune_regularizer = 0;
+my $reg = 1e-2;
+
+# Process command-line options
+Getopt::Long::Configure("no_auto_abbrev");
+if (GetOptions(
+ "decode-nodes=i" => \$decode_nodes,
+ "dont-clean" => \$disable_clean,
+ "pass-suffix=s" => \$pass_suffix,
+ "use-fork" => \$usefork,
+ "dry-run" => \$dryrun,
+ "epsilon=s" => \$epsilon,
+ "help" => \$help,
+ "weights=s" => \$initial_weights,
+ "tune-regularizer" => \$tune_regularizer,
+ "reg=f" => \$reg,
+ "local" => \$run_local,
+ "use-make=i" => \$use_make,
+ "max-iterations=i" => \$max_iterations,
+ "pmem=s" => \$pmem,
+ "cpbin!" => \$cpbin,
+ "ref-files=s" => \$refFiles,
+ "metric=s" => \$metric,
+ "source-file=s" => \$srcFile,
+ "workdir=s" => \$dir,
+) == 0 || @ARGV!=1 || $help) {
+ print_help();
+ exit;
+}
+
+if ($usefork) { $usefork = "--use-fork"; } else { $usefork = ''; }
+
+if ($metric =~ /^(combi|ter)$/i) {
+ $lines_per_mapper = 5;
+}
+
+($iniFile) = @ARGV;
+
+
+sub write_config;
+sub enseg;
+sub print_help;
+
+my $nodelist;
+my $host =check_output("hostname"); chomp $host;
+my $bleu;
+my $interval_count = 0;
+my $logfile;
+my $projected_score;
+
+# used in sorting scores
+my $DIR_FLAG = '-r';
+if ($metric =~ /^ter$|^aer$/i) {
+ $DIR_FLAG = '';
+}
+
+my $refs_comma_sep = get_comma_sep_refs('r',$refFiles);
+
+unless ($dir){
+ $dir = "protrain";
+}
+unless ($dir =~ /^\//){ # convert relative path to absolute path
+ my $basedir = check_output("pwd");
+ chomp $basedir;
+ $dir = "$basedir/$dir";
+}
+
+
+# Initializations and helper functions
+srand;
+
+my @childpids = ();
+my @cleanupcmds = ();
+
+sub cleanup {
+ print STDERR "Cleanup...\n";
+ for my $pid (@childpids){ unchecked_call("kill $pid"); }
+ for my $cmd (@cleanupcmds){ unchecked_call("$cmd"); }
+ exit 1;
+};
+# Always call cleanup, no matter how we exit
+*CORE::GLOBAL::exit =
+ sub{ cleanup(); };
+$SIG{INT} = "cleanup";
+$SIG{TERM} = "cleanup";
+$SIG{HUP} = "cleanup";
+
+my $decoderBase = check_output("basename $decoder"); chomp $decoderBase;
+my $newIniFile = "$dir/$decoderBase.ini";
+my $inputFileName = "$dir/input";
+my $user = $ENV{"USER"};
+
+
+# process ini file
+-e $iniFile || die "Error: could not open $iniFile for reading\n";
+open(INI, $iniFile);
+
+use File::Basename qw(basename);
+#pass bindir, refs to vars holding bin
+sub modbin {
+ local $_;
+ my $bindir=shift;
+ check_call("mkdir -p $bindir");
+ -d $bindir || die "couldn't make bindir $bindir";
+ for (@_) {
+ my $src=$$_;
+ $$_="$bindir/".basename($src);
+ check_call("cp -p $src $$_");
+ }
+}
+sub dirsize {
+ opendir ISEMPTY,$_[0];
+ return scalar(readdir(ISEMPTY))-1;
+}
+my @allweights;
+if ($dryrun){
+ write_config(*STDERR);
+ exit 0;
+} else {
+ if (-e $dir && dirsize($dir)>1 && -e "$dir/hgs" ){ # allow preexisting logfile, binaries, but not dist-pro.pl outputs
+ die "ERROR: working dir $dir already exists\n\n";
+ } else {
+ -e $dir || mkdir $dir;
+ mkdir "$dir/hgs";
+ modbin("$dir/bin",\$LocalConfig,\$cdec,\$SCORER,\$MAPINPUT,\$MAPPER,\$REDUCER,\$parallelize,\$sentserver,\$sentclient,\$libcall) if $cpbin;
+ mkdir "$dir/scripts";
+ my $cmdfile="$dir/rerun-pro.sh";
+ open CMD,'>',$cmdfile;
+ print CMD "cd ",&getcwd,"\n";
+# print CMD &escaped_cmdline,"\n"; #buggy - last arg is quoted.
+ my $cline=&cmdline."\n";
+ print CMD $cline;
+ close CMD;
+ print STDERR $cline;
+ chmod(0755,$cmdfile);
+ check_call("cp $initial_weights $dir/weights.0");
+ die "Can't find weights.0" unless (-e "$dir/weights.0");
+ }
+ write_config(*STDERR);
+}
+
+
+# Generate initial files and values
+check_call("cp $iniFile $newIniFile");
+$iniFile = $newIniFile;
+
+my $newsrc = "$dir/dev.input";
+enseg($srcFile, $newsrc);
+$srcFile = $newsrc;
+my $devSize = 0;
+open F, "<$srcFile" or die "Can't read $srcFile: $!";
+while(<F>) { $devSize++; }
+close F;
+
+unless($best_weights){ $best_weights = $weights; }
+unless($projected_score){ $projected_score = 0.0; }
+$seen_weights{$weights} = 1;
+
+my $random_seed = int(time / 1000);
+my $lastWeightsFile;
+my $lastPScore = 0;
+# main optimization loop
+while (1){
+ print STDERR "\n\nITERATION $iteration\n==========\n";
+
+ if ($iteration > $max_iterations){
+ print STDERR "\nREACHED STOPPING CRITERION: Maximum iterations\n";
+ last;
+ }
+ # iteration-specific files
+ my $runFile="$dir/run.raw.$iteration";
+ my $onebestFile="$dir/1best.$iteration";
+ my $logdir="$dir/logs.$iteration";
+ my $decoderLog="$logdir/decoder.sentserver.log.$iteration";
+ my $scorerLog="$logdir/scorer.log.$iteration";
+ check_call("mkdir -p $logdir");
+
+
+ #decode
+ print STDERR "RUNNING DECODER AT ";
+ print STDERR unchecked_output("date");
+ my $im1 = $iteration - 1;
+ my $weightsFile="$dir/weights.$im1";
+ push @allweights, "-w $dir/weights.$im1";
+ `rm -f $dir/hgs/*.gz`;
+ my $decoder_cmd = "$decoder -c $iniFile --weights$pass_suffix $weightsFile -O $dir/hgs";
+ my $pcmd;
+ if ($run_local) {
+ $pcmd = "cat $srcFile |";
+ } elsif ($use_make) {
+ # TODO: Throw error when decode_nodes is specified along with use_make
+ $pcmd = "cat $srcFile | $parallelize --use-fork -p $pmem -e $logdir -j $use_make --";
+ } else {
+ $pcmd = "cat $srcFile | $parallelize $usefork -p $pmem -e $logdir -j $decode_nodes --";
+ }
+ my $cmd = "$pcmd $decoder_cmd 2> $decoderLog 1> $runFile";
+ print STDERR "COMMAND:\n$cmd\n";
+ check_bash_call($cmd);
+ my $num_hgs;
+ my $num_topbest;
+ my $retries = 0;
+ while($retries < 5) {
+ $num_hgs = check_output("ls $dir/hgs/*.gz | wc -l");
+ $num_topbest = check_output("wc -l < $runFile");
+ print STDERR "NUMBER OF HGs: $num_hgs\n";
+ print STDERR "NUMBER OF TOP-BEST HYPs: $num_topbest\n";
+ if($devSize == $num_hgs && $devSize == $num_topbest) {
+ last;
+ } else {
+ print STDERR "Incorrect number of hypergraphs or topbest. Waiting for distributed filesystem and retrying...\n";
+ sleep(3);
+ }
+ $retries++;
+ }
+ die "Dev set contains $devSize sentences, but we don't have topbest and hypergraphs for all these! Decoder failure? Check $decoderLog\n" if ($devSize != $num_hgs || $devSize != $num_topbest);
+ my $dec_score = check_output("cat $runFile | $SCORER $refs_comma_sep -l $metric");
+ chomp $dec_score;
+ print STDERR "DECODER SCORE: $dec_score\n";
+
+ # save space
+ check_call("gzip -f $runFile");
+ check_call("gzip -f $decoderLog");
+
+ # run optimizer
+ print STDERR "RUNNING OPTIMIZER AT ";
+ print STDERR unchecked_output("date");
+ print STDERR " - GENERATE TRAINING EXEMPLARS\n";
+ my $mergeLog="$logdir/prune-merge.log.$iteration";
+
+ my $score = 0;
+ my $icc = 0;
+ my $inweights="$dir/weights.$im1";
+ $cmd="$MAPINPUT $dir/hgs > $dir/agenda.$im1";
+ print STDERR "COMMAND:\n$cmd\n";
+ check_call($cmd);
+ check_call("mkdir -p $dir/splag.$im1");
+ $cmd="split -a 3 -l $lines_per_mapper $dir/agenda.$im1 $dir/splag.$im1/mapinput.";
+ print STDERR "COMMAND:\n$cmd\n";
+ check_call($cmd);
+ opendir(DIR, "$dir/splag.$im1") or die "Can't open directory: $!";
+ my @shards = grep { /^mapinput\./ } readdir(DIR);
+ closedir DIR;
+ die "No shards!" unless scalar @shards > 0;
+ my $joblist = "";
+ my $nmappers = 0;
+ @cleanupcmds = ();
+ my %o2i = ();
+ my $first_shard = 1;
+ my $mkfile; # only used with makefiles
+ my $mkfilename;
+ if ($use_make) {
+ $mkfilename = "$dir/splag.$im1/domap.mk";
+ open $mkfile, ">$mkfilename" or die "Couldn't write $mkfilename: $!";
+ print $mkfile "all: $dir/splag.$im1/map.done\n\n";
+ }
+ my @mkouts = (); # only used with makefiles
+ my @mapoutputs = ();
+ for my $shard (@shards) {
+ my $mapoutput = $shard;
+ my $client_name = $shard;
+ $client_name =~ s/mapinput.//;
+ $client_name = "pro.$client_name";
+ $mapoutput =~ s/mapinput/mapoutput/;
+ push @mapoutputs, "$dir/splag.$im1/$mapoutput";
+ $o2i{"$dir/splag.$im1/$mapoutput"} = "$dir/splag.$im1/$shard";
+ my $script = "$MAPPER -s $srcFile -l $metric $refs_comma_sep -w $inweights -K $dir/kbest < $dir/splag.$im1/$shard > $dir/splag.$im1/$mapoutput";
+ if ($run_local) {
+ print STDERR "COMMAND:\n$script\n";
+ check_bash_call($script);
+ } elsif ($use_make) {
+ my $script_file = "$dir/scripts/map.$shard";
+ open F, ">$script_file" or die "Can't write $script_file: $!";
+ print F "#!/bin/bash\n";
+ print F "$script\n";
+ close F;
+ my $output = "$dir/splag.$im1/$mapoutput";
+ push @mkouts, $output;
+ chmod(0755, $script_file) or die "Can't chmod $script_file: $!";
+ if ($first_shard) { print STDERR "$script\n"; $first_shard=0; }
+ print $mkfile "$output: $dir/splag.$im1/$shard\n\t$script_file\n\n";
+ } else {
+ my $script_file = "$dir/scripts/map.$shard";
+ open F, ">$script_file" or die "Can't write $script_file: $!";
+ print F "$script\n";
+ close F;
+ if ($first_shard) { print STDERR "$script\n"; $first_shard=0; }
+
+ $nmappers++;
+ my $qcmd = "$QSUB_CMD -N $client_name -o /dev/null -e $logdir/$client_name.ER $script_file";
+ my $jobid = check_output("$qcmd");
+ chomp $jobid;
+ $jobid =~ s/^(\d+)(.*?)$/\1/g;
+ $jobid =~ s/^Your job (\d+) .*$/\1/;
+ push(@cleanupcmds, "qdel $jobid 2> /dev/null");
+ print STDERR " $jobid";
+ if ($joblist == "") { $joblist = $jobid; }
+ else {$joblist = $joblist . "\|" . $jobid; }
+ }
+ }
+ my @dev_outs = ();
+ my @devtest_outs = ();
+ if ($tune_regularizer) {
+ for (my $i = 0; $i < scalar @mapoutputs; $i++) {
+ if ($i % 3 == 1) {
+ push @devtest_outs, $mapoutputs[$i];
+ } else {
+ push @dev_outs, $mapoutputs[$i];
+ }
+ }
+ if (scalar @devtest_outs == 0) {
+ die "Not enough training instances for regularization tuning! Rerun without --tune-regularizer\n";
+ }
+ } else {
+ @dev_outs = @mapoutputs;
+ }
+ if ($run_local) {
+ print STDERR "\nCompleted extraction of training exemplars.\n";
+ } elsif ($use_make) {
+ print $mkfile "$dir/splag.$im1/map.done: @mkouts\n\ttouch $dir/splag.$im1/map.done\n\n";
+ close $mkfile;
+ my $mcmd = "make -j $use_make -f $mkfilename";
+ print STDERR "\nExecuting: $mcmd\n";
+ check_call($mcmd);
+ } else {
+ print STDERR "\nLaunched $nmappers mappers.\n";
+ sleep 8;
+ print STDERR "Waiting for mappers to complete...\n";
+ while ($nmappers > 0) {
+ sleep 5;
+ my @livejobs = grep(/$joblist/, split(/\n/, unchecked_output("qstat | grep -v ' C '")));
+ $nmappers = scalar @livejobs;
+ }
+ print STDERR "All mappers complete.\n";
+ }
+ my $tol = 0;
+ my $til = 0;
+ my $dev_test_file = "$dir/splag.$im1/devtest.gz";
+ if ($tune_regularizer) {
+ my $cmd = "cat @devtest_outs | gzip > $dev_test_file";
+ check_bash_call($cmd);
+ die "Can't find file $dev_test_file" unless -f $dev_test_file;
+ }
+ #print STDERR "MO: @mapoutputs\n";
+ for my $mo (@mapoutputs) {
+ #my $olines = get_lines($mo);
+ #my $ilines = get_lines($o2i{$mo});
+ #die "$mo: no training instances generated!" if $olines == 0;
+ }
+ print STDERR "\nRUNNING CLASSIFIER (REDUCER)\n";
+ print STDERR unchecked_output("date");
+ $cmd="cat @dev_outs | $REDUCER -w $dir/weights.$im1 -s $reg";
+ if ($tune_regularizer) {
+ $cmd .= " -T -t $dev_test_file";
+ }
+ $cmd .= " > $dir/weights.$iteration";
+ print STDERR "COMMAND:\n$cmd\n";
+ check_bash_call($cmd);
+ $lastWeightsFile = "$dir/weights.$iteration";
+ if ($tune_regularizer) {
+ open W, "<$lastWeightsFile" or die "Can't read $lastWeightsFile: $!";
+ my $line = <W>;
+ close W;
+ my ($sharp, $label, $nreg) = split /\s|=/, $line;
+ print STDERR "REGULARIZATION STRENGTH ($label) IS $nreg\n";
+ $reg = $nreg;
+ # only tune regularizer on first iteration?
+ $tune_regularizer = 0;
+ }
+ $lastPScore = $score;
+ $iteration++;
+ print STDERR "\n==========\n";
+}
+
+print STDERR "\nFINAL WEIGHTS: $lastWeightsFile\n(Use -w <this file> with the decoder)\n\n";
+
+print STDOUT "$lastWeightsFile\n";
+
+exit 0;
+
+sub get_lines {
+ my $fn = shift @_;
+ open FL, "<$fn" or die "Couldn't read $fn: $!";
+ my $lc = 0;
+ while(<FL>) { $lc++; }
+ return $lc;
+}
+
+sub get_comma_sep_refs {
+ my ($r,$p) = @_;
+ my $o = check_output("echo $p");
+ chomp $o;
+ my @files = split /\s+/, $o;
+ return "-$r " . join(" -$r ", @files);
+}
+
+sub read_weights_file {
+ my ($file) = @_;
+ open F, "<$file" or die "Couldn't read $file: $!";
+ my @r = ();
+ my $pm = -1;
+ while(<F>) {
+ next if /^#/;
+ next if /^\s*$/;
+ chomp;
+ if (/^(.+)\s+(.+)$/) {
+ my $m = $1;
+ my $w = $2;
+ die "Weights out of order: $m <= $pm" unless $m > $pm;
+ push @r, $w;
+ } else {
+ warn "Unexpected feature name in weight file: $_";
+ }
+ }
+ close F;
+ return join ' ', @r;
+}
+
+# subs
+sub write_config {
+ my $fh = shift;
+ my $cleanup = "yes";
+ if ($disable_clean) {$cleanup = "no";}
+
+ print $fh "\n";
+ print $fh "DECODER: $decoder\n";
+ print $fh "INI FILE: $iniFile\n";
+ print $fh "WORKING DIR: $dir\n";
+ print $fh "SOURCE (DEV): $srcFile\n";
+ print $fh "REFS (DEV): $refFiles\n";
+ print $fh "EVAL METRIC: $metric\n";
+ print $fh "MAX ITERATIONS: $max_iterations\n";
+ print $fh "DECODE NODES: $decode_nodes\n";
+ print $fh "HEAD NODE: $host\n";
+ print $fh "PMEM (DECODING): $pmem\n";
+ print $fh "CLEANUP: $cleanup\n";
+}
+
+sub update_weights_file {
+ my ($neww, $rfn, $rpts) = @_;
+ my @feats = @$rfn;
+ my @pts = @$rpts;
+ my $num_feats = scalar @feats;
+ my $num_pts = scalar @pts;
+ die "$num_feats (num_feats) != $num_pts (num_pts)" unless $num_feats == $num_pts;
+ open G, ">$neww" or die;
+ for (my $i = 0; $i < $num_feats; $i++) {
+ my $f = $feats[$i];
+ my $lambda = $pts[$i];
+ print G "$f $lambda\n";
+ }
+ close G;
+}
+
+sub enseg {
+ my $src = shift;
+ my $newsrc = shift;
+ open(SRC, $src);
+ open(NEWSRC, ">$newsrc");
+ my $i=0;
+ while (my $line=<SRC>){
+ chomp $line;
+ if ($line =~ /^\s*<seg/i) {
+ if($line =~ /id="[0-9]+"/) {
+ print NEWSRC "$line\n";
+ } else {
+ die "When using segments with pre-generated <seg> tags, you must include a zero-based id attribute";
+ }
+ } else {
+ print NEWSRC "<seg id=\"$i\">$line</seg>\n";
+ }
+ $i++;
+ }
+ close SRC;
+ close NEWSRC;
+ die "Empty dev set!" if ($i == 0);
+}
+
+sub print_help {
+
+ my $executable = check_output("basename $0"); chomp $executable;
+ print << "Help";
+
+Usage: $executable [options] <ini file>
+
+ $executable [options] <ini file>
+ Runs a complete MERT optimization and test set decoding, using
+ the decoder configuration in ini file. Note that many of the
+ options have default values that are inferred automatically
+ based on certain conventions. For details, refer to descriptions
+ of the options --decoder, --weights, and --workdir.
+
+Required:
+
+ --ref-files <files>
+ Dev set ref files. This option takes only a single string argument.
+ To use multiple files (including file globbing), this argument should
+ be quoted.
+
+ --source-file <file>
+ Dev set source file.
+
+ --weights <file>
+ Initial weights file (use empty file to start from 0)
+
+General options:
+
+ --local
+ Run the decoder and optimizer locally with a single thread.
+
+ --decode-nodes <I>
+ Number of decoder processes to run in parallel. [default=15]
+
+ --help
+ Print this message and exit.
+
+ --max-iterations <M>
+ Maximum number of iterations to run. If not specified, defaults
+ to 10.
+
+ --metric <method>
+ Metric to optimize.
+ Example values: IBM_BLEU, NIST_BLEU, Koehn_BLEU, TER, Combi
+
+ --pass-suffix <S>
+ If the decoder is doing multi-pass decoding, the pass suffix "2",
+ "3", etc., is used to control what iteration of weights is set.
+
+ --pmem <N>
+ Amount of physical memory requested for parallel decoding jobs.
+
+ --use-make <I>
+ Use make -j <I> to run the optimizer commands (useful on large
+ shared-memory machines where qsub is unavailable).
+
+ --workdir <dir>
+ Directory for intermediate and output files. If not specified, the
+ name is derived from the ini filename. Assuming that the ini
+ filename begins with the decoder name and ends with ini, the default
+ name of the working directory is inferred from the middle part of
+ the filename. E.g. an ini file named decoder.foo.ini would have
+ a default working directory name foo.
+
+Regularization options:
+
+ --tune-regularizer
+ Hold out one third of the tuning data and used this to tune the
+ regularization parameter.
+
+ --reg <F>
+
+Help
+}
+
+sub convert {
+ my ($str) = @_;
+ my @ps = split /;/, $str;
+ my %dict = ();
+ for my $p (@ps) {
+ my ($k, $v) = split /=/, $p;
+ $dict{$k} = $v;
+ }
+ return %dict;
+}
+
+
+sub cmdline {
+ return join ' ',($0,@ORIG_ARGV);
+}
+
+#buggy: last arg gets quoted sometimes?
+my $is_shell_special=qr{[ \t\n\\><|&;"'`~*?{}$!()]};
+my $shell_escape_in_quote=qr{[\\"\$`!]};
+
+sub escape_shell {
+ my ($arg)=@_;
+ return undef unless defined $arg;
+ if ($arg =~ /$is_shell_special/) {
+ $arg =~ s/($shell_escape_in_quote)/\\$1/g;
+ return "\"$arg\"";
+ }
+ return $arg;
+}
+
+sub escaped_shell_args {
+ return map {local $_=$_;chomp;escape_shell($_)} @_;
+}
+
+sub escaped_shell_args_str {
+ return join ' ',&escaped_shell_args(@_);
+}
+
+sub escaped_cmdline {
+ return "$0 ".&escaped_shell_args_str(@ORIG_ARGV);
+}
diff --git a/pro-train/mr_pro_generate_mapper_input.pl b/pro-train/mr_pro_generate_mapper_input.pl
new file mode 100755
index 00000000..b30fc4fd
--- /dev/null
+++ b/pro-train/mr_pro_generate_mapper_input.pl
@@ -0,0 +1,18 @@
+#!/usr/bin/perl -w
+use strict;
+
+die "Usage: $0 HG_DIR\n" unless scalar @ARGV == 1;
+my $d = shift @ARGV;
+die "Can't find directory $d" unless -d $d;
+
+opendir(DIR, $d) or die "Can't read $d: $!";
+my @hgs = grep { /\.gz$/ } readdir(DIR);
+closedir DIR;
+
+for my $hg (@hgs) {
+ my $file = $hg;
+ my $id = $hg;
+ $id =~ s/(\.json)?\.gz//;
+ print "$d/$file $id\n";
+}
+
diff --git a/pro-train/mr_pro_map.cc b/pro-train/mr_pro_map.cc
new file mode 100644
index 00000000..0a9b75d7
--- /dev/null
+++ b/pro-train/mr_pro_map.cc
@@ -0,0 +1,347 @@
+#include <sstream>
+#include <iostream>
+#include <fstream>
+#include <vector>
+#include <tr1/unordered_map>
+
+#include <boost/functional/hash.hpp>
+#include <boost/shared_ptr.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "sampler.h"
+#include "filelib.h"
+#include "stringlib.h"
+#include "weights.h"
+#include "scorer.h"
+#include "inside_outside.h"
+#include "hg_io.h"
+#include "kbest.h"
+#include "viterbi.h"
+
+// This is Figure 4 (Algorithm Sampler) from Hopkins&May (2011)
+
+using namespace std;
+namespace po = boost::program_options;
+
+struct ApproxVectorHasher {
+ static const size_t MASK = 0xFFFFFFFFull;
+ union UType {
+ double f; // leave as double
+ size_t i;
+ };
+ static inline double round(const double x) {
+ UType t;
+ t.f = x;
+ size_t r = t.i & MASK;
+ if ((r << 1) > MASK)
+ t.i += MASK - r + 1;
+ else
+ t.i &= (1ull - MASK);
+ return t.f;
+ }
+ size_t operator()(const SparseVector<weight_t>& x) const {
+ size_t h = 0x573915839;
+ for (SparseVector<weight_t>::const_iterator it = x.begin(); it != x.end(); ++it) {
+ UType t;
+ t.f = it->second;
+ if (t.f) {
+ size_t z = (t.i >> 32);
+ boost::hash_combine(h, it->first);
+ boost::hash_combine(h, z);
+ }
+ }
+ return h;
+ }
+};
+
+struct ApproxVectorEquals {
+ bool operator()(const SparseVector<weight_t>& a, const SparseVector<weight_t>& b) const {
+ SparseVector<weight_t>::const_iterator bit = b.begin();
+ for (SparseVector<weight_t>::const_iterator ait = a.begin(); ait != a.end(); ++ait) {
+ if (bit == b.end() ||
+ ait->first != bit->first ||
+ ApproxVectorHasher::round(ait->second) != ApproxVectorHasher::round(bit->second))
+ return false;
+ ++bit;
+ }
+ if (bit != b.end()) return false;
+ return true;
+ }
+};
+
+boost::shared_ptr<MT19937> rng;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)")
+ ("weights,w",po::value<string>(), "[REQD] Weights files from current iterations")
+ ("kbest_repository,K",po::value<string>()->default_value("./kbest"),"K-best list repository (directory)")
+ ("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
+ ("source,s",po::value<string>()->default_value(""), "Source file (ignored, except for AER)")
+ ("loss_function,l",po::value<string>()->default_value("ibm_bleu"), "Loss function being optimized")
+ ("kbest_size,k",po::value<unsigned>()->default_value(1500u), "Top k-hypotheses to extract")
+ ("candidate_pairs,G", po::value<unsigned>()->default_value(5000u), "Number of pairs to sample per hypothesis (Gamma)")
+ ("best_pairs,X", po::value<unsigned>()->default_value(50u), "Number of pairs, ranked by magnitude of objective delta, to retain (Xi)")
+ ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
+ ("help,h", "Help");
+ po::options_description dcmdline_options;
+ dcmdline_options.add(opts);
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ bool flag = false;
+ if (!conf->count("reference")) {
+ cerr << "Please specify one or more references using -r <REF.TXT>\n";
+ flag = true;
+ }
+ if (!conf->count("weights")) {
+ cerr << "Please specify weights using -w <WEIGHTS.TXT>\n";
+ flag = true;
+ }
+ if (flag || conf->count("help")) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+struct HypInfo {
+ HypInfo() : g_(-100.0f) {}
+ HypInfo(const vector<WordID>& h, const SparseVector<weight_t>& feats) : hyp(h), g_(-100.0f), x(feats) {}
+
+ // lazy evaluation
+ double g(const SentenceScorer& scorer) const {
+ if (g_ == -100.0f)
+ g_ = scorer.ScoreCandidate(hyp)->ComputeScore();
+ return g_;
+ }
+ vector<WordID> hyp;
+ mutable float g_;
+ SparseVector<weight_t> x;
+};
+
+struct HypInfoCompare {
+ bool operator()(const HypInfo& a, const HypInfo& b) const {
+ ApproxVectorEquals comp;
+ return (a.hyp == b.hyp && comp(a.x,b.x));
+ }
+};
+
+struct HypInfoHasher {
+ size_t operator()(const HypInfo& x) const {
+ boost::hash<vector<WordID> > hhasher;
+ ApproxVectorHasher vhasher;
+ size_t ha = hhasher(x.hyp);
+ boost::hash_combine(ha, vhasher(x.x));
+ return ha;
+ }
+};
+
+void WriteKBest(const string& file, const vector<HypInfo>& kbest) {
+ WriteFile wf(file);
+ ostream& out = *wf.stream();
+ out.precision(10);
+ for (int i = 0; i < kbest.size(); ++i) {
+ out << TD::GetString(kbest[i].hyp) << endl;
+ out << kbest[i].x << endl;
+ }
+}
+
+void ParseSparseVector(string& line, size_t cur, SparseVector<weight_t>* out) {
+ SparseVector<weight_t>& x = *out;
+ size_t last_start = cur;
+ size_t last_comma = string::npos;
+ while(cur <= line.size()) {
+ if (line[cur] == ' ' || cur == line.size()) {
+ if (!(cur > last_start && last_comma != string::npos && cur > last_comma)) {
+ cerr << "[ERROR] " << line << endl << " position = " << cur << endl;
+ exit(1);
+ }
+ const int fid = FD::Convert(line.substr(last_start, last_comma - last_start));
+ if (cur < line.size()) line[cur] = 0;
+ const double val = strtod(&line[last_comma + 1], NULL);
+ x.set_value(fid, val);
+
+ last_comma = string::npos;
+ last_start = cur+1;
+ } else {
+ if (line[cur] == '=')
+ last_comma = cur;
+ }
+ ++cur;
+ }
+}
+
+void ReadKBest(const string& file, vector<HypInfo>* kbest) {
+ cerr << "Reading from " << file << endl;
+ ReadFile rf(file);
+ istream& in = *rf.stream();
+ string cand;
+ string feats;
+ while(getline(in, cand)) {
+ getline(in, feats);
+ assert(in);
+ kbest->push_back(HypInfo());
+ TD::ConvertSentence(cand, &kbest->back().hyp);
+ ParseSparseVector(feats, 0, &kbest->back().x);
+ }
+ cerr << " read " << kbest->size() << " hypotheses\n";
+}
+
+void Dedup(vector<HypInfo>* h) {
+ cerr << "Dedup in=" << h->size();
+ tr1::unordered_set<HypInfo, HypInfoHasher, HypInfoCompare> u;
+ while(h->size() > 0) {
+ u.insert(h->back());
+ h->pop_back();
+ }
+ tr1::unordered_set<HypInfo, HypInfoHasher, HypInfoCompare>::iterator it = u.begin();
+ while (it != u.end()) {
+ h->push_back(*it);
+ it = u.erase(it);
+ }
+ cerr << " out=" << h->size() << endl;
+}
+
+struct ThresholdAlpha {
+ explicit ThresholdAlpha(double t = 0.05) : threshold(t) {}
+ double operator()(double mag) const {
+ if (mag < threshold) return 0.0; else return 1.0;
+ }
+ const double threshold;
+};
+
+struct TrainingInstance {
+ TrainingInstance(const SparseVector<weight_t>& feats, bool positive, float diff) : x(feats), y(positive), gdiff(diff) {}
+ SparseVector<weight_t> x;
+#undef DEBUGGING_PRO
+#ifdef DEBUGGING_PRO
+ vector<WordID> a;
+ vector<WordID> b;
+#endif
+ bool y;
+ float gdiff;
+};
+#ifdef DEBUGGING_PRO
+ostream& operator<<(ostream& os, const TrainingInstance& d) {
+ return os << d.gdiff << " y=" << d.y << "\tA:" << TD::GetString(d.a) << "\n\tB: " << TD::GetString(d.b) << "\n\tX: " << d.x;
+}
+#endif
+
+struct DiffOrder {
+ bool operator()(const TrainingInstance& a, const TrainingInstance& b) const {
+ return a.gdiff > b.gdiff;
+ }
+};
+
+void Sample(const unsigned gamma, const unsigned xi, const vector<HypInfo>& J_i, const SentenceScorer& scorer, const bool invert_score, vector<TrainingInstance>* pv) {
+ vector<TrainingInstance> v1, v2;
+ float avg_diff = 0;
+ for (unsigned i = 0; i < gamma; ++i) {
+ const size_t a = rng->inclusive(0, J_i.size() - 1)();
+ const size_t b = rng->inclusive(0, J_i.size() - 1)();
+ if (a == b) continue;
+ float ga = J_i[a].g(scorer);
+ float gb = J_i[b].g(scorer);
+ bool positive = gb < ga;
+ if (invert_score) positive = !positive;
+ const float gdiff = fabs(ga - gb);
+ if (!gdiff) continue;
+ avg_diff += gdiff;
+ SparseVector<weight_t> xdiff = (J_i[a].x - J_i[b].x).erase_zeros();
+ if (xdiff.empty()) {
+ cerr << "Empty diff:\n " << TD::GetString(J_i[a].hyp) << endl << "x=" << J_i[a].x << endl;
+ cerr << " " << TD::GetString(J_i[b].hyp) << endl << "x=" << J_i[b].x << endl;
+ continue;
+ }
+ v1.push_back(TrainingInstance(xdiff, positive, gdiff));
+#ifdef DEBUGGING_PRO
+ v1.back().a = J_i[a].hyp;
+ v1.back().b = J_i[b].hyp;
+ cerr << "N: " << v1.back() << endl;
+#endif
+ }
+ avg_diff /= v1.size();
+
+ for (unsigned i = 0; i < v1.size(); ++i) {
+ double p = 1.0 / (1.0 + exp(-avg_diff - v1[i].gdiff));
+ // cerr << "avg_diff=" << avg_diff << " gdiff=" << v1[i].gdiff << " p=" << p << endl;
+ if (rng->next() < p) v2.push_back(v1[i]);
+ }
+ vector<TrainingInstance>::iterator mid = v2.begin() + xi;
+ if (xi > v2.size()) mid = v2.end();
+ partial_sort(v2.begin(), mid, v2.end(), DiffOrder());
+ copy(v2.begin(), mid, back_inserter(*pv));
+#ifdef DEBUGGING_PRO
+ if (v2.size() >= 5) {
+ for (int i =0; i < (mid - v2.begin()); ++i) {
+ cerr << v2[i] << endl;
+ }
+ cerr << pv->back() << endl;
+ }
+#endif
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ if (conf.count("random_seed"))
+ rng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ rng.reset(new MT19937);
+ const string loss_function = conf["loss_function"].as<string>();
+
+ ScoreType type = ScoreTypeFromString(loss_function);
+ DocScorer ds(type, conf["reference"].as<vector<string> >(), conf["source"].as<string>());
+ cerr << "Loaded " << ds.size() << " references for scoring with " << loss_function << endl;
+ Hypergraph hg;
+ string last_file;
+ ReadFile in_read(conf["input"].as<string>());
+ istream &in=*in_read.stream();
+ const unsigned kbest_size = conf["kbest_size"].as<unsigned>();
+ const unsigned gamma = conf["candidate_pairs"].as<unsigned>();
+ const unsigned xi = conf["best_pairs"].as<unsigned>();
+ string weightsf = conf["weights"].as<string>();
+ vector<weight_t> weights;
+ Weights::InitFromFile(weightsf, &weights);
+ string kbest_repo = conf["kbest_repository"].as<string>();
+ MkDirP(kbest_repo);
+ while(in) {
+ vector<TrainingInstance> v;
+ string line;
+ getline(in, line);
+ if (line.empty()) continue;
+ istringstream is(line);
+ int sent_id;
+ string file;
+ // path-to-file (JSON) sent_id
+ is >> file >> sent_id;
+ ReadFile rf(file);
+ ostringstream os;
+ vector<HypInfo> J_i;
+ os << kbest_repo << "/kbest." << sent_id << ".txt.gz";
+ const string kbest_file = os.str();
+ if (FileExists(kbest_file))
+ ReadKBest(kbest_file, &J_i);
+ HypergraphIO::ReadFromJSON(rf.stream(), &hg);
+ hg.Reweight(weights);
+ KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, kbest_size);
+
+ for (int i = 0; i < kbest_size; ++i) {
+ const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
+ kbest.LazyKthBest(hg.nodes_.size() - 1, i);
+ if (!d) break;
+ J_i.push_back(HypInfo(d->yield, d->feature_values));
+ }
+ Dedup(&J_i);
+ WriteKBest(kbest_file, J_i);
+
+ Sample(gamma, xi, J_i, *ds[sent_id], (type == TER), &v);
+ for (unsigned i = 0; i < v.size(); ++i) {
+ const TrainingInstance& vi = v[i];
+ cout << vi.y << "\t" << vi.x << endl;
+ cout << (!vi.y) << "\t" << (vi.x * -1.0) << endl;
+ }
+ }
+ return 0;
+}
+
diff --git a/pro-train/mr_pro_reduce.cc b/pro-train/mr_pro_reduce.cc
new file mode 100644
index 00000000..aff410a0
--- /dev/null
+++ b/pro-train/mr_pro_reduce.cc
@@ -0,0 +1,279 @@
+#include <cstdlib>
+#include <sstream>
+#include <iostream>
+#include <fstream>
+#include <vector>
+
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "filelib.h"
+#include "weights.h"
+#include "sparse_vector.h"
+#include "optimize.h"
+
+using namespace std;
+namespace po = boost::program_options;
+
+// since this is a ranking model, there should be equal numbers of
+// positive and negative examples, so the bias should be 0
+static const double MAX_BIAS = 1e-10;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("weights,w", po::value<string>(), "Weights from previous iteration (used as initialization and interpolation")
+ ("interpolation,p",po::value<double>()->default_value(0.9), "Output weights are p*w + (1-p)*w_prev")
+ ("memory_buffers,m",po::value<unsigned>()->default_value(200), "Number of memory buffers (LBFGS)")
+ ("sigma_squared,s",po::value<double>()->default_value(0.1), "Sigma squared for Gaussian prior")
+ ("min_reg,r",po::value<double>()->default_value(1e-8), "When tuning (-T) regularization strength, minimum regularization strenght")
+ ("max_reg,R",po::value<double>()->default_value(10.0), "When tuning (-T) regularization strength, maximum regularization strenght")
+ ("testset,t",po::value<string>(), "Optional held-out test set")
+ ("tune_regularizer,T", "Use the held out test set (-t) to tune the regularization strength")
+ ("help,h", "Help");
+ po::options_description dcmdline_options;
+ dcmdline_options.add(opts);
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("help")) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+void ParseSparseVector(string& line, size_t cur, SparseVector<weight_t>* out) {
+ SparseVector<weight_t>& x = *out;
+ size_t last_start = cur;
+ size_t last_comma = string::npos;
+ while(cur <= line.size()) {
+ if (line[cur] == ' ' || cur == line.size()) {
+ if (!(cur > last_start && last_comma != string::npos && cur > last_comma)) {
+ cerr << "[ERROR] " << line << endl << " position = " << cur << endl;
+ exit(1);
+ }
+ const int fid = FD::Convert(line.substr(last_start, last_comma - last_start));
+ if (cur < line.size()) line[cur] = 0;
+ const weight_t val = strtod(&line[last_comma + 1], NULL);
+ x.set_value(fid, val);
+
+ last_comma = string::npos;
+ last_start = cur+1;
+ } else {
+ if (line[cur] == '=')
+ last_comma = cur;
+ }
+ ++cur;
+ }
+}
+
+void ReadCorpus(istream* pin, vector<pair<bool, SparseVector<weight_t> > >* corpus) {
+ istream& in = *pin;
+ corpus->clear();
+ bool flag = false;
+ int lc = 0;
+ string line;
+ SparseVector<weight_t> x;
+ while(getline(in, line)) {
+ ++lc;
+ if (lc % 1000 == 0) { cerr << '.'; flag = true; }
+ if (lc % 40000 == 0) { cerr << " [" << lc << "]\n"; flag = false; }
+ if (line.empty()) continue;
+ const size_t ks = line.find("\t");
+ assert(string::npos != ks);
+ assert(ks == 1);
+ const bool y = line[0] == '1';
+ x.clear();
+ ParseSparseVector(line, ks + 1, &x);
+ corpus->push_back(make_pair(y, x));
+ }
+ if (flag) cerr << endl;
+}
+
+void GradAdd(const SparseVector<weight_t>& v, const double scale, vector<weight_t>* acc) {
+ for (SparseVector<weight_t>::const_iterator it = v.begin();
+ it != v.end(); ++it) {
+ (*acc)[it->first] += it->second * scale;
+ }
+}
+
+double TrainingInference(const vector<weight_t>& x,
+ const vector<pair<bool, SparseVector<weight_t> > >& corpus,
+ vector<weight_t>* g = NULL) {
+ double cll = 0;
+ for (int i = 0; i < corpus.size(); ++i) {
+ const double dotprod = corpus[i].second.dot(x) + (x.size() ? x[0] : weight_t()); // x[0] is bias
+ double lp_false = dotprod;
+ double lp_true = -dotprod;
+ if (0 < lp_true) {
+ lp_true += log1p(exp(-lp_true));
+ lp_false = log1p(exp(lp_false));
+ } else {
+ lp_true = log1p(exp(lp_true));
+ lp_false += log1p(exp(-lp_false));
+ }
+ lp_true*=-1;
+ lp_false*=-1;
+ if (corpus[i].first) { // true label
+ cll -= lp_true;
+ if (g) {
+ // g -= corpus[i].second * exp(lp_false);
+ GradAdd(corpus[i].second, -exp(lp_false), g);
+ (*g)[0] -= exp(lp_false); // bias
+ }
+ } else { // false label
+ cll -= lp_false;
+ if (g) {
+ // g += corpus[i].second * exp(lp_true);
+ GradAdd(corpus[i].second, exp(lp_true), g);
+ (*g)[0] += exp(lp_true); // bias
+ }
+ }
+ }
+ return cll;
+}
+
+// return held-out log likelihood
+double LearnParameters(const vector<pair<bool, SparseVector<weight_t> > >& training,
+ const vector<pair<bool, SparseVector<weight_t> > >& testing,
+ const double sigsq,
+ const unsigned memory_buffers,
+ vector<weight_t>* px) {
+ vector<weight_t>& x = *px;
+ vector<weight_t> vg(FD::NumFeats(), 0.0);
+ bool converged = false;
+ LBFGSOptimizer opt(FD::NumFeats(), memory_buffers);
+ double tppl = 0.0;
+ while(!converged) {
+ fill(vg.begin(), vg.end(), 0.0);
+ double cll = TrainingInference(x, training, &vg);
+ double ppl = cll / log(2);
+ ppl /= training.size();
+ ppl = pow(2.0, ppl);
+
+ // evaluate optional held-out test set
+ if (testing.size()) {
+ tppl = TrainingInference(x, testing) / log(2);
+ tppl /= testing.size();
+ tppl = pow(2.0, tppl);
+ }
+
+ // handle regularizer
+#if 1
+ double norm = 0;
+ for (int i = 1; i < x.size(); ++i) {
+ const double mean_i = 0.0;
+ const double param = (x[i] - mean_i);
+ norm += param * param;
+ vg[i] += param / sigsq;
+ }
+ const double reg = norm / (2.0 * sigsq);
+#else
+ double reg = 0;
+#endif
+ cll += reg;
+ cerr << cll << " (REG=" << reg << ")\tPPL=" << ppl << "\t TEST_PPL=" << tppl << "\t";
+ try {
+ vector<weight_t> old_x = x;
+ do {
+ opt.Optimize(cll, vg, &x);
+ converged = opt.HasConverged();
+ } while (!converged && x == old_x);
+ } catch (...) {
+ cerr << "Exception caught, assuming convergence is close enough...\n";
+ converged = true;
+ }
+ if (fabs(x[0]) > MAX_BIAS) {
+ cerr << "Biased model learned. Are your training instances wrong?\n";
+ cerr << " BIAS: " << x[0] << endl;
+ }
+ }
+ return tppl;
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ string line;
+ vector<pair<bool, SparseVector<weight_t> > > training, testing;
+ const bool tune_regularizer = conf.count("tune_regularizer");
+ if (tune_regularizer && !conf.count("testset")) {
+ cerr << "--tune_regularizer requires --testset to be set\n";
+ return 1;
+ }
+ const double min_reg = conf["min_reg"].as<double>();
+ const double max_reg = conf["max_reg"].as<double>();
+ double sigsq = conf["sigma_squared"].as<double>(); // will be overridden if parameter is tuned
+ assert(sigsq > 0.0);
+ assert(min_reg > 0.0);
+ assert(max_reg > 0.0);
+ assert(max_reg > min_reg);
+ const double psi = conf["interpolation"].as<double>();
+ if (psi < 0.0 || psi > 1.0) { cerr << "Invalid interpolation weight: " << psi << endl; }
+ ReadCorpus(&cin, &training);
+ if (conf.count("testset")) {
+ ReadFile rf(conf["testset"].as<string>());
+ ReadCorpus(rf.stream(), &testing);
+ }
+ cerr << "Number of features: " << FD::NumFeats() << endl;
+
+ vector<weight_t> x, prev_x; // x[0] is bias
+ if (conf.count("weights")) {
+ Weights::InitFromFile(conf["weights"].as<string>(), &x);
+ x.resize(FD::NumFeats());
+ prev_x = x;
+ } else {
+ x.resize(FD::NumFeats());
+ prev_x = x;
+ }
+ cerr << " Number of features: " << x.size() << endl;
+ cerr << "Number of training examples: " << training.size() << endl;
+ cerr << "Number of testing examples: " << testing.size() << endl;
+ double tppl = 0.0;
+ vector<pair<double,double> > sp;
+ vector<double> smoothed;
+ if (tune_regularizer) {
+ sigsq = min_reg;
+ const double steps = 18;
+ double sweep_factor = exp((log(max_reg) - log(min_reg)) / steps);
+ cerr << "SWEEP FACTOR: " << sweep_factor << endl;
+ while(sigsq < max_reg) {
+ tppl = LearnParameters(training, testing, sigsq, conf["memory_buffers"].as<unsigned>(), &x);
+ sp.push_back(make_pair(sigsq, tppl));
+ sigsq *= sweep_factor;
+ }
+ smoothed.resize(sp.size(), 0);
+ smoothed[0] = sp[0].second;
+ smoothed.back() = sp.back().second;
+ for (int i = 1; i < sp.size()-1; ++i) {
+ double prev = sp[i-1].second;
+ double next = sp[i+1].second;
+ double cur = sp[i].second;
+ smoothed[i] = (prev*0.2) + cur * 0.6 + (0.2*next);
+ }
+ double best_ppl = 9999999;
+ unsigned best_i = 0;
+ for (unsigned i = 0; i < sp.size(); ++i) {
+ if (smoothed[i] < best_ppl) {
+ best_ppl = smoothed[i];
+ best_i = i;
+ }
+ }
+ sigsq = sp[best_i].first;
+ } // tune regularizer
+ tppl = LearnParameters(training, testing, sigsq, conf["memory_buffers"].as<unsigned>(), &x);
+ if (conf.count("weights")) {
+ for (int i = 1; i < x.size(); ++i) {
+ x[i] = (x[i] * psi) + prev_x[i] * (1.0 - psi);
+ }
+ }
+ cout.precision(15);
+ cout << "# sigma^2=" << sigsq << "\theld out perplexity=";
+ if (tppl) { cout << tppl << endl; } else { cout << "N/A\n"; }
+ if (sp.size()) {
+ cout << "# Parameter sweep:\n";
+ for (int i = 0; i < sp.size(); ++i) {
+ cout << "# " << sp[i].first << "\t" << sp[i].second << "\t" << smoothed[i] << endl;
+ }
+ }
+ Weights::WriteToFile("-", x);
+ return 0;
+}
diff --git a/training/Makefile.am b/training/Makefile.am
index 0d9085e4..2a11ae52 100644
--- a/training/Makefile.am
+++ b/training/Makefile.am
@@ -9,11 +9,12 @@ bin_PROGRAMS = \
atools \
plftools \
collapse_weights \
- cllh_filter_grammar \
+ mpi_extract_reachable \
+ mpi_extract_features \
mpi_online_optimize \
+ mpi_flex_optimize \
mpi_batch_optimize \
- mpi_em_optimize \
- compute_cllh \
+ mpi_compute_cllh \
augment_grammar
noinst_PROGRAMS = \
@@ -25,17 +26,20 @@ TESTS = lbfgs_test optimize_test
mpi_online_optimize_SOURCES = mpi_online_optimize.cc online_optimizer.cc
mpi_online_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
-mpi_batch_optimize_SOURCES = mpi_batch_optimize.cc optimize.cc
-mpi_batch_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
+mpi_flex_optimize_SOURCES = mpi_flex_optimize.cc online_optimizer.cc optimize.cc
+mpi_flex_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
+
+mpi_extract_reachable_SOURCES = mpi_extract_reachable.cc
+mpi_extract_reachable_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
-mpi_em_optimize_SOURCES = mpi_em_optimize.cc optimize.cc
-mpi_em_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
+mpi_extract_features_SOURCES = mpi_extract_features.cc
+mpi_extract_features_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
-compute_cllh_SOURCES = compute_cllh.cc
-compute_cllh_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
+mpi_batch_optimize_SOURCES = mpi_batch_optimize.cc optimize.cc
+mpi_batch_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
-cllh_filter_grammar_SOURCES = cllh_filter_grammar.cc
-cllh_filter_grammar_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
+mpi_compute_cllh_SOURCES = mpi_compute_cllh.cc
+mpi_compute_cllh_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
augment_grammar_SOURCES = augment_grammar.cc
augment_grammar_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
diff --git a/training/augment_grammar.cc b/training/augment_grammar.cc
index df8d4ee8..e89a92d5 100644
--- a/training/augment_grammar.cc
+++ b/training/augment_grammar.cc
@@ -134,9 +134,7 @@ int main(int argc, char** argv) {
} else { ngram = NULL; }
extra_feature = conf.count("extra_lex_feature") > 0;
if (conf.count("collapse_weights")) {
- Weights w;
- w.InitFromFile(conf["collapse_weights"].as<string>());
- w.InitVector(&col_weights);
+ Weights::InitFromFile(conf["collapse_weights"].as<string>(), &col_weights);
}
clear_features = conf.count("clear_features_after_collapse") > 0;
gather_rules = false;
diff --git a/training/cllh_filter_grammar.cc b/training/cllh_filter_grammar.cc
deleted file mode 100644
index 6998ec2b..00000000
--- a/training/cllh_filter_grammar.cc
+++ /dev/null
@@ -1,197 +0,0 @@
-#include <iostream>
-#include <vector>
-#include <cassert>
-#include <unistd.h> // fork
-#include <sys/wait.h> // waitpid
-
-#include <boost/program_options.hpp>
-#include <boost/program_options/variables_map.hpp>
-
-#include "tdict.h"
-#include "ff_register.h"
-#include "verbose.h"
-#include "hg.h"
-#include "decoder.h"
-#include "filelib.h"
-
-using namespace std;
-namespace po = boost::program_options;
-
-void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
- po::options_description opts("Configuration options");
- opts.add_options()
- ("training_data,t",po::value<string>(),"Training data corpus")
- ("decoder_config,c",po::value<string>(),"Decoder configuration file")
- ("shards,s",po::value<unsigned>()->default_value(1),"Number of shards")
- ("starting_shard,S",po::value<unsigned>()->default_value(0), "In this invocation only process shards >= S")
- ("work_limit,l",po::value<unsigned>()->default_value(9999), "Process maximially this many shards")
- ("ncpus,C",po::value<unsigned>()->default_value(1),"Number of CPUs to use");
- po::options_description clo("Command line options");
- clo.add_options()
- ("config", po::value<string>(), "Configuration file")
- ("help,h", "Print this help message and exit");
- po::options_description dconfig_options, dcmdline_options;
- dconfig_options.add(opts);
- dcmdline_options.add(opts).add(clo);
-
- po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
- if (conf->count("config")) {
- ifstream config((*conf)["config"].as<string>().c_str());
- po::store(po::parse_config_file(config, dconfig_options), *conf);
- }
- po::notify(*conf);
-
- if (conf->count("help") || !conf->count("training_data") || !conf->count("decoder_config")) {
- cerr << dcmdline_options << endl;
- exit(1);
- }
-}
-
-void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* ids) {
- ReadFile rf(fname);
- istream& in = *rf.stream();
- string line;
- int lc = 0;
- assert(size > 0);
- assert(rank < size);
- while(in) {
- getline(in, line);
- if (!in) break;
- if (lc % size == rank) {
- c->push_back(line);
- ids->push_back(lc);
- }
- ++lc;
- }
-}
-
-struct TrainingObserver : public DecoderObserver {
- TrainingObserver() : s_lhs(-TD::Convert("S")), goal_lhs(-TD::Convert("Goal")) {}
-
- void Reset() {
- total_complete = 0;
- }
-
- virtual void NotifyDecodingStart(const SentenceMetadata& smeta) {
- state = 1;
- used.clear();
- failed = true;
- }
-
- virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
- assert(state == 1);
- for (int i = 0; i < hg->edges_.size(); ++i) {
- const TRule* rule = hg->edges_[i].rule_.get();
- if (rule->lhs_ == s_lhs || rule->lhs_ == goal_lhs) // fragile hack to filter out glue rules
- continue;
- used.insert(rule);
- }
- state = 2;
- }
-
- virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) {
- assert(state == 2);
- state = 3;
- }
-
- virtual void NotifyDecodingComplete(const SentenceMetadata& smeta) {
- if (state == 3) {
- failed = false;
- } else {
- failed = true;
- }
- }
-
- set<const TRule*> used;
-
- const int s_lhs;
- const int goal_lhs;
- bool failed;
- int total_complete;
- int state;
-};
-
-void work(const string& fname, int rank, int size, Decoder* decoder) {
- cerr << "Worker " << rank << '/' << size << " starting.\n";
- vector<string> corpus;
- vector<int> ids;
- ReadTrainingCorpus(fname, rank, size, &corpus, &ids);
- assert(corpus.size() > 0);
- assert(corpus.size() == ids.size());
- cerr << " " << rank << '/' << size << ": has " << corpus.size() << " sentences to process\n";
- ostringstream oc; oc << "corpus." << rank << "_of_" << size;
- WriteFile foc(oc.str());
- ostringstream og; og << "grammar." << rank << "_of_" << size << ".gz";
- WriteFile fog(og.str());
-
- set<const TRule*> all_used;
- TrainingObserver observer;
- for (int i = 0; i < corpus.size(); ++i) {
- const int sent_id = ids[i];
- const string& input = corpus[i];
- decoder->SetId(sent_id);
- decoder->Decode(input, &observer);
- if (observer.failed) {
- // do nothing
- } else {
- (*foc.stream()) << input << endl;
- for (set<const TRule*>::iterator it = observer.used.begin(); it != observer.used.end(); ++it) {
- if (all_used.insert(*it).second)
- (*fog.stream()) << **it << endl;
- }
- }
- }
-}
-
-int main(int argc, char** argv) {
- register_feature_functions();
-
- po::variables_map conf;
- InitCommandLine(argc, argv, &conf);
- const string fname = conf["training_data"].as<string>();
- const unsigned ncpus = conf["ncpus"].as<unsigned>();
- const unsigned shards = conf["shards"].as<unsigned>();
- const unsigned start = conf["starting_shard"].as<unsigned>();
- const unsigned work_limit = conf["work_limit"].as<unsigned>();
- const unsigned eff_shards = min(start + work_limit, shards);
- cerr << "Processing shards " << start << "/" << shards << " to " << eff_shards << "/" << shards << endl;
- assert(ncpus > 0);
- ReadFile ini_rf(conf["decoder_config"].as<string>());
- Decoder decoder(ini_rf.stream());
- if (decoder.GetConf()["input"].as<string>() != "-") {
- cerr << "cdec.ini must not set an input file\n";
- abort();
- }
- SetSilent(true); // turn off verbose decoder output
- cerr << "Forking " << ncpus << " time(s)\n";
- vector<pid_t> children;
- for (int i = 0; i < ncpus; ++i) {
- pid_t pid = fork();
- if (pid < 0) {
- cerr << "Fork failed!\n";
- exit(1);
- }
- if (pid > 0) {
- children.push_back(pid);
- } else {
- for (int j = start; j < eff_shards; ++j) {
- if (j % ncpus == i) {
- cerr << " CPU " << i << " processing shard " << j << endl;
- work(fname, j, shards, &decoder);
- cerr << " Shard " << j << "/" << shards << " finished.\n";
- }
- }
- _exit(0);
- }
- }
- for (int i = 0; i < children.size(); ++i) {
- int status;
- int w = waitpid(children[i], &status, 0);
- if (w < 0) { cerr << "Error while waiting for children!"; return 1; }
- if (WIFSIGNALED(status)) {
- cerr << "Child " << i << " received signal " << WTERMSIG(status) << endl;
- if (WTERMSIG(status) == 11) { cerr << " this is a SEGV- you may be trying to print temporarily created rules\n"; }
- }
- }
- return 0;
-}
diff --git a/training/cluster-em.pl b/training/cluster-em.pl
deleted file mode 100755
index 267ab642..00000000
--- a/training/cluster-em.pl
+++ /dev/null
@@ -1,114 +0,0 @@
-#!/usr/bin/perl -w
-
-use strict;
-my $SCRIPT_DIR; BEGIN { use Cwd qw/ abs_path /; use File::Basename; $SCRIPT_DIR = dirname(abs_path($0)); push @INC, $SCRIPT_DIR; }
-use Getopt::Long;
-my $parallel = 0;
-
-my $CWD=`pwd`; chomp $CWD;
-my $BIN_DIR = "$CWD/..";
-my $REDUCER = "$BIN_DIR/training/mr_em_adapted_reduce";
-my $REDUCE2WEIGHTS = "$BIN_DIR/training/mr_reduce_to_weights";
-my $ADAPTER = "$BIN_DIR/training/mr_em_map_adapter";
-my $DECODER = "$BIN_DIR/decoder/cdec";
-my $COMBINER_CACHE_SIZE = 10000000;
-my $PARALLEL = "/chomes/redpony/svn-trunk/sa-utils/parallelize.pl";
-die "Can't find $REDUCER" unless -f $REDUCER;
-die "Can't execute $REDUCER" unless -x $REDUCER;
-die "Can't find $REDUCE2WEIGHTS" unless -f $REDUCE2WEIGHTS;
-die "Can't execute $REDUCE2WEIGHTS" unless -x $REDUCE2WEIGHTS;
-die "Can't find $ADAPTER" unless -f $ADAPTER;
-die "Can't execute $ADAPTER" unless -x $ADAPTER;
-die "Can't find $DECODER" unless -f $DECODER;
-die "Can't execute $DECODER" unless -x $DECODER;
-my $restart = '';
-if ($ARGV[0] && $ARGV[0] eq '--restart') { shift @ARGV; $restart = 1; }
-
-die "Usage: $0 [--restart] training.corpus cdec.ini\n" unless (scalar @ARGV == 2);
-
-my $training_corpus = shift @ARGV;
-my $config = shift @ARGV;
-my $pmem="2500mb";
-my $nodes = 40;
-my $max_iteration = 1000;
-my $CFLAG = "-C 1";
-if ($parallel) {
- die "Can't find $PARALLEL" unless -f $PARALLEL;
- die "Can't execute $PARALLEL" unless -x $PARALLEL;
-} else { $CFLAG = "-C 500"; }
-
-my $initial_weights = '';
-
-print STDERR <<EOT;
-EM TRAIN CONFIGURATION INFORMATION
-
- Config file: $config
- Training corpus: $training_corpus
- Initial weights: $initial_weights
- Decoder memory: $pmem
- Nodes requested: $nodes
- Max iterations: $max_iteration
- restart: $restart
-EOT
-
-my $nodelist="1";
-for (my $i=1; $i<$nodes; $i++) { $nodelist .= " 1"; }
-my $iter = 1;
-
-my $dir = "$CWD/emtrain";
-if ($restart) {
- die "$dir doesn't exist, but --restart specified!\n" unless -d $dir;
- my $o = `ls -t $dir/weights.*`;
- my ($a, @x) = split /\n/, $o;
- if ($a =~ /weights.(\d+)\.gz$/) {
- $iter = $1;
- } else {
- die "Unexpected file: $a!\n";
- }
- print STDERR "Restarting at iteration $iter\n";
-} else {
- die "$dir already exists!\n" if -e $dir;
- mkdir $dir or die "Can't create $dir: $!";
-
- if ($initial_weights) {
- unless ($initial_weights =~ /\.gz$/) {
- `cp $initial_weights $dir/weights.1`;
- `gzip -9 $dir/weights.1`;
- } else {
- `cp $initial_weights $dir/weights.1.gz`;
- }
- }
-}
-
-while ($iter < $max_iteration) {
- my $cur_time = `date`; chomp $cur_time;
- print STDERR "\nStarting iteration $iter...\n";
- print STDERR " time: $cur_time\n";
- my $start = time;
- my $next_iter = $iter + 1;
- my $WSTR = "-w $dir/weights.$iter.gz";
- if ($iter == 1) { $WSTR = ''; }
- my $dec_cmd="$DECODER --feature_expectations -c $config $WSTR $CFLAG < $training_corpus 2> $dir/deco.log.$iter";
- my $pcmd = "$PARALLEL -e $dir/err -p $pmem --nodelist \"$nodelist\" -- ";
- my $cmd = "";
- if ($parallel) { $cmd = $pcmd; }
- $cmd .= "$dec_cmd";
- $cmd .= "| $ADAPTER | sort -k1 | $REDUCER | $REDUCE2WEIGHTS -o $dir/weights.$next_iter.gz";
- print STDERR "EXECUTING: $cmd\n";
- my $result = `$cmd`;
- if ($? != 0) {
- die "Error running iteration $iter: $!";
- }
- chomp $result;
- my $end = time;
- my $diff = ($end - $start);
- print STDERR " ITERATION $iter TOOK $diff SECONDS\n";
- $iter = $next_iter;
- if ($result =~ /1$/) {
- print STDERR "Training converged.\n";
- last;
- }
-}
-
-print "FINAL WEIGHTS: $dir/weights.$iter\n";
-
diff --git a/training/cluster-ptrain.pl b/training/cluster-ptrain.pl
deleted file mode 100755
index 03122df9..00000000
--- a/training/cluster-ptrain.pl
+++ /dev/null
@@ -1,206 +0,0 @@
-#!/usr/bin/perl -w
-
-use strict;
-my $SCRIPT_DIR; BEGIN { use Cwd qw/ abs_path getcwd /; use File::Basename; $SCRIPT_DIR = dirname(abs_path($0)); push @INC, $SCRIPT_DIR; }
-use Getopt::Long;
-
-my $MAX_ITER_ATTEMPTS = 5; # number of times to retry a failed function evaluation
-my $CWD=getcwd();
-my $OPTIMIZER = "$SCRIPT_DIR/mr_optimize_reduce";
-my $DECODER = "$SCRIPT_DIR/../decoder/cdec";
-my $COMBINER_CACHE_SIZE = 150;
-# This is a hack to run this on a weird cluster,
-# eventually, I'll provide Hadoop scripts.
-my $PARALLEL = "/chomes/redpony/svn-trunk/sa-utils/parallelize.pl";
-die "Can't find $OPTIMIZER" unless -f $OPTIMIZER;
-die "Can't execute $OPTIMIZER" unless -x $OPTIMIZER;
-my $restart = '';
-if ($ARGV[0] && $ARGV[0] eq '--restart') { shift @ARGV; $restart = 1; }
-
-my $pmem="2500mb";
-my $nodes = 1;
-my $max_iteration = 1000;
-my $PRIOR_FLAG = "";
-my $parallel = 1;
-my $CFLAG = "-C 1";
-my $LOCAL;
-my $DISTRIBUTED;
-my $PRIOR;
-my $OALG = "lbfgs";
-my $sigsq = 1;
-my $means_file;
-my $mem_buffers = 20;
-my $RESTART_IF_NECESSARY;
-GetOptions("cdec=s" => \$DECODER,
- "distributed" => \$DISTRIBUTED,
- "sigma_squared=f" => \$sigsq,
- "lbfgs_memory_buffers=i" => \$mem_buffers,
- "max_iteration=i" => \$max_iteration,
- "means=s" => \$means_file,
- "optimizer=s" => \$OALG,
- "gaussian_prior" => \$PRIOR,
- "restart_if_necessary" => \$RESTART_IF_NECESSARY,
- "jobs=i" => \$nodes,
- "pmem=s" => \$pmem
- ) or usage();
-usage() unless scalar @ARGV==3;
-my $config_file = shift @ARGV;
-my $training_corpus = shift @ARGV;
-my $initial_weights = shift @ARGV;
-unless ($DISTRIBUTED) { $LOCAL = 1; }
-die "Can't find $config_file" unless -f $config_file;
-die "Can't find $DECODER" unless -f $DECODER;
-die "Can't execute $DECODER" unless -x $DECODER;
-if ($LOCAL) { print STDERR "Will run LOCALLY.\n"; $parallel = 0; }
-if ($PRIOR) {
- $PRIOR_FLAG="-p --sigma_squared $sigsq";
- if ($means_file) { $PRIOR_FLAG .= " -u $means_file"; }
-}
-
-if ($parallel) {
- die "Can't find $PARALLEL" unless -f $PARALLEL;
- die "Can't execute $PARALLEL" unless -x $PARALLEL;
-}
-unless ($parallel) { $CFLAG = "-C 500"; }
-unless ($config_file =~ /^\//) { $config_file = $CWD . '/' . $config_file; }
-my $clines = num_lines($training_corpus);
-my $dir = "$CWD/ptrain";
-
-if ($RESTART_IF_NECESSARY && -d $dir) {
- $restart = 1;
-}
-
-print STDERR <<EOT;
-PTRAIN CONFIGURATION INFORMATION
-
- Config file: $config_file
- Training corpus: $training_corpus
- Corpus size: $clines
- Initial weights: $initial_weights
- Decoder memory: $pmem
- Max iterations: $max_iteration
- Optimizer: $OALG
- Jobs requested: $nodes
- prior?: $PRIOR_FLAG
- restart?: $restart
-EOT
-
-if ($OALG) { $OALG="-m $OALG"; }
-
-my $nodelist="1";
-for (my $i=1; $i<$nodes; $i++) { $nodelist .= " 1"; }
-my $iter = 1;
-
-if ($restart) {
- die "$dir doesn't exist, but --restart specified!\n" unless -d $dir;
- my $o = `ls -t $dir/weights.*`;
- my ($a, @x) = split /\n/, $o;
- if ($a =~ /weights.(\d+)\.gz$/) {
- $iter = $1;
- } else {
- die "Unexpected file: $a!\n";
- }
- print STDERR "Restarting at iteration $iter\n";
-} else {
- die "$dir already exists!\n" if -e $dir;
- mkdir $dir or die "Can't create $dir: $!";
-
- unless ($initial_weights =~ /\.gz$/) {
- `cp $initial_weights $dir/weights.1`;
- `gzip -9 $dir/weights.1`;
- } else {
- `cp $initial_weights $dir/weights.1.gz`;
- }
- open T, "<$training_corpus" or die "Can't read $training_corpus: $!";
- open TO, ">$dir/training.in";
- my $lc = 0;
- while(<T>) {
- chomp;
- s/^\s+//;
- s/\s+$//;
- die "Expected A ||| B in input file" unless / \|\|\| /;
- print TO "<seg id=\"$lc\">$_</seg>\n";
- $lc++;
- }
- close T;
- close TO;
-}
-$training_corpus = "$dir/training.in";
-
-my $iter_attempts = 1;
-while ($iter < $max_iteration) {
- my $cur_time = `date`; chomp $cur_time;
- print STDERR "\nStarting iteration $iter...\n";
- print STDERR " time: $cur_time\n";
- my $start = time;
- my $next_iter = $iter + 1;
- my $dec_cmd="$DECODER -G $CFLAG -c $config_file -w $dir/weights.$iter.gz < $training_corpus 2> $dir/deco.log.$iter";
- my $opt_cmd = "$OPTIMIZER $PRIOR_FLAG -M $mem_buffers $OALG -s $dir/opt.state -i $dir/weights.$iter.gz -o $dir/weights.$next_iter.gz";
- my $pcmd = "$PARALLEL -e $dir/err -p $pmem --nodelist \"$nodelist\" -- ";
- my $cmd = "";
- if ($parallel) { $cmd = $pcmd; }
- $cmd .= "$dec_cmd | $opt_cmd";
-
- print STDERR "EXECUTING: $cmd\n";
- my $result = `$cmd`;
- my $exit_code = $? >> 8;
- if ($exit_code == 99) {
- $iter_attempts++;
- if ($iter_attempts > $MAX_ITER_ATTEMPTS) {
- die "Received restart request $iter_attempts times from optimizer, giving up\n";
- }
- print STDERR "Function evaluation failed, retrying (attempt $iter_attempts)\n";
- next;
- }
- if ($? != 0) {
- die "Error running iteration $iter: $!";
- }
- chomp $result;
- my $end = time;
- my $diff = ($end - $start);
- print STDERR " ITERATION $iter TOOK $diff SECONDS\n";
- $iter = $next_iter;
- if ($result =~ /1$/) {
- print STDERR "Training converged.\n";
- last;
- }
- $iter_attempts = 1;
-}
-
-print "FINAL WEIGHTS: $dir/weights.$iter\n";
-`mv $dir/weights.$iter.gz $dir/weights.final.gz`;
-
-sub usage {
- die <<EOT;
-
-Usage: $0 [OPTIONS] cdec.ini training.corpus weights.init
-
- Options:
-
- --distributed Parallelize function evaluation
- --jobs N Number of jobs to use
- --cdec PATH Path to cdec binary
- --optimize OPT lbfgs, rprop, sgd
- --gaussian_prior add Gaussian prior
- --means FILE if you want means other than 0
- --sigma_squared S variance on prior
- --pmem MEM Memory required for decoder
- --lbfgs_memory_buffers Number of buffers to use
- with LBFGS optimizer
-
-EOT
-}
-
-sub num_lines {
- my $file = shift;
- my $fh;
- if ($file=~ /\.gz$/) {
- open $fh, "zcat $file|" or die "Couldn't fork zcat $file: $!";
- } else {
- open $fh, "<$file" or die "Couldn't read $file: $!";
- }
- my $lines = 0;
- while(<$fh>) { $lines++; }
- close $fh;
- return $lines;
-}
diff --git a/training/collapse_weights.cc b/training/collapse_weights.cc
index 4fb742fb..dc480f6c 100644
--- a/training/collapse_weights.cc
+++ b/training/collapse_weights.cc
@@ -59,10 +59,8 @@ int main(int argc, char** argv) {
InitCommandLine(argc, argv, &conf);
const string wfile = conf["weights"].as<string>();
const string gfile = conf["grammar"].as<string>();
- Weights wm;
- wm.InitFromFile(wfile);
- vector<double> w;
- wm.InitVector(&w);
+ vector<weight_t> w;
+ Weights::InitFromFile(wfile, &w);
MarginalMap e_tots;
MarginalMap f_tots;
prob_t tot;
diff --git a/training/feature_expectations.cc b/training/feature_expectations.cc
new file mode 100644
index 00000000..f1a85495
--- /dev/null
+++ b/training/feature_expectations.cc
@@ -0,0 +1,232 @@
+#include <sstream>
+#include <iostream>
+#include <fstream>
+#include <vector>
+#include <cassert>
+#include <cmath>
+#include <tr1/memory>
+
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "verbose.h"
+#include "hg.h"
+#include "prob.h"
+#include "inside_outside.h"
+#include "ff_register.h"
+#include "decoder.h"
+#include "filelib.h"
+#include "online_optimizer.h"
+#include "fdict.h"
+#include "weights.h"
+#include "sparse_vector.h"
+#include "sampler.h"
+
+#ifdef HAVE_MPI
+#include <boost/mpi/timer.hpp>
+#include <boost/mpi.hpp>
+namespace mpi = boost::mpi;
+#endif
+
+using namespace std;
+namespace po = boost::program_options;
+
+struct FComp {
+ const vector<double>& w_;
+ FComp(const vector<double>& w) : w_(w) {}
+ bool operator()(int a, int b) const {
+ return fabs(w_[a]) > fabs(w_[b]);
+ }
+};
+
+void ShowFeatures(const vector<double>& w) {
+ vector<int> fnums(w.size());
+ for (int i = 0; i < w.size(); ++i)
+ fnums[i] = i;
+ sort(fnums.begin(), fnums.end(), FComp(w));
+ for (vector<int>::iterator i = fnums.begin(); i != fnums.end(); ++i) {
+ if (w[*i]) cout << FD::Convert(*i) << ' ' << w[*i] << endl;
+ }
+}
+
+void ReadConfig(const string& ini, vector<string>* out) {
+ ReadFile rf(ini);
+ istream& in = *rf.stream();
+ while(in) {
+ string line;
+ getline(in, line);
+ if (!in) continue;
+ out->push_back(line);
+ }
+}
+
+void StoreConfig(const vector<string>& cfg, istringstream* o) {
+ ostringstream os;
+ for (int i = 0; i < cfg.size(); ++i) { os << cfg[i] << endl; }
+ o->str(os.str());
+}
+
+bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("input,i",po::value<string>(),"Corpus of source language sentences")
+ ("weights,w",po::value<string>(),"Input feature weights file")
+ ("decoder_config,c",po::value<string>(), "cdec.ini file");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || !conf->count("input") || !conf->count("decoder_config")) {
+ cerr << dcmdline_options << endl;
+ return false;
+ }
+ return true;
+}
+
+void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* order) {
+ ReadFile rf(fname);
+ istream& in = *rf.stream();
+ string line;
+ int id = 0;
+ while(in) {
+ getline(in, line);
+ if (!in) break;
+ if (id % size == rank) {
+ c->push_back(line);
+ order->push_back(id);
+ }
+ ++id;
+ }
+}
+
+static const double kMINUS_EPSILON = -1e-6;
+
+struct TrainingObserver : public DecoderObserver {
+ void Reset() {
+ acc_exp.clear();
+ total_complete = 0;
+ }
+
+ virtual void NotifyDecodingStart(const SentenceMetadata& smeta) {
+ cur_model_exp.clear();
+ state = 1;
+ }
+
+ // compute model expectations, denominator of objective
+ virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
+ assert(state == 1);
+ state = 2;
+ const prob_t z = InsideOutside<prob_t,
+ EdgeProb,
+ SparseVector<prob_t>,
+ EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp);
+ cur_model_exp /= z;
+ acc_exp += cur_model_exp;
+ }
+
+ virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) {
+ cerr << "IGNORING ALIGNMENT FOREST!\n";
+ }
+
+ virtual void NotifyDecodingComplete(const SentenceMetadata& smeta) {
+ if (state == 2) {
+ ++total_complete;
+ }
+ }
+
+ void GetExpectations(SparseVector<double>* g) const {
+ g->clear();
+ for (SparseVector<prob_t>::const_iterator it = acc_exp.begin(); it != acc_exp.end(); ++it)
+ g->set_value(it->first, it->second);
+ }
+
+ int total_complete;
+ SparseVector<prob_t> cur_model_exp;
+ SparseVector<prob_t> acc_exp;
+ int state;
+};
+
+#ifdef HAVE_MPI
+namespace boost { namespace mpi {
+ template<>
+ struct is_commutative<std::plus<SparseVector<double> >, SparseVector<double> >
+ : mpl::true_ { };
+} } // end namespace boost::mpi
+#endif
+
+int main(int argc, char** argv) {
+#ifdef HAVE_MPI
+ mpi::environment env(argc, argv);
+ mpi::communicator world;
+ const int size = world.size();
+ const int rank = world.rank();
+#else
+ const int size = 1;
+ const int rank = 0;
+#endif
+ if (size > 1) SetSilent(true); // turn off verbose decoder output
+ register_feature_functions();
+
+ po::variables_map conf;
+ if (!InitCommandLine(argc, argv, &conf))
+ return 1;
+
+ // load initial weights
+ Weights weights;
+ if (conf.count("weights"))
+ weights.InitFromFile(conf["weights"].as<string>());
+
+ vector<string> corpus;
+ vector<int> ids;
+ ReadTrainingCorpus(conf["input"].as<string>(), rank, size, &corpus, &ids);
+ assert(corpus.size() > 0);
+
+ vector<string> cdec_ini;
+ ReadConfig(conf["decoder_config"].as<string>(), &cdec_ini);
+ istringstream ini;
+ StoreConfig(cdec_ini, &ini);
+ Decoder decoder(&ini);
+ if (decoder.GetConf()["input"].as<string>() != "-") {
+ cerr << "cdec.ini must not set an input file\n";
+ return 1;
+ }
+
+ SparseVector<double> x;
+ weights.InitSparseVector(&x);
+ TrainingObserver observer;
+
+ weights.InitFromVector(x);
+ vector<double> lambdas;
+ weights.InitVector(&lambdas);
+ decoder.SetWeights(lambdas);
+ observer.Reset();
+ for (unsigned i = 0; i < corpus.size(); ++i) {
+ int id = ids[i];
+ decoder.SetId(id);
+ decoder.Decode(corpus[i], &observer);
+ }
+ SparseVector<double> local_exps, exps;
+ observer.GetExpectations(&local_exps);
+#ifdef HAVE_MPI
+ reduce(world, local_exps, exps, std::plus<SparseVector<double> >(), 0);
+#else
+ exps.swap(local_exps);
+#endif
+
+ weights.InitFromVector(exps);
+ weights.InitVector(&lambdas);
+ ShowFeatures(lambdas);
+
+ return 0;
+}
diff --git a/training/grammar_convert.cc b/training/grammar_convert.cc
index 8d292f8a..bf8abb26 100644
--- a/training/grammar_convert.cc
+++ b/training/grammar_convert.cc
@@ -251,12 +251,10 @@ int main(int argc, char **argv) {
const bool is_split_input = (conf["format"].as<string>() == "split");
const bool is_json_input = is_split_input || (conf["format"].as<string>() == "json");
const bool collapse_weights = conf.count("collapse_weights");
- Weights wts;
vector<double> w;
- if (conf.count("weights")) {
- wts.InitFromFile(conf["weights"].as<string>());
- wts.InitVector(&w);
- }
+ if (conf.count("weights"))
+ Weights::InitFromFile(conf["weights"].as<string>(), &w);
+
if (collapse_weights && !w.size()) {
cerr << "--collapse_weights requires a weights file to be specified!\n";
exit(1);
diff --git a/training/make-lexcrf-grammar.pl b/training/make-lexcrf-grammar.pl
deleted file mode 100755
index 8cdf7718..00000000
--- a/training/make-lexcrf-grammar.pl
+++ /dev/null
@@ -1,285 +0,0 @@
-#!/usr/bin/perl -w
-use utf8;
-use strict;
-my ($effile, $model1) = @ARGV;
-die "Usage: $0 corpus.fr-en corpus.model1\n" unless $effile && -f $effile && $model1 && -f $model1;
-
-open EF, "<$effile" or die;
-open M1, "<$model1" or die;
-binmode(EF,":utf8");
-binmode(M1,":utf8");
-binmode(STDOUT,":utf8");
-my %model1;
-while(<M1>) {
- chomp;
- my ($f, $e, $lp) = split /\s+/;
- $model1{$f}->{$e} = $lp;
-}
-
-my $ADD_MODEL1 = 0; # found that model1 hurts performance
-my $IS_FRENCH_F = 1; # indicates that the f language is french
-my $IS_ARABIC_F = 0; # indicates that the f language is arabic
-my $IS_URDU_F = 0; # indicates that the f language is arabic
-my $ADD_PREFIX_ID = 0;
-my $ADD_LEN = 1;
-my $ADD_SIM = 1;
-my $ADD_DICE = 1;
-my $ADD_111 = 1;
-my $ADD_ID = 1;
-my $ADD_PUNC = 1;
-my $ADD_NUM_MM = 1;
-my $ADD_NULL = 1;
-my $ADD_STEM_ID = 1;
-my $BEAM_RATIO = 50;
-
-my %fdict;
-my %fcounts;
-my %ecounts;
-
-my %sdict;
-
-while(<EF>) {
- chomp;
- my ($f, $e) = split /\s*\|\|\|\s*/;
- my @es = split /\s+/, $e;
- my @fs = split /\s+/, $f;
- for my $ew (@es){ $ecounts{$ew}++; }
- push @fs, '<eps>' if $ADD_NULL;
- for my $fw (@fs){ $fcounts{$fw}++; }
- for my $fw (@fs){
- for my $ew (@es){
- $fdict{$fw}->{$ew}++;
- }
- }
-}
-
-print STDERR "Dice 0\n" if $ADD_DICE;
-print STDERR "OneOneOne 0\nId_OneOneOne 0\n" if $ADD_111;
-print STDERR "Identical 0\n" if $ADD_ID;
-print STDERR "PuncMiss 0\n" if $ADD_PUNC;
-print STDERR "IsNull 0\n" if $ADD_NULL;
-print STDERR "Model1 0\n" if $ADD_MODEL1;
-print STDERR "DLen 0\n" if $ADD_LEN;
-print STDERR "NumMM 0\nNumMatch 0\n" if $ADD_NUM_MM;
-print STDERR "OrthoSim 0\n" if $ADD_SIM;
-print STDERR "PfxIdentical 0\n" if ($ADD_PREFIX_ID);
-my $fc = 1000000;
-my $sids = 1000000;
-for my $f (sort keys %fdict) {
- my $re = $fdict{$f};
- my $max;
- for my $e (sort {$re->{$b} <=> $re->{$a}} keys %$re) {
- my $efcount = $re->{$e};
- unless (defined $max) { $max = $efcount; }
- my $m1 = $model1{$f}->{$e};
- unless (defined $m1) { next; }
- $fc++;
- my $dice = 2 * $efcount / ($ecounts{$e} + $fcounts{$f});
- my $feats = "F$fc=1";
- my $oe = $e;
- my $of = $f; # normalized form
- if ($IS_FRENCH_F) {
- # see http://en.wikipedia.org/wiki/Use_of_the_circumflex_in_French
- $of =~ s/â/as/g;
- $of =~ s/ê/es/g;
- $of =~ s/î/is/g;
- $of =~ s/ô/os/g;
- $of =~ s/û/us/g;
- } elsif ($IS_ARABIC_F) {
- if (length($of) > 1 && !($of =~ /\d/)) {
- $of =~ s/\$/sh/g;
- }
- } elsif ($IS_URDU_F) {
- if (length($of) > 1 && !($of =~ /\d/)) {
- $of =~ s/\$/sh/g;
- }
- $oe =~ s/^-e-//;
- $oe =~ s/^al-/al/;
- $of =~ s/([a-z])\~/$1$1/g;
- $of =~ s/E/'/g;
- $of =~ s/^Aw/o/g;
- $of =~ s/\|/a/g;
- $of =~ s/@/h/g;
- $of =~ s/c/ch/g;
- $of =~ s/x/kh/g;
- $of =~ s/\*/dh/g;
- $of =~ s/w/o/g;
- $of =~ s/Z/dh/g;
- $of =~ s/y/i/g;
- $of =~ s/Y/a/g;
- $of = lc $of;
- }
- my $len_e = length($oe);
- my $len_f = length($of);
- $feats .= " Model1=$m1" if ($ADD_MODEL1);
- $feats .= " Dice=$dice" if $ADD_DICE;
- my $is_null = undef;
- if ($ADD_NULL && $f eq '<eps>') {
- $feats .= " IsNull=1";
- $is_null = 1;
- }
- if ($ADD_LEN) {
- if (!$is_null) {
- my $dlen = abs($len_e - $len_f);
- $feats .= " DLen=$dlen";
- }
- }
- my $f_num = ($of =~ /^-?\d[0-9\.\,]+%?$/ && (length($of) > 3));
- my $e_num = ($oe =~ /^-?\d[0-9\.\,]+%?$/ && (length($oe) > 3));
- my $both_non_numeric = (!$e_num && !$f_num);
- if ($ADD_NUM_MM && (($f_num && !$e_num) || ($e_num && !$f_num))) {
- $feats .= " NumMM=1";
- }
- if ($ADD_NUM_MM && ($f_num && $e_num) && ($oe eq $of)) {
- $feats .= " NumMatch=1";
- }
- if ($ADD_STEM_ID) {
- my $el = 4;
- my $fl = 4;
- if ($oe =~ /^al|re|co/) { $el++; }
- if ($of =~ /^al|re|co/) { $fl++; }
- if ($oe =~ /^trans|inter/) { $el+=2; }
- if ($of =~ /^trans|inter/) { $fl+=2; }
- if ($fl > length($of)) { $fl = length($of); }
- if ($el > length($oe)) { $el = length($oe); }
- my $sf = substr $of, 0, $fl;
- my $se = substr $oe, 0, $el;
- my $id = $sdict{$sf}->{$se};
- if (!$id) {
- $sids++;
- $sdict{$sf}->{$se} = $sids;
- $id = $sids;
- print STDERR "S$sids 0\n"
- }
- $feats .= " S$id=1";
- }
- if ($ADD_PREFIX_ID) {
- if ($len_e > 3 && $len_f > 3 && $both_non_numeric) {
- my $pe = substr $oe, 0, 3;
- my $pf = substr $of, 0, 3;
- if ($pe eq $pf) { $feats .= " PfxIdentical=1"; }
- }
- }
- if ($ADD_SIM) {
- my $ld = 0;
- my $eff = $len_e;
- if ($eff < $len_f) { $eff = $len_f; }
- if (!$is_null) {
- $ld = ($eff - levenshtein($oe, $of)) / sqrt($eff);
- }
- $feats .= " OrthoSim=$ld";
- }
- my $ident = ($e eq $f);
- if ($ident && $ADD_ID) { $feats .= " Identical=1"; }
- if ($ADD_111 && ($efcount == 1 && $ecounts{$e} == 1 && $fcounts{$f} == 1)) {
- if ($ident && $ADD_ID) {
- $feats .= " Id_OneOneOne=1";
- }
- $feats .= " OneOneOne=1";
- }
- if ($ADD_PUNC) {
- if (($f =~ /^[0-9!\$%,\-\/"':;=+?.()«»]+$/ && $e =~ /[a-z]+/) ||
- ($e =~ /^[0-9!\$%,\-\/"':;=+?.()«»]+$/ && $f =~ /[a-z]+/)) {
- $feats .= " PuncMiss=1";
- }
- }
- my $r = (0.5 - rand)/5;
- print STDERR "F$fc $r\n";
- print "$f ||| $e ||| $feats\n";
- }
-}
-
-sub levenshtein
-{
- # $s1 and $s2 are the two strings
- # $len1 and $len2 are their respective lengths
- #
- my ($s1, $s2) = @_;
- my ($len1, $len2) = (length $s1, length $s2);
-
- # If one of the strings is empty, the distance is the length
- # of the other string
- #
- return $len2 if ($len1 == 0);
- return $len1 if ($len2 == 0);
-
- my %mat;
-
- # Init the distance matrix
- #
- # The first row to 0..$len1
- # The first column to 0..$len2
- # The rest to 0
- #
- # The first row and column are initialized so to denote distance
- # from the empty string
- #
- for (my $i = 0; $i <= $len1; ++$i)
- {
- for (my $j = 0; $j <= $len2; ++$j)
- {
- $mat{$i}{$j} = 0;
- $mat{0}{$j} = $j;
- }
-
- $mat{$i}{0} = $i;
- }
-
- # Some char-by-char processing is ahead, so prepare
- # array of chars from the strings
- #
- my @ar1 = split(//, $s1);
- my @ar2 = split(//, $s2);
-
- for (my $i = 1; $i <= $len1; ++$i)
- {
- for (my $j = 1; $j <= $len2; ++$j)
- {
- # Set the cost to 1 iff the ith char of $s1
- # equals the jth of $s2
- #
- # Denotes a substitution cost. When the char are equal
- # there is no need to substitute, so the cost is 0
- #
- my $cost = ($ar1[$i-1] eq $ar2[$j-1]) ? 0 : 1;
-
- # Cell $mat{$i}{$j} equals the minimum of:
- #
- # - The cell immediately above plus 1
- # - The cell immediately to the left plus 1
- # - The cell diagonally above and to the left plus the cost
- #
- # We can either insert a new char, delete a char or
- # substitute an existing char (with an associated cost)
- #
- $mat{$i}{$j} = min([$mat{$i-1}{$j} + 1,
- $mat{$i}{$j-1} + 1,
- $mat{$i-1}{$j-1} + $cost]);
- }
- }
-
- # Finally, the Levenshtein distance equals the rightmost bottom cell
- # of the matrix
- #
- # Note that $mat{$x}{$y} denotes the distance between the substrings
- # 1..$x and 1..$y
- #
- return $mat{$len1}{$len2};
-}
-
-
-# minimal element of a list
-#
-sub min
-{
- my @list = @{$_[0]};
- my $min = $list[0];
-
- foreach my $i (@list)
- {
- $min = $i if ($i < $min);
- }
-
- return $min;
-}
-
diff --git a/training/mpi_batch_optimize.cc b/training/mpi_batch_optimize.cc
index 39a8af7d..046e921c 100644
--- a/training/mpi_batch_optimize.cc
+++ b/training/mpi_batch_optimize.cc
@@ -22,6 +22,7 @@ namespace mpi = boost::mpi;
#include "ff_register.h"
#include "decoder.h"
#include "filelib.h"
+#include "stringlib.h"
#include "optimize.h"
#include "fdict.h"
#include "weights.h"
@@ -31,47 +32,18 @@ using namespace std;
using boost::shared_ptr;
namespace po = boost::program_options;
-void SanityCheck(const vector<double>& w) {
- for (int i = 0; i < w.size(); ++i) {
- assert(!isnan(w[i]));
- assert(!isinf(w[i]));
- }
-}
-
-struct FComp {
- const vector<double>& w_;
- FComp(const vector<double>& w) : w_(w) {}
- bool operator()(int a, int b) const {
- return fabs(w_[a]) > fabs(w_[b]);
- }
-};
-
-void ShowLargestFeatures(const vector<double>& w) {
- vector<int> fnums(w.size());
- for (int i = 0; i < w.size(); ++i)
- fnums[i] = i;
- vector<int>::iterator mid = fnums.begin();
- mid += (w.size() > 10 ? 10 : w.size());
- partial_sort(fnums.begin(), mid, fnums.end(), FComp(w));
- cerr << "TOP FEATURES:";
- for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) {
- cerr << ' ' << FD::Convert(*i) << '=' << w[*i];
- }
- cerr << endl;
-}
-
bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("input_weights,w",po::value<string>(),"Input feature weights file")
("training_data,t",po::value<string>(),"Training data")
("decoder_config,d",po::value<string>(),"Decoder configuration file")
- ("sharded_input,s",po::value<string>(), "Corpus and grammar files are 'sharded' so each processor loads its own input and grammar file. Argument is the directory containing the shards.")
("output_weights,o",po::value<string>()->default_value("-"),"Output feature weights file")
("optimization_method,m", po::value<string>()->default_value("lbfgs"), "Optimization method (sgd, lbfgs, rprop)")
("correction_buffers,M", po::value<int>()->default_value(10), "Number of gradients for LBFGS to maintain in memory")
("gaussian_prior,p","Use a Gaussian prior on the weights")
("means,u", po::value<string>(), "File containing the means for Gaussian prior")
+ ("per_sentence_grammar_scratch,P", po::value<string>(), "(Optional) location of scratch space to copy per-sentence grammars for fast access, useful if a RAM disk is available")
("sigma_squared", po::value<double>()->default_value(1.0), "Sigma squared term for spherical Gaussian prior");
po::options_description clo("Command line options");
clo.add_options()
@@ -88,14 +60,10 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
}
po::notify(*conf);
- if (conf->count("help") || !conf->count("input_weights") || !(conf->count("training_data") | conf->count("sharded_input")) || !conf->count("decoder_config")) {
+ if (conf->count("help") || !conf->count("input_weights") || !(conf->count("training_data")) || !conf->count("decoder_config")) {
cerr << dcmdline_options << endl;
return false;
}
- if (conf->count("training_data") && conf->count("sharded_input")) {
- cerr << "Cannot specify both --training_data and --sharded_input\n";
- return false;
- }
return true;
}
@@ -124,7 +92,7 @@ struct TrainingObserver : public DecoderObserver {
void SetLocalGradientAndObjective(vector<double>* g, double* o) const {
*o = acc_obj;
for (SparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it)
- (*g)[it->first] = it->second;
+ (*g)[it->first] = it->second.as_float();
}
virtual void NotifyDecodingStart(const SentenceMetadata& smeta) {
@@ -220,6 +188,36 @@ struct VectorPlus : public binary_function<vector<T>, vector<T>, vector<T> > {
}
};
+void MovePerSentenceGrammars(const string& root, int size, int rank, vector<string>* c) {
+ if (!DirectoryExists(root)) {
+ cerr << "Can't find scratch space at " << root << endl;
+ abort();
+ }
+ ostringstream os;
+ os << root << "/psg." << size << "_of_" << rank;
+ const string path = os.str();
+ MkDirP(path);
+ string sent;
+ map<string, string> attr;
+ for (unsigned i = 0; i < c->size(); ++i) {
+ sent = (*c)[i];
+ attr.clear();
+ ProcessAndStripSGML(&sent, &attr);
+ map<string, string>::iterator it = attr.find("grammar");
+ if (it != attr.end()) {
+ string src_file = it->second;
+ bool is_gzipped = (src_file.size() > 3) && (src_file.rfind(".gz") == (src_file.size() - 3));
+ string new_name = path + "/" + md5(sent);
+ if (is_gzipped) new_name += ".gz";
+ CopyFile(src_file, new_name);
+ it->second = new_name;
+ }
+ ostringstream ns;
+ ns << SGMLOpenSegTag(attr) << ' ' << sent << " </seg>";
+ (*c)[i] = ns.str();
+ }
+}
+
int main(int argc, char** argv) {
#ifdef HAVE_MPI
mpi::environment env(argc, argv);
@@ -236,42 +234,9 @@ int main(int argc, char** argv) {
po::variables_map conf;
if (!InitCommandLine(argc, argv, &conf)) return 1;
- string shard_dir;
- if (conf.count("sharded_input")) {
- shard_dir = conf["sharded_input"].as<string>();
- if (!DirectoryExists(shard_dir)) {
- if (rank == 0) cerr << "Can't find shard directory: " << shard_dir << endl;
- return 1;
- }
- if (rank == 0)
- cerr << "Shard directory: " << shard_dir << endl;
- }
-
- // load initial weights
- Weights weights;
- if (rank == 0) { cerr << "Loading weights...\n"; }
- weights.InitFromFile(conf["input_weights"].as<string>());
- if (rank == 0) { cerr << "Done loading weights.\n"; }
-
- // freeze feature set (should be optional?)
- const bool freeze_feature_set = true;
- if (freeze_feature_set) FD::Freeze();
-
// load cdec.ini and set up decoder
vector<string> cdec_ini;
ReadConfig(conf["decoder_config"].as<string>(), &cdec_ini);
- if (shard_dir.size()) {
- if (rank == 0) {
- for (int i = 0; i < cdec_ini.size(); ++i) {
- if (cdec_ini[i].find("grammar=") == 0) {
- cerr << "!!! using sharded input and " << conf["decoder_config"].as<string>() << " contains a grammar specification:\n" << cdec_ini[i] << "\n VERIFY THAT THIS IS CORRECT!\n";
- }
- }
- }
- ostringstream g;
- g << "grammar=" << shard_dir << "/grammar." << rank << "_of_" << size << ".gz";
- cdec_ini.push_back(g.str());
- }
istringstream ini;
StoreConfig(cdec_ini, &ini);
if (rank == 0) cerr << "Loading grammar...\n";
@@ -282,22 +247,28 @@ int main(int argc, char** argv) {
}
if (rank == 0) cerr << "Done loading grammar!\n";
+ // load initial weights
+ if (rank == 0) { cerr << "Loading weights...\n"; }
+ vector<weight_t>& lambdas = decoder->CurrentWeightVector();
+ Weights::InitFromFile(conf["input_weights"].as<string>(), &lambdas);
+ if (rank == 0) { cerr << "Done loading weights.\n"; }
+
+ // freeze feature set (should be optional?)
+ const bool freeze_feature_set = true;
+ if (freeze_feature_set) FD::Freeze();
+
const int num_feats = FD::NumFeats();
if (rank == 0) cerr << "Number of features: " << num_feats << endl;
+ lambdas.resize(num_feats);
+
const bool gaussian_prior = conf.count("gaussian_prior");
- vector<double> means(num_feats, 0);
+ vector<weight_t> means(num_feats, 0);
if (conf.count("means")) {
if (!gaussian_prior) {
cerr << "Don't use --means without --gaussian_prior!\n";
exit(1);
}
- Weights wm;
- wm.InitFromFile(conf["means"].as<string>());
- if (num_feats != FD::NumFeats()) {
- cerr << "[ERROR] Means file had unexpected features!\n";
- exit(1);
- }
- wm.InitVector(&means);
+ Weights::InitFromFile(conf["means"].as<string>(), &means);
}
shared_ptr<BatchOptimizer> o;
if (rank == 0) {
@@ -309,28 +280,18 @@ int main(int argc, char** argv) {
cerr << "Optimizer: " << o->Name() << endl;
}
double objective = 0;
- vector<double> lambdas(num_feats, 0.0);
- weights.InitVector(&lambdas);
- if (lambdas.size() != num_feats) {
- cerr << "Initial weights file did not have all features specified!\n feats="
- << num_feats << "\n weights file=" << lambdas.size() << endl;
- lambdas.resize(num_feats, 0.0);
- }
vector<double> gradient(num_feats, 0.0);
- vector<double> rcv_grad(num_feats, 0.0);
+ vector<double> rcv_grad;
+ rcv_grad.clear();
bool converged = false;
vector<string> corpus;
- if (shard_dir.size()) {
- ostringstream os; os << shard_dir << "/corpus." << rank << "_of_" << size;
- ReadTrainingCorpus(os.str(), 0, 1, &corpus);
- cerr << os.str() << " has " << corpus.size() << " training examples. " << endl;
- if (corpus.size() > 500) { corpus.resize(500); cerr << " TRUNCATING\n"; }
- } else {
- ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus);
- }
+ ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus);
assert(corpus.size() > 0);
+ if (conf.count("per_sentence_grammar_scratch"))
+ MovePerSentenceGrammars(conf["per_sentence_grammar_scratch"].as<string>(), rank, size, &corpus);
+
TrainingObserver observer;
while (!converged) {
observer.Reset();
@@ -341,19 +302,20 @@ int main(int argc, char** argv) {
if (rank == 0) {
cerr << "Starting decoding... (~" << corpus.size() << " sentences / proc)\n";
}
- decoder->SetWeights(lambdas);
for (int i = 0; i < corpus.size(); ++i)
decoder->Decode(corpus[i], &observer);
cerr << " process " << rank << '/' << size << " done\n";
fill(gradient.begin(), gradient.end(), 0);
- fill(rcv_grad.begin(), rcv_grad.end(), 0);
observer.SetLocalGradientAndObjective(&gradient, &objective);
double to = 0;
#ifdef HAVE_MPI
+ rcv_grad.resize(num_feats, 0.0);
mpi::reduce(world, &gradient[0], gradient.size(), &rcv_grad[0], plus<double>(), 0);
- mpi::reduce(world, objective, to, plus<double>(), 0);
swap(gradient, rcv_grad);
+ rcv_grad.clear();
+
+ mpi::reduce(world, objective, to, plus<double>(), 0);
objective = to;
#endif
@@ -378,7 +340,7 @@ int main(int argc, char** argv) {
for (int i = 0; i < gradient.size(); ++i)
gnorm += gradient[i] * gradient[i];
cerr << " GNORM=" << sqrt(gnorm) << endl;
- vector<double> old = lambdas;
+ vector<weight_t> old = lambdas;
int c = 0;
while (old == lambdas) {
++c;
@@ -387,9 +349,8 @@ int main(int argc, char** argv) {
assert(c < 5);
}
old.clear();
- SanityCheck(lambdas);
- ShowLargestFeatures(lambdas);
- weights.InitFromVector(lambdas);
+ Weights::SanityCheck(lambdas);
+ Weights::ShowLargestFeatures(lambdas);
converged = o->HasConverged();
if (converged) { cerr << "OPTIMIZER REPORTS CONVERGENCE!\n"; }
@@ -399,7 +360,7 @@ int main(int argc, char** argv) {
ostringstream vv;
vv << "Objective = " << objective << " (eval count=" << o->EvaluationCount() << ")";
const string svv = vv.str();
- weights.WriteToFile(fname, true, &svv);
+ Weights::WriteToFile(fname, lambdas, true, &svv);
} // rank == 0
int cint = converged;
#ifdef HAVE_MPI
@@ -411,3 +372,4 @@ int main(int argc, char** argv) {
}
return 0;
}
+
diff --git a/training/compute_cllh.cc b/training/mpi_compute_cllh.cc
index 332f6d0c..d5caa745 100644
--- a/training/compute_cllh.cc
+++ b/training/mpi_compute_cllh.cc
@@ -1,6 +1,4 @@
-#include <sstream>
#include <iostream>
-#include <fstream>
#include <vector>
#include <cassert>
#include <cmath>
@@ -12,6 +10,7 @@
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
+#include "sentence_metadata.h"
#include "verbose.h"
#include "hg.h"
#include "prob.h"
@@ -52,7 +51,8 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
return true;
}
-void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* ids) {
+void ReadInstances(const string& fname, int rank, int size, vector<string>* c) {
+ assert(fname != "-");
ReadFile rf(fname);
istream& in = *rf.stream();
string line;
@@ -60,20 +60,16 @@ void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>*
while(in) {
getline(in, line);
if (!in) break;
- if (lc % size == rank) {
- c->push_back(line);
- ids->push_back(lc);
- }
+ if (lc % size == rank) c->push_back(line);
++lc;
}
}
static const double kMINUS_EPSILON = -1e-6;
-struct TrainingObserver : public DecoderObserver {
- void Reset() {
- acc_obj = 0;
- }
+struct ConditionalLikelihoodObserver : public DecoderObserver {
+
+ ConditionalLikelihoodObserver() : trg_words(), acc_obj(), cur_obj() {}
virtual void NotifyDecodingStart(const SentenceMetadata&) {
cur_obj = 0;
@@ -120,8 +116,10 @@ struct TrainingObserver : public DecoderObserver {
}
assert(!isnan(log_ref_z));
acc_obj += (cur_obj - log_ref_z);
+ trg_words += smeta.GetReference().size();
}
+ unsigned trg_words;
double acc_obj;
double cur_obj;
int state;
@@ -148,15 +146,6 @@ int main(int argc, char** argv) {
if (!InitCommandLine(argc, argv, &conf))
return false;
- // load initial weights
- Weights weights;
- if (conf.count("weights"))
- weights.InitFromFile(conf["weights"].as<string>());
-
- // freeze feature set
- //const bool freeze_feature_set = conf.count("freeze_feature_set");
- //if (freeze_feature_set) FD::Freeze();
-
// load cdec.ini and set up decoder
ReadFile ini_rf(conf["decoder_config"].as<string>());
Decoder decoder(ini_rf.stream());
@@ -165,35 +154,38 @@ int main(int argc, char** argv) {
abort();
}
- vector<string> corpus; vector<int> ids;
- ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids);
- assert(corpus.size() > 0);
- assert(corpus.size() == ids.size());
+ // load weights
+ vector<weight_t>& weights = decoder.CurrentWeightVector();
+ if (conf.count("weights"))
+ Weights::InitFromFile(conf["weights"].as<string>(), &weights);
- vector<double> wv;
- weights.InitVector(&wv);
- decoder.SetWeights(wv);
- TrainingObserver observer;
- double objective = 0;
- bool converged = false;
+ vector<string> corpus;
+ ReadInstances(conf["training_data"].as<string>(), rank, size, &corpus);
+ assert(corpus.size() > 0);
- observer.Reset();
if (rank == 0)
- cerr << "Each processor is decoding " << corpus.size() << " training examples...\n";
+ cerr << "Each processor is decoding ~" << corpus.size() << " training examples...\n";
- for (int i = 0; i < corpus.size(); ++i) {
- decoder.SetId(ids[i]);
+ ConditionalLikelihoodObserver observer;
+ for (int i = 0; i < corpus.size(); ++i)
decoder.Decode(corpus[i], &observer);
- }
+ double objective = 0;
+ unsigned total_words = 0;
#ifdef HAVE_MPI
reduce(world, observer.acc_obj, objective, std::plus<double>(), 0);
+ reduce(world, observer.trg_words, total_words, std::plus<unsigned>(), 0);
#else
objective = observer.acc_obj;
#endif
- if (rank == 0)
- cout << "OBJECTIVE: " << objective << endl;
+ if (rank == 0) {
+ cout << "CONDITIONAL LOG_e LIKELIHOOD: " << objective << endl;
+ cout << "CONDITIONAL LOG_2 LIKELIHOOD: " << (objective/log(2)) << endl;
+ cout << " CONDITIONAL ENTROPY: " << (objective/log(2) / total_words) << endl;
+ cout << " PERPLEXITY: " << pow(2, (objective/log(2) / total_words)) << endl;
+ }
return 0;
}
+
diff --git a/training/mpi_extract_features.cc b/training/mpi_extract_features.cc
new file mode 100644
index 00000000..6750aa15
--- /dev/null
+++ b/training/mpi_extract_features.cc
@@ -0,0 +1,151 @@
+#include <iostream>
+#include <sstream>
+#include <vector>
+#include <cassert>
+
+#include "config.h"
+#ifdef HAVE_MPI
+#include <boost/mpi.hpp>
+#endif
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "ff_register.h"
+#include "verbose.h"
+#include "filelib.h"
+#include "fdict.h"
+#include "decoder.h"
+#include "weights.h"
+
+using namespace std;
+namespace po = boost::program_options;
+
+bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("training_data,t",po::value<string>(),"Training data corpus")
+ ("decoder_config,c",po::value<string>(),"Decoder configuration file")
+ ("weights,w", po::value<string>(), "(Optional) weights file; weights may affect what features are encountered in pruning configurations")
+ ("output_prefix,o",po::value<string>()->default_value("features"),"Output path prefix");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || !conf->count("training_data") || !conf->count("decoder_config")) {
+ cerr << "Decode an input set (optionally in parallel using MPI) and write\nout the feature strings encountered.\n";
+ cerr << dcmdline_options << endl;
+ return false;
+ }
+ return true;
+}
+
+void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c) {
+ ReadFile rf(fname);
+ istream& in = *rf.stream();
+ string line;
+ int lc = 0;
+ while(in) {
+ getline(in, line);
+ if (!in) break;
+ if (lc % size == rank) c->push_back(line);
+ ++lc;
+ }
+}
+
+static const double kMINUS_EPSILON = -1e-6;
+
+struct TrainingObserver : public DecoderObserver {
+
+ virtual void NotifyDecodingStart(const SentenceMetadata&) {
+ }
+
+ // compute model expectations, denominator of objective
+ virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) {
+ }
+
+ // compute "empirical" expectations, numerator of objective
+ virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) {
+ }
+};
+
+#ifdef HAVE_MPI
+namespace mpi = boost::mpi;
+#endif
+
+int main(int argc, char** argv) {
+#ifdef HAVE_MPI
+ mpi::environment env(argc, argv);
+ mpi::communicator world;
+ const int size = world.size();
+ const int rank = world.rank();
+#else
+ const int size = 1;
+ const int rank = 0;
+#endif
+ if (size > 1) SetSilent(true); // turn off verbose decoder output
+ register_feature_functions();
+
+ po::variables_map conf;
+ if (!InitCommandLine(argc, argv, &conf))
+ return false;
+
+ // load cdec.ini and set up decoder
+ ReadFile ini_rf(conf["decoder_config"].as<string>());
+ Decoder decoder(ini_rf.stream());
+ if (decoder.GetConf()["input"].as<string>() != "-") {
+ cerr << "cdec.ini must not set an input file\n";
+ abort();
+ }
+
+ if (FD::UsingPerfectHashFunction()) {
+ cerr << "Your configuration file has enabled a cmph hash function. Please disable.\n";
+ return 1;
+ }
+
+ // load optional weights
+ if (conf.count("weights"))
+ Weights::InitFromFile(conf["weights"].as<string>(), &decoder.CurrentWeightVector());
+
+ vector<string> corpus;
+ ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus);
+ assert(corpus.size() > 0);
+
+ TrainingObserver observer;
+
+ if (rank == 0)
+ cerr << "Each processor is decoding ~" << corpus.size() << " training examples...\n";
+
+ for (int i = 0; i < corpus.size(); ++i)
+ decoder.Decode(corpus[i], &observer);
+
+ {
+ ostringstream os;
+ os << conf["output_prefix"].as<string>() << '.' << rank << "_of_" << size;
+ WriteFile wf(os.str());
+ ostream& out = *wf.stream();
+ const unsigned num_feats = FD::NumFeats();
+ for (unsigned i = 1; i < num_feats; ++i) {
+ out << FD::Convert(i) << endl;
+ }
+ cerr << "Wrote " << os.str() << endl;
+ }
+
+#ifdef HAVE_MPI
+ world.barrier();
+#else
+#endif
+
+ return 0;
+}
+
diff --git a/training/mpi_extract_reachable.cc b/training/mpi_extract_reachable.cc
new file mode 100644
index 00000000..2a7c2b9d
--- /dev/null
+++ b/training/mpi_extract_reachable.cc
@@ -0,0 +1,163 @@
+#include <iostream>
+#include <sstream>
+#include <vector>
+#include <cassert>
+
+#include "config.h"
+#ifdef HAVE_MPI
+#include <boost/mpi.hpp>
+#endif
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "ff_register.h"
+#include "verbose.h"
+#include "filelib.h"
+#include "fdict.h"
+#include "decoder.h"
+#include "weights.h"
+
+using namespace std;
+namespace po = boost::program_options;
+
+bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("training_data,t",po::value<string>(),"Training data corpus")
+ ("decoder_config,c",po::value<string>(),"Decoder configuration file")
+ ("weights,w", po::value<string>(), "(Optional) weights file; weights may affect what features are encountered in pruning configurations")
+ ("output_prefix,o",po::value<string>()->default_value("reachable"),"Output path prefix");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || !conf->count("training_data") || !conf->count("decoder_config")) {
+ cerr << "Decode an input set (optionally in parallel using MPI) and write\nout the inputs that produce reachable parallel parses.\n";
+ cerr << dcmdline_options << endl;
+ return false;
+ }
+ return true;
+}
+
+void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c) {
+ ReadFile rf(fname);
+ istream& in = *rf.stream();
+ string line;
+ int lc = 0;
+ while(in) {
+ getline(in, line);
+ if (!in) break;
+ if (lc % size == rank) c->push_back(line);
+ ++lc;
+ }
+}
+
+static const double kMINUS_EPSILON = -1e-6;
+
+struct ReachabilityObserver : public DecoderObserver {
+
+ virtual void NotifyDecodingStart(const SentenceMetadata&) {
+ reachable = false;
+ }
+
+ // compute model expectations, denominator of objective
+ virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) {
+ }
+
+ // compute "empirical" expectations, numerator of objective
+ virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) {
+ reachable = true;
+ }
+
+ bool reachable;
+};
+
+#ifdef HAVE_MPI
+namespace mpi = boost::mpi;
+#endif
+
+int main(int argc, char** argv) {
+#ifdef HAVE_MPI
+ mpi::environment env(argc, argv);
+ mpi::communicator world;
+ const int size = world.size();
+ const int rank = world.rank();
+#else
+ const int size = 1;
+ const int rank = 0;
+#endif
+ if (size > 1) SetSilent(true); // turn off verbose decoder output
+ register_feature_functions();
+
+ po::variables_map conf;
+ if (!InitCommandLine(argc, argv, &conf))
+ return false;
+
+ // load cdec.ini and set up decoder
+ ReadFile ini_rf(conf["decoder_config"].as<string>());
+ Decoder decoder(ini_rf.stream());
+ if (decoder.GetConf()["input"].as<string>() != "-") {
+ cerr << "cdec.ini must not set an input file\n";
+ abort();
+ }
+
+ if (FD::UsingPerfectHashFunction()) {
+ cerr << "Your configuration file has enabled a cmph hash function. Please disable.\n";
+ return 1;
+ }
+
+ // load optional weights
+ if (conf.count("weights"))
+ Weights::InitFromFile(conf["weights"].as<string>(), &decoder.CurrentWeightVector());
+
+ vector<string> corpus;
+ ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus);
+ assert(corpus.size() > 0);
+
+
+ if (rank == 0)
+ cerr << "Each processor is decoding ~" << corpus.size() << " training examples...\n";
+
+ size_t num_reached = 0;
+ {
+ ostringstream os;
+ os << conf["output_prefix"].as<string>() << '.' << rank << "_of_" << size;
+ WriteFile wf(os.str());
+ ostream& out = *wf.stream();
+ ReachabilityObserver observer;
+ for (int i = 0; i < corpus.size(); ++i) {
+ decoder.Decode(corpus[i], &observer);
+ if (observer.reachable) {
+ out << corpus[i] << endl;
+ ++num_reached;
+ }
+ corpus[i].clear();
+ }
+ cerr << "Shard " << rank << '/' << size << " finished, wrote "
+ << num_reached << " instances to " << os.str() << endl;
+ }
+
+ size_t total = 0;
+#ifdef HAVE_MPI
+ reduce(world, num_reached, total, std::plus<double>(), 0);
+#else
+ total = num_reached;
+#endif
+ if (rank == 0) {
+ cerr << "-----------------------------------------\n";
+ cerr << "TOTAL = " << total << " instances\n";
+ }
+ return 0;
+}
+
diff --git a/training/mpi_flex_optimize.cc b/training/mpi_flex_optimize.cc
new file mode 100644
index 00000000..87c5f331
--- /dev/null
+++ b/training/mpi_flex_optimize.cc
@@ -0,0 +1,346 @@
+#include <sstream>
+#include <iostream>
+#include <fstream>
+#include <vector>
+#include <cassert>
+#include <cmath>
+
+#include <boost/shared_ptr.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "stringlib.h"
+#include "verbose.h"
+#include "hg.h"
+#include "prob.h"
+#include "inside_outside.h"
+#include "ff_register.h"
+#include "decoder.h"
+#include "filelib.h"
+#include "optimize.h"
+#include "fdict.h"
+#include "weights.h"
+#include "sparse_vector.h"
+#include "sampler.h"
+
+#ifdef HAVE_MPI
+#include <boost/mpi/timer.hpp>
+#include <boost/mpi.hpp>
+namespace mpi = boost::mpi;
+#endif
+
+using namespace std;
+namespace po = boost::program_options;
+
+bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("cdec_config,c",po::value<string>(),"Decoder configuration file")
+ ("weights,w",po::value<string>(),"Initial feature weights")
+ ("training_data,d",po::value<string>(),"Training data")
+ ("minibatch_size_per_proc,s", po::value<unsigned>()->default_value(6), "Number of training instances evaluated per processor in each minibatch")
+ ("optimization_method,m", po::value<string>()->default_value("lbfgs"), "Optimization method (options: lbfgs, sgd, rprop)")
+ ("minibatch_iterations,i", po::value<unsigned>()->default_value(10), "Number of optimization iterations per minibatch (1 = standard SGD)")
+ ("iterations,I", po::value<unsigned>()->default_value(50), "Number of passes through the training data before termination")
+ ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
+ ("lbfgs_memory_buffers,M", po::value<unsigned>()->default_value(10), "Number of memory buffers for LBFGS history")
+ ("eta_0,e", po::value<double>()->default_value(0.1), "Initial learning rate for SGD")
+ ("L1,1","Use L1 regularization")
+ ("L2,2","Use L2 regularization")
+ ("regularization_strength,C", po::value<double>()->default_value(1.0), "Regularization strength (C)");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || !conf->count("training_data") || !conf->count("cdec_config")) {
+ cerr << "General-purpose minibatch online optimizer (MPI support "
+#if HAVE_MPI
+ << "enabled"
+#else
+ << "not enabled"
+#endif
+ << ")\n" << dcmdline_options << endl;
+ return false;
+ }
+ return true;
+}
+
+void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* order) {
+ ReadFile rf(fname);
+ istream& in = *rf.stream();
+ string line;
+ int id = 0;
+ while(in) {
+ getline(in, line);
+ if (!in) break;
+ if (id % size == rank) {
+ c->push_back(line);
+ order->push_back(id);
+ }
+ ++id;
+ }
+}
+
+static const double kMINUS_EPSILON = -1e-6;
+
+struct CopyHGsObserver : public DecoderObserver {
+ Hypergraph* hg_;
+ Hypergraph* gold_hg_;
+
+ // this can free up some memory
+ void RemoveRules(Hypergraph* h) {
+ for (unsigned i = 0; i < h->edges_.size(); ++i)
+ h->edges_[i].rule_.reset();
+ }
+
+ void SetCurrentHypergraphs(Hypergraph* h, Hypergraph* gold_h) {
+ hg_ = h;
+ gold_hg_ = gold_h;
+ }
+
+ virtual void NotifyDecodingStart(const SentenceMetadata&) {
+ state = 1;
+ }
+
+ // compute model expectations, denominator of objective
+ virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) {
+ *hg_ = *hg;
+ RemoveRules(hg_);
+ assert(state == 1);
+ state = 2;
+ }
+
+ // compute "empirical" expectations, numerator of objective
+ virtual void NotifyAlignmentForest(const SentenceMetadata&, Hypergraph* hg) {
+ assert(state == 2);
+ state = 3;
+ *gold_hg_ = *hg;
+ RemoveRules(gold_hg_);
+ }
+
+ virtual void NotifyDecodingComplete(const SentenceMetadata&) {
+ if (state == 3) {
+ } else {
+ hg_->clear();
+ gold_hg_->clear();
+ }
+ }
+
+ int state;
+};
+
+void ReadConfig(const string& ini, istringstream* out) {
+ ReadFile rf(ini);
+ istream& in = *rf.stream();
+ ostringstream os;
+ while(in) {
+ string line;
+ getline(in, line);
+ if (!in) continue;
+ os << line << endl;
+ }
+ out->str(os.str());
+}
+
+#ifdef HAVE_MPI
+namespace boost { namespace mpi {
+ template<>
+ struct is_commutative<std::plus<SparseVector<double> >, SparseVector<double> >
+ : mpl::true_ { };
+} } // end namespace boost::mpi
+#endif
+
+void AddGrad(const SparseVector<prob_t> x, double s, SparseVector<double>* acc) {
+ for (SparseVector<prob_t>::const_iterator it = x.begin(); it != x.end(); ++it)
+ acc->add_value(it->first, it->second.as_float() * s);
+}
+
+int main(int argc, char** argv) {
+#ifdef HAVE_MPI
+ mpi::environment env(argc, argv);
+ mpi::communicator world;
+ const int size = world.size();
+ const int rank = world.rank();
+#else
+ const int size = 1;
+ const int rank = 0;
+#endif
+ if (size > 1) SetSilent(true); // turn off verbose decoder output
+ register_feature_functions();
+ MT19937* rng = NULL;
+
+ po::variables_map conf;
+ if (!InitCommandLine(argc, argv, &conf))
+ return 1;
+
+ boost::shared_ptr<BatchOptimizer> o;
+ const unsigned lbfgs_memory_buffers = conf["lbfgs_memory_buffers"].as<unsigned>();
+
+ istringstream ins;
+ ReadConfig(conf["cdec_config"].as<string>(), &ins);
+ Decoder decoder(&ins);
+
+ // load initial weights
+ vector<weight_t> init_weights;
+ if (conf.count("weights"))
+ Weights::InitFromFile(conf["weights"].as<string>(), &init_weights);
+
+ vector<string> corpus;
+ vector<int> ids;
+ ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids);
+ assert(corpus.size() > 0);
+
+ const unsigned size_per_proc = conf["minibatch_size_per_proc"].as<unsigned>();
+ if (size_per_proc > corpus.size()) {
+ cerr << "Minibatch size must be smaller than corpus size!\n";
+ return 1;
+ }
+
+ size_t total_corpus_size = 0;
+#ifdef HAVE_MPI
+ reduce(world, corpus.size(), total_corpus_size, std::plus<size_t>(), 0);
+#else
+ total_corpus_size = corpus.size();
+#endif
+
+ if (conf.count("random_seed"))
+ rng = new MT19937(conf["random_seed"].as<uint32_t>());
+ else
+ rng = new MT19937;
+
+ const unsigned minibatch_iterations = conf["minibatch_iterations"].as<unsigned>();
+
+ if (rank == 0) {
+ cerr << "Total corpus size: " << total_corpus_size << endl;
+ const unsigned batch_size = size_per_proc * size;
+ }
+
+ SparseVector<double> x;
+ Weights::InitSparseVector(init_weights, &x);
+ CopyHGsObserver observer;
+
+ int write_weights_every_ith = 100; // TODO configure
+ int titer = -1;
+
+ vector<weight_t>& lambdas = decoder.CurrentWeightVector();
+ lambdas.swap(init_weights);
+ init_weights.clear();
+
+ int iter = -1;
+ bool converged = false;
+ while (!converged) {
+#ifdef HAVE_MPI
+ mpi::timer timer;
+#endif
+ x.init_vector(&lambdas);
+ ++iter; ++titer;
+#if 0
+ if (rank == 0) {
+ converged = (iter == max_iteration);
+ Weights::SanityCheck(lambdas);
+ Weights::ShowLargestFeatures(lambdas);
+ string fname = "weights.cur.gz";
+ if (iter % write_weights_every_ith == 0) {
+ ostringstream o; o << "weights.epoch_" << (ai+1) << '.' << iter << ".gz";
+ fname = o.str();
+ }
+ if (converged && ((ai+1)==agenda.size())) { fname = "weights.final.gz"; }
+ ostringstream vv;
+ vv << "total iter=" << titer << " (of current config iter=" << iter << ") minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << x.size() << '/' << FD::NumFeats() << " passes_thru_data=" << (titer * size_per_proc / static_cast<double>(corpus.size())) << " eta=" << lr->eta(titer);
+ const string svv = vv.str();
+ cerr << svv << endl;
+ Weights::WriteToFile(fname, lambdas, true, &svv);
+ }
+#endif
+
+ vector<Hypergraph> hgs(size_per_proc);
+ vector<Hypergraph> gold_hgs(size_per_proc);
+ for (int i = 0; i < size_per_proc; ++i) {
+ int ei = corpus.size() * rng->next();
+ int id = ids[ei];
+ observer.SetCurrentHypergraphs(&hgs[i], &gold_hgs[i]);
+ decoder.SetId(id);
+ decoder.Decode(corpus[ei], &observer);
+ }
+
+ SparseVector<double> local_grad, g;
+ double local_obj = 0;
+ o.reset();
+ for (unsigned mi = 0; mi < minibatch_iterations; ++mi) {
+ local_grad.clear();
+ g.clear();
+ local_obj = 0;
+
+ for (unsigned i = 0; i < size_per_proc; ++i) {
+ Hypergraph& hg = hgs[i];
+ Hypergraph& hg_gold = gold_hgs[i];
+ if (hg.edges_.size() < 2) continue;
+
+ hg.Reweight(lambdas);
+ hg_gold.Reweight(lambdas);
+ SparseVector<prob_t> model_exp, gold_exp;
+ const prob_t z = InsideOutside<prob_t,
+ EdgeProb,
+ SparseVector<prob_t>,
+ EdgeFeaturesAndProbWeightFunction>(hg, &model_exp);
+ local_obj += log(z);
+ model_exp /= z;
+ AddGrad(model_exp, 1.0, &local_grad);
+ model_exp.clear();
+
+ const prob_t goldz = InsideOutside<prob_t,
+ EdgeProb,
+ SparseVector<prob_t>,
+ EdgeFeaturesAndProbWeightFunction>(hg_gold, &gold_exp);
+ local_obj -= log(goldz);
+
+ if (log(z) - log(goldz) < kMINUS_EPSILON) {
+ cerr << "DIFF. ERR! log_model_z < log_gold_z: " << log(z) << " " << log(goldz) << endl;
+ return 1;
+ }
+
+ gold_exp /= goldz;
+ AddGrad(gold_exp, -1.0, &local_grad);
+ }
+
+ double obj = 0;
+#ifdef HAVE_MPI
+ // TODO obj
+ reduce(world, local_grad, g, std::plus<SparseVector<double> >(), 0);
+#else
+ obj = local_obj;
+ g.swap(local_grad);
+#endif
+ local_grad.clear();
+ if (rank == 0) {
+ g /= (size_per_proc * size);
+ if (!o)
+ o.reset(new LBFGSOptimizer(FD::NumFeats(), lbfgs_memory_buffers));
+ vector<double> gg(FD::NumFeats());
+ if (gg.size() != lambdas.size()) { lambdas.resize(gg.size()); }
+ for (SparseVector<double>::const_iterator it = g.begin(); it != g.end(); ++it)
+ if (it->first) { gg[it->first] = it->second; }
+ cerr << "OBJ: " << obj << endl;
+ o->Optimize(obj, gg, &lambdas);
+ }
+#ifdef HAVE_MPI
+ broadcast(world, x, 0);
+ broadcast(world, converged, 0);
+ world.barrier();
+ if (rank == 0) { cerr << " ELAPSED TIME THIS ITERATION=" << timer.elapsed() << endl; }
+#endif
+ }
+ }
+ return 0;
+}
diff --git a/training/mpi_online_optimize.cc b/training/mpi_online_optimize.cc
index 32033c19..993627f0 100644
--- a/training/mpi_online_optimize.cc
+++ b/training/mpi_online_optimize.cc
@@ -9,6 +9,7 @@
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
+#include "stringlib.h"
#include "verbose.h"
#include "hg.h"
#include "prob.h"
@@ -31,35 +32,6 @@ namespace mpi = boost::mpi;
using namespace std;
namespace po = boost::program_options;
-void SanityCheck(const vector<double>& w) {
- for (int i = 0; i < w.size(); ++i) {
- assert(!isnan(w[i]));
- assert(!isinf(w[i]));
- }
-}
-
-struct FComp {
- const vector<double>& w_;
- FComp(const vector<double>& w) : w_(w) {}
- bool operator()(int a, int b) const {
- return fabs(w_[a]) > fabs(w_[b]);
- }
-};
-
-void ShowLargestFeatures(const vector<double>& w) {
- vector<int> fnums(w.size());
- for (int i = 0; i < w.size(); ++i)
- fnums[i] = i;
- vector<int>::iterator mid = fnums.begin();
- mid += (w.size() > 10 ? 10 : w.size());
- partial_sort(fnums.begin(), mid, fnums.end(), FComp(w));
- cerr << "TOP FEATURES:";
- for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) {
- cerr << ' ' << FD::Convert(*i) << '=' << w[*i];
- }
- cerr << endl;
-}
-
bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
@@ -123,7 +95,7 @@ struct TrainingObserver : public DecoderObserver {
void SetLocalGradientAndObjective(vector<double>* g, double* o) const {
*o = acc_obj;
for (SparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it)
- (*g)[it->first] = it->second;
+ (*g)[it->first] = it->second.as_float();
}
virtual void NotifyDecodingStart(const SentenceMetadata& smeta) {
@@ -187,7 +159,7 @@ struct TrainingObserver : public DecoderObserver {
void GetGradient(SparseVector<double>* g) const {
g->clear();
for (SparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it)
- g->set_value(it->first, it->second);
+ g->set_value(it->first, it->second.as_float());
}
int total_complete;
@@ -233,6 +205,7 @@ bool LoadAgenda(const string& file, vector<pair<string, int> >* a) {
}
int main(int argc, char** argv) {
+ cerr << "THIS SOFTWARE IS DEPRECATED YOU SHOULD USE mpi_flex_optimize\n";
#ifdef HAVE_MPI
mpi::environment env(argc, argv);
mpi::communicator world;
@@ -250,10 +223,25 @@ int main(int argc, char** argv) {
if (!InitCommandLine(argc, argv, &conf))
return 1;
+ vector<pair<string, int> > agenda;
+ if (!LoadAgenda(conf["training_agenda"].as<string>(), &agenda))
+ return 1;
+ if (rank == 0)
+ cerr << "Loaded agenda defining " << agenda.size() << " training epochs\n";
+
+ assert(agenda.size() > 0);
+
+ if (1) { // hack to load the feature hash functions -- TODO this should not be in cdec.ini
+ const string& cur_config = agenda[0].first;
+ const unsigned max_iteration = agenda[0].second;
+ ReadFile ini_rf(cur_config);
+ Decoder decoder(ini_rf.stream());
+ }
+
// load initial weights
- Weights weights;
+ vector<weight_t> init_weights;
if (conf.count("input_weights"))
- weights.InitFromFile(conf["input_weights"].as<string>());
+ Weights::InitFromFile(conf["input_weights"].as<string>(), &init_weights);
vector<int> frozen_fids;
if (conf.count("frozen_features")) {
@@ -310,19 +298,12 @@ int main(int argc, char** argv) {
rng.reset(new MT19937);
SparseVector<double> x;
- weights.InitSparseVector(&x);
+ Weights::InitSparseVector(init_weights, &x);
TrainingObserver observer;
int write_weights_every_ith = 100; // TODO configure
int titer = -1;
- vector<pair<string, int> > agenda;
- if (!LoadAgenda(conf["training_agenda"].as<string>(), &agenda))
- return 1;
- if (rank == 0)
- cerr << "Loaded agenda defining " << agenda.size() << " training epochs\n";
-
- vector<double> lambdas;
for (int ai = 0; ai < agenda.size(); ++ai) {
const string& cur_config = agenda[ai].first;
const unsigned max_iteration = agenda[ai].second;
@@ -331,6 +312,8 @@ int main(int argc, char** argv) {
// load cdec.ini and set up decoder
ReadFile ini_rf(cur_config);
Decoder decoder(ini_rf.stream());
+ vector<weight_t>& lambdas = decoder.CurrentWeightVector();
+ if (ai == 0) { lambdas.swap(init_weights); init_weights.clear(); }
if (rank == 0)
o->ResetEpoch(); // resets the learning rate-- TODO is this good?
@@ -341,15 +324,13 @@ int main(int argc, char** argv) {
#ifdef HAVE_MPI
mpi::timer timer;
#endif
- weights.InitFromVector(x);
- weights.InitVector(&lambdas);
+ x.init_vector(&lambdas);
++iter; ++titer;
observer.Reset();
- decoder.SetWeights(lambdas);
if (rank == 0) {
converged = (iter == max_iteration);
- SanityCheck(lambdas);
- ShowLargestFeatures(lambdas);
+ Weights::SanityCheck(lambdas);
+ Weights::ShowLargestFeatures(lambdas);
string fname = "weights.cur.gz";
if (iter % write_weights_every_ith == 0) {
ostringstream o; o << "weights.epoch_" << (ai+1) << '.' << iter << ".gz";
@@ -360,7 +341,7 @@ int main(int argc, char** argv) {
vv << "total iter=" << titer << " (of current config iter=" << iter << ") minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << x.size() << '/' << FD::NumFeats() << " passes_thru_data=" << (titer * size_per_proc / static_cast<double>(corpus.size())) << " eta=" << lr->eta(titer);
const string svv = vv.str();
cerr << svv << endl;
- weights.WriteToFile(fname, true, &svv);
+ Weights::WriteToFile(fname, lambdas, true, &svv);
}
for (int i = 0; i < size_per_proc; ++i) {
diff --git a/training/mr_optimize_reduce.cc b/training/mr_optimize_reduce.cc
index b931991d..15e28fa1 100644
--- a/training/mr_optimize_reduce.cc
+++ b/training/mr_optimize_reduce.cc
@@ -88,25 +88,19 @@ int main(int argc, char** argv) {
const bool use_b64 = conf["input_format"].as<string>() == "b64";
- Weights weights;
- weights.InitFromFile(conf["input_weights"].as<string>());
+ vector<weight_t> lambdas;
+ Weights::InitFromFile(conf["input_weights"].as<string>(), &lambdas);
const string s_obj = "**OBJ**";
int num_feats = FD::NumFeats();
cerr << "Number of features: " << num_feats << endl;
const bool gaussian_prior = conf.count("gaussian_prior");
- vector<double> means(num_feats, 0);
+ vector<weight_t> means(num_feats, 0);
if (conf.count("means")) {
if (!gaussian_prior) {
cerr << "Don't use --means without --gaussian_prior!\n";
exit(1);
}
- Weights wm;
- wm.InitFromFile(conf["means"].as<string>());
- if (num_feats != FD::NumFeats()) {
- cerr << "[ERROR] Means file had unexpected features!\n";
- exit(1);
- }
- wm.InitVector(&means);
+ Weights::InitFromFile(conf["means"].as<string>(), &means);
}
shared_ptr<BatchOptimizer> o;
const string omethod = conf["optimization_method"].as<string>();
@@ -124,8 +118,6 @@ int main(int argc, char** argv) {
cerr << "No state file found, assuming ITERATION 1\n";
}
- vector<double> lambdas(num_feats, 0);
- weights.InitVector(&lambdas);
double objective = 0;
vector<double> gradient(num_feats, 0);
// 0<TAB>**OBJ**=12.2;Feat1=2.3;Feat2=-0.2;
@@ -223,8 +215,7 @@ int main(int argc, char** argv) {
old.clear();
SanityCheck(lambdas);
ShowLargestFeatures(lambdas);
- weights.InitFromVector(lambdas);
- weights.WriteToFile(conf["output_weights"].as<string>(), false);
+ Weights::WriteToFile(conf["output_weights"].as<string>(), lambdas, false);
const bool conv = o->HasConverged();
if (conv) { cerr << "OPTIMIZER REPORTS CONVERGENCE!\n"; }
diff --git a/utils/Makefile.am b/utils/Makefile.am
index 94f9be30..df667655 100644
--- a/utils/Makefile.am
+++ b/utils/Makefile.am
@@ -1,5 +1,8 @@
-noinst_PROGRAMS = ts
-TESTS = ts
+
+bin_PROGRAMS = reconstruct_weights
+
+noinst_PROGRAMS = ts phmt
+TESTS = ts phmt
if HAVE_GTEST
noinst_PROGRAMS += \
@@ -11,6 +14,8 @@ noinst_PROGRAMS += \
TESTS += small_vector_test logval_test weights_test dict_test
endif
+reconstruct_weights_SOURCES = reconstruct_weights.cc
+
noinst_LIBRARIES = libutils.a
libutils_a_SOURCES = \
@@ -27,6 +32,11 @@ libutils_a_SOURCES = \
verbose.cc \
weights.cc
+if HAVE_CMPH
+ libutils_a_SOURCES += perfect_hash.cc
+endif
+
+phmt_SOURCES = phmt.cc
ts_SOURCES = ts.cc
dict_test_SOURCES = dict_test.cc
dict_test_LDADD = $(GTEST_LDFLAGS) $(GTEST_LIBS)
diff --git a/utils/ccrp_nt.h b/utils/ccrp_nt.h
new file mode 100644
index 00000000..63b6f4c2
--- /dev/null
+++ b/utils/ccrp_nt.h
@@ -0,0 +1,169 @@
+#ifndef _CCRP_NT_H_
+#define _CCRP_NT_H_
+
+#include <numeric>
+#include <cassert>
+#include <cmath>
+#include <list>
+#include <iostream>
+#include <vector>
+#include <tr1/unordered_map>
+#include <boost/functional/hash.hpp>
+#include "sampler.h"
+#include "slice_sampler.h"
+
+// Chinese restaurant process (1 parameter)
+template <typename Dish, typename DishHash = boost::hash<Dish> >
+class CCRP_NoTable {
+ public:
+ explicit CCRP_NoTable(double conc) :
+ num_customers_(),
+ concentration_(conc),
+ concentration_prior_shape_(std::numeric_limits<double>::quiet_NaN()),
+ concentration_prior_rate_(std::numeric_limits<double>::quiet_NaN()) {}
+
+ CCRP_NoTable(double c_shape, double c_rate, double c = 10.0) :
+ num_customers_(),
+ concentration_(c),
+ concentration_prior_shape_(c_shape),
+ concentration_prior_rate_(c_rate) {}
+
+ double concentration() const { return concentration_; }
+
+ bool has_concentration_prior() const {
+ return !std::isnan(concentration_prior_shape_);
+ }
+
+ void clear() {
+ num_customers_ = 0;
+ custs_.clear();
+ }
+
+ unsigned num_customers() const {
+ return num_customers_;
+ }
+
+ unsigned num_customers(const Dish& dish) const {
+ const typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator it = custs_.find(dish);
+ if (it == custs_.end()) return 0;
+ return it->second;
+ }
+
+ int increment(const Dish& dish) {
+ int table_diff = 0;
+ if (++custs_[dish] == 1)
+ table_diff = 1;
+ ++num_customers_;
+ return table_diff;
+ }
+
+ int decrement(const Dish& dish) {
+ int table_diff = 0;
+ int nc = --custs_[dish];
+ if (nc == 0) {
+ custs_.erase(dish);
+ table_diff = -1;
+ } else if (nc < 0) {
+ std::cerr << "Dish counts dropped below zero for: " << dish << std::endl;
+ abort();
+ }
+ --num_customers_;
+ return table_diff;
+ }
+
+ double prob(const Dish& dish, const double& p0) const {
+ const unsigned at_table = num_customers(dish);
+ return (at_table + p0 * concentration_) / (num_customers_ + concentration_);
+ }
+
+ double logprob(const Dish& dish, const double& logp0) const {
+ const unsigned at_table = num_customers(dish);
+ return log(at_table + exp(logp0 + log(concentration_))) - log(num_customers_ + concentration_);
+ }
+
+ double log_crp_prob() const {
+ return log_crp_prob(concentration_);
+ }
+
+ static double log_gamma_density(const double& x, const double& shape, const double& rate) {
+ assert(x >= 0.0);
+ assert(shape > 0.0);
+ assert(rate > 0.0);
+ const double lp = (shape-1)*log(x) - shape*log(rate) - x/rate - lgamma(shape);
+ return lp;
+ }
+
+ // taken from http://en.wikipedia.org/wiki/Chinese_restaurant_process
+ // does not include P_0's
+ double log_crp_prob(const double& concentration) const {
+ double lp = 0.0;
+ if (has_concentration_prior())
+ lp += log_gamma_density(concentration, concentration_prior_shape_, concentration_prior_rate_);
+ assert(lp <= 0.0);
+ if (num_customers_) {
+ lp += lgamma(concentration) - lgamma(concentration + num_customers_) +
+ custs_.size() * log(concentration);
+ assert(std::isfinite(lp));
+ for (typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator it = custs_.begin();
+ it != custs_.end(); ++it) {
+ lp += lgamma(it->second);
+ }
+ }
+ assert(std::isfinite(lp));
+ return lp;
+ }
+
+ void resample_hyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) {
+ assert(has_concentration_prior());
+ ConcentrationResampler cr(*this);
+ for (int iter = 0; iter < nloop; ++iter) {
+ concentration_ = slice_sampler1d(cr, concentration_, *rng, 0.0,
+ std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
+ }
+ }
+
+ struct ConcentrationResampler {
+ ConcentrationResampler(const CCRP_NoTable& crp) : crp_(crp) {}
+ const CCRP_NoTable& crp_;
+ double operator()(const double& proposed_concentration) const {
+ return crp_.log_crp_prob(proposed_concentration);
+ }
+ };
+
+ void Print(std::ostream* out) const {
+ (*out) << "DP(alpha=" << concentration_ << ") customers=" << num_customers_ << std::endl;
+ int cc = 0;
+ for (typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator it = custs_.begin();
+ it != custs_.end(); ++it) {
+ (*out) << " " << it->first << "(" << it->second << " eating)";
+ ++cc;
+ if (cc > 10) { (*out) << " ..."; break; }
+ }
+ (*out) << std::endl;
+ }
+
+ unsigned num_customers_;
+ std::tr1::unordered_map<Dish, unsigned, DishHash> custs_;
+
+ typedef typename std::tr1::unordered_map<Dish, unsigned, DishHash>::const_iterator const_iterator;
+ const_iterator begin() const {
+ return custs_.begin();
+ }
+ const_iterator end() const {
+ return custs_.end();
+ }
+
+ double concentration_;
+
+ // optional gamma prior on concentration_ (NaN if no prior)
+ double concentration_prior_shape_;
+ double concentration_prior_rate_;
+};
+
+template <typename T,typename H>
+std::ostream& operator<<(std::ostream& o, const CCRP_NoTable<T,H>& c) {
+ c.Print(&o);
+ return o;
+}
+
+#endif
diff --git a/utils/ccrp_onetable.h b/utils/ccrp_onetable.h
new file mode 100644
index 00000000..a868af9a
--- /dev/null
+++ b/utils/ccrp_onetable.h
@@ -0,0 +1,241 @@
+#ifndef _CCRP_ONETABLE_H_
+#define _CCRP_ONETABLE_H_
+
+#include <numeric>
+#include <cassert>
+#include <cmath>
+#include <list>
+#include <iostream>
+#include <tr1/unordered_map>
+#include <boost/functional/hash.hpp>
+#include "sampler.h"
+#include "slice_sampler.h"
+
+// Chinese restaurant process (Pitman-Yor parameters) with one table approximation
+
+template <typename Dish, typename DishHash = boost::hash<Dish> >
+class CCRP_OneTable {
+ typedef std::tr1::unordered_map<Dish, unsigned, DishHash> DishMapType;
+ public:
+ CCRP_OneTable(double disc, double conc) :
+ num_tables_(),
+ num_customers_(),
+ discount_(disc),
+ concentration_(conc),
+ discount_prior_alpha_(std::numeric_limits<double>::quiet_NaN()),
+ discount_prior_beta_(std::numeric_limits<double>::quiet_NaN()),
+ concentration_prior_shape_(std::numeric_limits<double>::quiet_NaN()),
+ concentration_prior_rate_(std::numeric_limits<double>::quiet_NaN()) {}
+
+ CCRP_OneTable(double d_alpha, double d_beta, double c_shape, double c_rate, double d = 0.9, double c = 1.0) :
+ num_tables_(),
+ num_customers_(),
+ discount_(d),
+ concentration_(c),
+ discount_prior_alpha_(d_alpha),
+ discount_prior_beta_(d_beta),
+ concentration_prior_shape_(c_shape),
+ concentration_prior_rate_(c_rate) {}
+
+ double discount() const { return discount_; }
+ double concentration() const { return concentration_; }
+ void set_concentration(double c) { concentration_ = c; }
+ void set_discount(double d) { discount_ = d; }
+
+ bool has_discount_prior() const {
+ return !std::isnan(discount_prior_alpha_);
+ }
+
+ bool has_concentration_prior() const {
+ return !std::isnan(concentration_prior_shape_);
+ }
+
+ void clear() {
+ num_tables_ = 0;
+ num_customers_ = 0;
+ dish_counts_.clear();
+ }
+
+ unsigned num_tables() const {
+ return num_tables_;
+ }
+
+ unsigned num_tables(const Dish& dish) const {
+ const typename DishMapType::const_iterator it = dish_counts_.find(dish);
+ if (it == dish_counts_.end()) return 0;
+ return 1;
+ }
+
+ unsigned num_customers() const {
+ return num_customers_;
+ }
+
+ unsigned num_customers(const Dish& dish) const {
+ const typename DishMapType::const_iterator it = dish_counts_.find(dish);
+ if (it == dish_counts_.end()) return 0;
+ return it->second;
+ }
+
+ // returns +1 or 0 indicating whether a new table was opened
+ int increment(const Dish& dish) {
+ unsigned& dc = dish_counts_[dish];
+ ++dc;
+ ++num_customers_;
+ if (dc == 1) {
+ ++num_tables_;
+ return 1;
+ } else {
+ return 0;
+ }
+ }
+
+ // returns -1 or 0, indicating whether a table was closed
+ int decrement(const Dish& dish) {
+ unsigned& dc = dish_counts_[dish];
+ assert(dc > 0);
+ if (dc == 1) {
+ dish_counts_.erase(dish);
+ --num_tables_;
+ --num_customers_;
+ return -1;
+ } else {
+ assert(dc > 1);
+ --dc;
+ --num_customers_;
+ return 0;
+ }
+ }
+
+ double prob(const Dish& dish, const double& p0) const {
+ const typename DishMapType::const_iterator it = dish_counts_.find(dish);
+ const double r = num_tables_ * discount_ + concentration_;
+ if (it == dish_counts_.end()) {
+ return r * p0 / (num_customers_ + concentration_);
+ } else {
+ return (it->second - discount_ + r * p0) /
+ (num_customers_ + concentration_);
+ }
+ }
+
+ double log_crp_prob() const {
+ return log_crp_prob(discount_, concentration_);
+ }
+
+ static double log_beta_density(const double& x, const double& alpha, const double& beta) {
+ assert(x > 0.0);
+ assert(x < 1.0);
+ assert(alpha > 0.0);
+ assert(beta > 0.0);
+ const double lp = (alpha-1)*log(x)+(beta-1)*log(1-x)+lgamma(alpha+beta)-lgamma(alpha)-lgamma(beta);
+ return lp;
+ }
+
+ static double log_gamma_density(const double& x, const double& shape, const double& rate) {
+ assert(x >= 0.0);
+ assert(shape > 0.0);
+ assert(rate > 0.0);
+ const double lp = (shape-1)*log(x) - shape*log(rate) - x/rate - lgamma(shape);
+ return lp;
+ }
+
+ // taken from http://en.wikipedia.org/wiki/Chinese_restaurant_process
+ // does not include P_0's
+ double log_crp_prob(const double& discount, const double& concentration) const {
+ double lp = 0.0;
+ if (has_discount_prior())
+ lp = log_beta_density(discount, discount_prior_alpha_, discount_prior_beta_);
+ if (has_concentration_prior())
+ lp += log_gamma_density(concentration, concentration_prior_shape_, concentration_prior_rate_);
+ assert(lp <= 0.0);
+ if (num_customers_) {
+ if (discount > 0.0) {
+ const double r = lgamma(1.0 - discount);
+ lp += lgamma(concentration) - lgamma(concentration + num_customers_)
+ + num_tables_ * log(discount) + lgamma(concentration / discount + num_tables_)
+ - lgamma(concentration / discount);
+ assert(std::isfinite(lp));
+ for (typename DishMapType::const_iterator it = dish_counts_.begin();
+ it != dish_counts_.end(); ++it) {
+ const unsigned& cur = it->second;
+ lp += lgamma(cur - discount) - r;
+ }
+ } else {
+ assert(!"not implemented yet");
+ }
+ }
+ assert(std::isfinite(lp));
+ return lp;
+ }
+
+ void resample_hyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) {
+ assert(has_discount_prior() || has_concentration_prior());
+ DiscountResampler dr(*this);
+ ConcentrationResampler cr(*this);
+ for (int iter = 0; iter < nloop; ++iter) {
+ if (has_concentration_prior()) {
+ concentration_ = slice_sampler1d(cr, concentration_, *rng, 0.0,
+ std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
+ }
+ if (has_discount_prior()) {
+ discount_ = slice_sampler1d(dr, discount_, *rng, std::numeric_limits<double>::min(),
+ 1.0, 0.0, niterations, 100*niterations);
+ }
+ }
+ concentration_ = slice_sampler1d(cr, concentration_, *rng, 0.0,
+ std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
+ }
+
+ struct DiscountResampler {
+ DiscountResampler(const CCRP_OneTable& crp) : crp_(crp) {}
+ const CCRP_OneTable& crp_;
+ double operator()(const double& proposed_discount) const {
+ return crp_.log_crp_prob(proposed_discount, crp_.concentration_);
+ }
+ };
+
+ struct ConcentrationResampler {
+ ConcentrationResampler(const CCRP_OneTable& crp) : crp_(crp) {}
+ const CCRP_OneTable& crp_;
+ double operator()(const double& proposed_concentration) const {
+ return crp_.log_crp_prob(crp_.discount_, proposed_concentration);
+ }
+ };
+
+ void Print(std::ostream* out) const {
+ (*out) << "PYP(d=" << discount_ << ",c=" << concentration_ << ") customers=" << num_customers_ << std::endl;
+ for (typename DishMapType::const_iterator it = dish_counts_.begin(); it != dish_counts_.end(); ++it) {
+ (*out) << " " << it->first << " = " << it->second << std::endl;
+ }
+ }
+
+ typedef typename DishMapType::const_iterator const_iterator;
+ const_iterator begin() const {
+ return dish_counts_.begin();
+ }
+ const_iterator end() const {
+ return dish_counts_.end();
+ }
+
+ unsigned num_tables_;
+ unsigned num_customers_;
+ DishMapType dish_counts_;
+
+ double discount_;
+ double concentration_;
+
+ // optional beta prior on discount_ (NaN if no prior)
+ double discount_prior_alpha_;
+ double discount_prior_beta_;
+
+ // optional gamma prior on concentration_ (NaN if no prior)
+ double concentration_prior_shape_;
+ double concentration_prior_rate_;
+};
+
+template <typename T,typename H>
+std::ostream& operator<<(std::ostream& o, const CCRP_OneTable<T,H>& c) {
+ c.Print(&o);
+ return o;
+}
+
+#endif
diff --git a/utils/fdict.cc b/utils/fdict.cc
index baa0b552..676c951c 100644
--- a/utils/fdict.cc
+++ b/utils/fdict.cc
@@ -9,6 +9,10 @@ using namespace std;
Dict FD::dict_;
bool FD::frozen_ = false;
+#ifdef HAVE_CMPH
+PerfectHashFunction* FD::hash_ = NULL;
+#endif
+
std::string FD::Convert(std::vector<WordID> const& v) {
return Convert(&*v.begin(),&*v.end());
}
diff --git a/utils/fdict.h b/utils/fdict.h
index 70315a38..9c8d7cde 100644
--- a/utils/fdict.h
+++ b/utils/fdict.h
@@ -1,27 +1,59 @@
#ifndef _FDICT_H_
#define _FDICT_H_
+#include "config.h"
+
+#include <iostream>
#include <string>
#include <vector>
#include "dict.h"
+#ifdef HAVE_CMPH
+#include "perfect_hash.h"
+#include "string_to.h"
+#endif
+
struct FD {
// once the FD is frozen, new features not already in the
// dictionary will return 0
static void Freeze() {
frozen_ = true;
}
- static void UnFreeze() {
- frozen_ = false;
+ static bool UsingPerfectHashFunction() {
+#ifdef HAVE_CMPH
+ return hash_;
+#else
+ return false;
+#endif
}
-
+ static void EnableHash(const std::string& cmph_file) {
+#ifdef HAVE_CMPH
+ assert(dict_.max() == 0); // dictionary must not have
+ // been added to
+ hash_ = new PerfectHashFunction(cmph_file);
+#endif
+ }
+>>>>>>> upstream/master
static inline int NumFeats() {
+#ifdef HAVE_CMPH
+ if (hash_) return hash_->number_of_keys();
+#endif
return dict_.max() + 1;
}
static inline WordID Convert(const std::string& s) {
+#ifdef HAVE_CMPH
+ if (hash_) return (*hash_)(s);
+#endif
return dict_.Convert(s, frozen_);
}
static inline const std::string& Convert(const WordID& w) {
+#ifdef HAVE_CMPH
+ if (hash_) {
+ static std::string tls;
+ tls = to_string(w);
+ return tls;
+ }
+#endif
return dict_.Convert(w);
}
static std::string Convert(WordID const *i,WordID const* e);
@@ -33,6 +65,9 @@ struct FD {
static Dict dict_;
private:
static bool frozen_;
+#ifdef HAVE_CMPH
+ static PerfectHashFunction* hash_;
+#endif
};
#endif
diff --git a/utils/feature_vector.h b/utils/feature_vector.h
index 733aa99e..a7b61a66 100755
--- a/utils/feature_vector.h
+++ b/utils/feature_vector.h
@@ -3,9 +3,9 @@
#include <vector>
#include "sparse_vector.h"
-#include "fdict.h"
+#include "weights.h"
-typedef double Featval;
+typedef weight_t Featval;
typedef SparseVector<Featval> FeatureVector;
typedef SparseVector<Featval> WeightVector;
typedef std::vector<Featval> DenseWeightVector;
diff --git a/utils/filelib.cc b/utils/filelib.cc
index 79ad2847..d206fc19 100644
--- a/utils/filelib.cc
+++ b/utils/filelib.cc
@@ -2,6 +2,12 @@
#include <unistd.h>
#include <sys/stat.h>
+#include <sys/types.h>
+#include <sys/socket.h>
+#include <cstdlib>
+#include <cstdio>
+#include <sys/stat.h>
+#include <sys/types.h>
using namespace std;
@@ -20,3 +26,28 @@ bool DirectoryExists(const string& dir) {
return false;
}
+void MkDirP(const string& dir) {
+ if (DirectoryExists(dir)) return;
+ if (mkdir(dir.c_str(), 0777)) {
+ perror(dir.c_str());
+ abort();
+ }
+ if (chmod(dir.c_str(), 07777)) {
+ perror(dir.c_str());
+ abort();
+ }
+}
+
+#if 0
+void CopyFile(const string& inf, const string& outf) {
+ WriteFile w(outf);
+ CopyFile(inf,*w);
+}
+#else
+void CopyFile(const string& inf, const string& outf) {
+ ofstream of(outf.c_str(), fstream::trunc|fstream::binary);
+ ifstream in(inf.c_str(), fstream::binary);
+ of << in.rdbuf();
+}
+#endif
+
diff --git a/utils/filelib.h b/utils/filelib.h
index dda98671..bb6e7415 100644
--- a/utils/filelib.h
+++ b/utils/filelib.h
@@ -12,6 +12,7 @@
bool FileExists(const std::string& file_name);
bool DirectoryExists(const std::string& dir_name);
+void MkDirP(const std::string& dir_name);
// reads from standard in if filename is -
// uncompresses if file ends with .gz
@@ -112,9 +113,6 @@ inline void CopyFile(std::string const& inf,std::ostream &out) {
CopyFile(*r,out);
}
-inline void CopyFile(std::string const& inf,std::string const& outf) {
- WriteFile w(outf);
- CopyFile(inf,*w);
-}
+void CopyFile(std::string const& inf,std::string const& outf);
#endif
diff --git a/utils/logval.h b/utils/logval.h
index 6fdc2c42..8a59d0b1 100644
--- a/utils/logval.h
+++ b/utils/logval.h
@@ -25,12 +25,13 @@ class LogVal {
typedef LogVal<T> Self;
LogVal() : s_(), v_(LOGVAL_LOG0) {}
- explicit LogVal(double x) : s_(std::signbit(x)), v_(s_ ? std::log(-x) : std::log(x)) {}
+ LogVal(double x) : s_(std::signbit(x)), v_(s_ ? std::log(-x) : std::log(x)) {}
+ const Self& operator=(double x) { s_ = std::signbit(x); v_ = s_ ? std::log(-x) : std::log(x); return *this; }
LogVal(init_minus_1) : s_(true),v_(0) { }
LogVal(init_1) : s_(),v_(0) { }
LogVal(init_0) : s_(),v_(LOGVAL_LOG0) { }
- LogVal(int x) : s_(x<0), v_(s_ ? std::log(-x) : std::log(x)) {}
- LogVal(unsigned x) : s_(0), v_(std::log(x)) { }
+ explicit LogVal(int x) : s_(x<0), v_(s_ ? std::log(-x) : std::log(x)) {}
+ explicit LogVal(unsigned x) : s_(0), v_(std::log(x)) { }
LogVal(double lnx,bool sign) : s_(sign),v_(lnx) {}
LogVal(double lnx,init_lnx) : s_(),v_(lnx) {}
static Self exp(T lnx) { return Self(lnx,false); }
@@ -141,9 +142,6 @@ class LogVal {
return pow(1/root);
}
- operator T() const {
- if (s_) return -std::exp(v_); else return std::exp(v_);
- }
T as_float() const {
if (s_) return -std::exp(v_); else return std::exp(v_);
}
diff --git a/utils/logval_test.cc b/utils/logval_test.cc
index 4aa452f2..6133f5ce 100644
--- a/utils/logval_test.cc
+++ b/utils/logval_test.cc
@@ -30,13 +30,13 @@ TEST_F(LogValTest,Negate) {
LogVal<double> x(-2.4);
LogVal<double> y(2.4);
y.negate();
- EXPECT_FLOAT_EQ(x,y);
+ EXPECT_FLOAT_EQ(x.as_float(),y.as_float());
}
TEST_F(LogValTest,Inverse) {
LogVal<double> x(1/2.4);
LogVal<double> y(2.4);
- EXPECT_FLOAT_EQ(x,y.inverse());
+ EXPECT_FLOAT_EQ(x.as_float(),y.inverse().as_float());
}
TEST_F(LogValTest,Minus) {
@@ -45,9 +45,9 @@ TEST_F(LogValTest,Minus) {
LogVal<double> z1 = x - y;
LogVal<double> z2 = x;
z2 -= y;
- EXPECT_FLOAT_EQ(z1, z2);
- EXPECT_FLOAT_EQ(z1, 10.0);
- EXPECT_FLOAT_EQ(y - x, -10.0);
+ EXPECT_FLOAT_EQ(z1.as_float(), z2.as_float());
+ EXPECT_FLOAT_EQ(z1.as_float(), 10.0);
+ EXPECT_FLOAT_EQ((y - x).as_float(), -10.0);
}
TEST_F(LogValTest,TestOps) {
@@ -62,8 +62,8 @@ TEST_F(LogValTest,TestOps) {
LogVal<double> bb(-0.3);
cerr << (aa + bb) << endl;
cerr << (bb + aa) << endl;
- EXPECT_FLOAT_EQ((aa + bb), (bb + aa));
- EXPECT_FLOAT_EQ((aa + bb), -0.1);
+ EXPECT_FLOAT_EQ((aa + bb).as_float(), (bb + aa).as_float());
+ EXPECT_FLOAT_EQ((aa + bb).as_float(), -0.1);
}
TEST_F(LogValTest,TestSizes) {
diff --git a/utils/perfect_hash.cc b/utils/perfect_hash.cc
new file mode 100644
index 00000000..706e2741
--- /dev/null
+++ b/utils/perfect_hash.cc
@@ -0,0 +1,37 @@
+#include "config.h"
+
+#ifdef HAVE_CMPH
+
+#include "perfect_hash.h"
+
+#include <cstdio>
+#include <iostream>
+
+using namespace std;
+
+PerfectHashFunction::~PerfectHashFunction() {
+ cmph_destroy(mphf_);
+}
+
+PerfectHashFunction::PerfectHashFunction(const string& fname) {
+ FILE* f = fopen(fname.c_str(), "r");
+ if (!f) {
+ cerr << "Failed to open file " << fname << " for reading: cannot load hash function.\n";
+ abort();
+ }
+ mphf_ = cmph_load(f);
+ if (!mphf_) {
+ cerr << "cmph_load failed on " << fname << "!\n";
+ abort();
+ }
+}
+
+size_t PerfectHashFunction::operator()(const string& key) const {
+ return cmph_search(mphf_, &key[0], key.size());
+}
+
+size_t PerfectHashFunction::number_of_keys() const {
+ return cmph_size(mphf_);
+}
+
+#endif
diff --git a/utils/perfect_hash.h b/utils/perfect_hash.h
new file mode 100644
index 00000000..8ac11f18
--- /dev/null
+++ b/utils/perfect_hash.h
@@ -0,0 +1,24 @@
+#ifndef _PERFECT_HASH_MAP_H_
+#define _PERFECT_HASH_MAP_H_
+
+#include "config.h"
+
+#ifndef HAVE_CMPH
+#error libcmph is required to use PerfectHashFunction
+#endif
+
+#include <vector>
+#include <boost/utility.hpp>
+#include "cmph.h"
+
+class PerfectHashFunction : boost::noncopyable {
+ public:
+ explicit PerfectHashFunction(const std::string& fname);
+ ~PerfectHashFunction();
+ size_t operator()(const std::string& key) const;
+ size_t number_of_keys() const;
+ private:
+ cmph_t *mphf_;
+};
+
+#endif
diff --git a/utils/phmt.cc b/utils/phmt.cc
new file mode 100644
index 00000000..48d9f093
--- /dev/null
+++ b/utils/phmt.cc
@@ -0,0 +1,40 @@
+#include "config.h"
+
+#ifndef HAVE_CMPH
+int main() {
+ return 0;
+}
+#else
+
+#include <iostream>
+#include "weights.h"
+#include "fdict.h"
+
+using namespace std;
+
+int main(int argc, char** argv) {
+ if (argc != 2) { cerr << "Usage: " << argv[0] << " file.mphf\n"; return 1; }
+ FD::EnableHash(argv[1]);
+ cerr << "Number of keys: " << FD::NumFeats() << endl;
+ cerr << "LexFE = " << FD::Convert("LexFE") << endl;
+ cerr << "LexEF = " << FD::Convert("LexEF") << endl;
+ {
+ vector<weight_t> v(FD::NumFeats());
+ v[FD::Convert("LexFE")] = 1.0;
+ v[FD::Convert("LexEF")] = 0.5;
+ cerr << "Writing...\n";
+ Weights::WriteToFile("weights.bin", v);
+ cerr << "Done.\n";
+ }
+ {
+ vector<weight_t> v(FD::NumFeats());
+ cerr << "Reading...\n";
+ Weights::InitFromFile("weights.bin", &v);
+ cerr << "Done.\n";
+ assert(v[FD::Convert("LexFE")] == 1.0);
+ assert(v[FD::Convert("LexEF")] == 0.5);
+ }
+}
+
+#endif
+
diff --git a/utils/reconstruct_weights.cc b/utils/reconstruct_weights.cc
new file mode 100644
index 00000000..d32e4f67
--- /dev/null
+++ b/utils/reconstruct_weights.cc
@@ -0,0 +1,68 @@
+#include <iostream>
+#include <vector>
+#include <cassert>
+
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "filelib.h"
+#include "fdict.h"
+#include "weights.h"
+
+using namespace std;
+namespace po = boost::program_options;
+
+bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("weights,w",po::value<string>(),"Input feature weights file")
+ ("keys,k",po::value<string>(),"Keys file (list of features with dummy value at start)")
+ ("cmph_perfect_hash_file,h",po::value<string>(),"cmph perfect hash function file");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,?", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || !conf->count("cmph_perfect_hash_file") || !conf->count("weights") || !conf->count("keys")) {
+ cerr << "Generate a text format weights file. Options -w -k and -h are required.\n";
+ cerr << dcmdline_options << endl;
+ return false;
+ }
+ return true;
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ if (!InitCommandLine(argc, argv, &conf))
+ return false;
+
+ FD::EnableHash(conf["cmph_perfect_hash_file"].as<string>());
+
+ // load weights
+ vector<weight_t> weights;
+ Weights::InitFromFile(conf["weights"].as<string>(), &weights);
+
+ ReadFile rf(conf["keys"].as<string>());
+ istream& in = *rf.stream();
+ string key;
+ size_t lc = 0;
+ while(getline(in, key)) {
+ ++lc;
+ if (lc == 1) continue;
+ assert(lc <= weights.size());
+ cout << key << " " << weights[lc - 1] << endl;
+ }
+
+ return 0;
+}
+
diff --git a/utils/sampler.h b/utils/sampler.h
index 8567e922..cae660d2 100644
--- a/utils/sampler.h
+++ b/utils/sampler.h
@@ -105,7 +105,7 @@ class SampleSet {
const F& operator[](int i) const { return m_scores[i]; }
F& operator[](int i) { return m_scores[i]; }
bool empty() const { return m_scores.empty(); }
- void add(const prob_t& s) { m_scores.push_back(s); }
+ void add(const F& s) { m_scores.push_back(s); }
void clear() { m_scores.clear(); }
size_t size() const { return m_scores.size(); }
void resize(int size) { m_scores.resize(size); }
diff --git a/utils/sparse_vector.h b/utils/sparse_vector.h
index a55436fb..049151f7 100644
--- a/utils/sparse_vector.h
+++ b/utils/sparse_vector.h
@@ -1,44 +1,6 @@
#ifndef _SPARSE_VECTOR_H_
#define _SPARSE_VECTOR_H_
-#if 0
-
-#if HAVE_BOOST_ARCHIVE_TEXT_OARCHIVE_HPP
- friend class boost::serialization::access;
- template<class Archive>
- void save(Archive & ar, const unsigned int version) const {
- (void) version;
- int eff_size = values_.size();
- const_iterator it = this->begin();
- if (values_.find(0) != values_.end()) { ++it; --eff_size; }
- ar & eff_size;
- while (it != this->end()) {
- const std::pair<const std::string&, const T&> wire_pair(FD::Convert(it->first), it->second);
- ar & wire_pair;
- ++it;
- }
- }
- template<class Archive>
- void load(Archive & ar, const unsigned int version) {
- (void) version;
- this->clear();
- int sz; ar & sz;
- for (int i = 0; i < sz; ++i) {
- std::pair<std::string, T> wire_pair;
- ar & wire_pair;
- this->set_value(FD::Convert(wire_pair.first), wire_pair.second);
- }
- }
- BOOST_SERIALIZATION_SPLIT_MEMBER()
-#endif
-};
-
-#if HAVE_BOOST_ARCHIVE_TEXT_OARCHIVE_HPP
-BOOST_CLASS_TRACKING(SparseVector<double>,track_never)
-#endif
-
-#endif /// FIX
-
#include "fast_sparse_vector.h"
#define SparseVector FastSparseVector
diff --git a/utils/stringlib.cc b/utils/stringlib.cc
index 7aaee9f0..1a152985 100644
--- a/utils/stringlib.cc
+++ b/utils/stringlib.cc
@@ -2,6 +2,7 @@
#include <cstring>
#include <cstdlib>
+#include <cstdio>
#include <cassert>
#include <iostream>
#include <map>
@@ -32,7 +33,12 @@ void ParseTranslatorInput(const string& line, string* input, string* ref) {
void ProcessAndStripSGML(string* pline, map<string, string>* out) {
map<string, string>& meta = *out;
string& line = *pline;
- string lline = LowercaseString(line);
+ string lline = *pline;
+ if (lline.find("<SEG")==0 || lline.find("<Seg")==0) {
+ cerr << "Segment tags <seg> must be lowercase!\n";
+ cerr << " " << *pline << endl;
+ abort();
+ }
if (lline.find("<seg")!=0) return;
size_t close = lline.find(">");
if (close == string::npos) return; // error
@@ -85,3 +91,365 @@ void ProcessAndStripSGML(string* pline, map<string, string>* out) {
}
}
+string SGMLOpenSegTag(const map<string, string>& attr) {
+ ostringstream os;
+ os << "<seg";
+ for (map<string,string>::const_iterator it = attr.begin(); it != attr.end(); ++it)
+ os << ' ' << it->first << '=' << '"' << it->second << '"';
+ os << '>';
+ return os.str();
+}
+
+class MD5 {
+public:
+ typedef unsigned int size_type; // must be 32bit
+
+ MD5();
+ MD5(const string& text);
+ void update(const unsigned char *buf, size_type length);
+ void update(const char *buf, size_type length);
+ MD5& finalize();
+ string hexdigest() const;
+
+private:
+ void init();
+ typedef unsigned char uint1; // 8bit
+ typedef unsigned int uint4; // 32bit
+ enum {blocksize = 64}; // VC6 won't eat a const static int here
+
+ void transform(const uint1 block[blocksize]);
+ static void decode(uint4 output[], const uint1 input[], size_type len);
+ static void encode(uint1 output[], const uint4 input[], size_type len);
+
+ bool finalized;
+ uint1 buffer[blocksize]; // bytes that didn't fit in last 64 byte chunk
+ uint4 count[2]; // 64bit counter for number of bits (lo, hi)
+ uint4 state[4]; // digest so far
+ uint1 digest[16]; // the result
+
+ // low level logic operations
+ static inline uint4 F(uint4 x, uint4 y, uint4 z);
+ static inline uint4 G(uint4 x, uint4 y, uint4 z);
+ static inline uint4 H(uint4 x, uint4 y, uint4 z);
+ static inline uint4 I(uint4 x, uint4 y, uint4 z);
+ static inline uint4 rotate_left(uint4 x, int n);
+ static inline void FF(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);
+ static inline void GG(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);
+ static inline void HH(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);
+ static inline void II(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac);
+};
+
+// Constants for MD5Transform routine.
+#define S11 7
+#define S12 12
+#define S13 17
+#define S14 22
+#define S21 5
+#define S22 9
+#define S23 14
+#define S24 20
+#define S31 4
+#define S32 11
+#define S33 16
+#define S34 23
+#define S41 6
+#define S42 10
+#define S43 15
+#define S44 21
+
+///////////////////////////////////////////////
+
+// F, G, H and I are basic MD5 functions.
+inline MD5::uint4 MD5::F(uint4 x, uint4 y, uint4 z) {
+ return (x&y) | (~x&z);
+}
+
+inline MD5::uint4 MD5::G(uint4 x, uint4 y, uint4 z) {
+ return (x&z) | (y&~z);
+}
+
+inline MD5::uint4 MD5::H(uint4 x, uint4 y, uint4 z) {
+ return x^y^z;
+}
+
+inline MD5::uint4 MD5::I(uint4 x, uint4 y, uint4 z) {
+ return y ^ (x | ~z);
+}
+
+// rotate_left rotates x left n bits.
+inline MD5::uint4 MD5::rotate_left(uint4 x, int n) {
+ return (x << n) | (x >> (32-n));
+}
+
+// FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
+// Rotation is separate from addition to prevent recomputation.
+inline void MD5::FF(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {
+ a = rotate_left(a+ F(b,c,d) + x + ac, s) + b;
+}
+
+inline void MD5::GG(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {
+ a = rotate_left(a + G(b,c,d) + x + ac, s) + b;
+}
+
+inline void MD5::HH(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {
+ a = rotate_left(a + H(b,c,d) + x + ac, s) + b;
+}
+
+inline void MD5::II(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) {
+ a = rotate_left(a + I(b,c,d) + x + ac, s) + b;
+}
+
+//////////////////////////////////////////////
+
+// default ctor, just initailize
+MD5::MD5()
+{
+ init();
+}
+
+//////////////////////////////////////////////
+
+// nifty shortcut ctor, compute MD5 for string and finalize it right away
+MD5::MD5(const string &text)
+{
+ init();
+ update(text.c_str(), text.length());
+ finalize();
+}
+
+//////////////////////////////
+
+void MD5::init()
+{
+ finalized=false;
+
+ count[0] = 0;
+ count[1] = 0;
+
+ // load magic initialization constants.
+ state[0] = 0x67452301;
+ state[1] = 0xefcdab89;
+ state[2] = 0x98badcfe;
+ state[3] = 0x10325476;
+}
+
+//////////////////////////////
+
+// decodes input (unsigned char) into output (uint4). Assumes len is a multiple of 4.
+void MD5::decode(uint4 output[], const uint1 input[], size_type len)
+{
+ for (unsigned int i = 0, j = 0; j < len; i++, j += 4)
+ output[i] = ((uint4)input[j]) | (((uint4)input[j+1]) << 8) |
+ (((uint4)input[j+2]) << 16) | (((uint4)input[j+3]) << 24);
+}
+
+//////////////////////////////
+
+// encodes input (uint4) into output (unsigned char). Assumes len is
+// a multiple of 4.
+void MD5::encode(uint1 output[], const uint4 input[], size_type len)
+{
+ for (size_type i = 0, j = 0; j < len; i++, j += 4) {
+ output[j] = input[i] & 0xff;
+ output[j+1] = (input[i] >> 8) & 0xff;
+ output[j+2] = (input[i] >> 16) & 0xff;
+ output[j+3] = (input[i] >> 24) & 0xff;
+ }
+}
+
+//////////////////////////////
+
+// apply MD5 algo on a block
+void MD5::transform(const uint1 block[blocksize])
+{
+ uint4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];
+ decode (x, block, blocksize);
+
+ /* Round 1 */
+ FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
+ FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
+ FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
+ FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
+ FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
+ FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
+ FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
+ FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
+ FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
+ FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
+ FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
+ FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
+ FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
+ FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
+ FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
+ FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
+
+ /* Round 2 */
+ GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
+ GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
+ GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
+ GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
+ GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
+ GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */
+ GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
+ GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
+ GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
+ GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
+ GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
+ GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
+ GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
+ GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
+ GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
+ GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
+
+ /* Round 3 */
+ HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
+ HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
+ HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
+ HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
+ HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
+ HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
+ HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
+ HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
+ HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
+ HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
+ HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
+ HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */
+ HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
+ HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
+ HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
+ HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
+
+ /* Round 4 */
+ II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
+ II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
+ II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
+ II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
+ II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
+ II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
+ II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
+ II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
+ II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
+ II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
+ II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
+ II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
+ II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
+ II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
+ II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
+ II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
+
+ state[0] += a;
+ state[1] += b;
+ state[2] += c;
+ state[3] += d;
+
+ // Zeroize sensitive information.
+ memset(x, 0, sizeof x);
+}
+
+//////////////////////////////
+
+// MD5 block update operation. Continues an MD5 message-digest
+// operation, processing another message block
+void MD5::update(const unsigned char input[], size_type length)
+{
+ // compute number of bytes mod 64
+ size_type index = count[0] / 8 % blocksize;
+
+ // Update number of bits
+ if ((count[0] += (length << 3)) < (length << 3))
+ count[1]++;
+ count[1] += (length >> 29);
+
+ // number of bytes we need to fill in buffer
+ size_type firstpart = 64 - index;
+
+ size_type i;
+
+ // transform as many times as possible.
+ if (length >= firstpart)
+ {
+ // fill buffer first, transform
+ memcpy(&buffer[index], input, firstpart);
+ transform(buffer);
+
+ // transform chunks of blocksize (64 bytes)
+ for (i = firstpart; i + blocksize <= length; i += blocksize)
+ transform(&input[i]);
+
+ index = 0;
+ }
+ else
+ i = 0;
+
+ // buffer remaining input
+ memcpy(&buffer[index], &input[i], length-i);
+}
+
+//////////////////////////////
+
+// for convenience provide a verson with signed char
+void MD5::update(const char input[], size_type length)
+{
+ update((const unsigned char*)input, length);
+}
+
+//////////////////////////////
+
+// MD5 finalization. Ends an MD5 message-digest operation, writing the
+// the message digest and zeroizing the context.
+MD5& MD5::finalize()
+{
+ static unsigned char padding[64] = {
+ 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ };
+
+ if (!finalized) {
+ // Save number of bits
+ unsigned char bits[8];
+ encode(bits, count, 8);
+
+ // pad out to 56 mod 64.
+ size_type index = count[0] / 8 % 64;
+ size_type padLen = (index < 56) ? (56 - index) : (120 - index);
+ update(padding, padLen);
+
+ // Append length (before padding)
+ update(bits, 8);
+
+ // Store state in digest
+ encode(digest, state, 16);
+
+ // Zeroize sensitive information.
+ memset(buffer, 0, sizeof buffer);
+ memset(count, 0, sizeof count);
+
+ finalized=true;
+ }
+
+ return *this;
+}
+
+//////////////////////////////
+
+// return hex representation of digest as string
+string MD5::hexdigest() const {
+ if (!finalized)
+ return "";
+
+ char buf[33];
+ for (int i=0; i<16; i++)
+ sprintf(buf+i*2, "%02x", digest[i]);
+ buf[32]=0;
+
+ return string(buf);
+}
+
+//////////////////////////////
+
+string md5(const string& str) {
+ MD5 md5 = MD5(str);
+ return md5.hexdigest();
+}
+
diff --git a/utils/stringlib.h b/utils/stringlib.h
index 8022bb88..cafbdac3 100644
--- a/utils/stringlib.h
+++ b/utils/stringlib.h
@@ -249,6 +249,7 @@ inline void SplitCommandAndParam(const std::string& in, std::string* cmd, std::s
}
void ProcessAndStripSGML(std::string* line, std::map<std::string, std::string>* out);
+std::string SGMLOpenSegTag(const std::map<std::string, std::string>& attr);
// given the first character of a UTF8 block, find out how wide it is
// see http://en.wikipedia.org/wiki/UTF-8 for more info
@@ -260,4 +261,6 @@ inline unsigned int UTF8Len(unsigned char x) {
else return 0;
}
+std::string md5(const std::string& in);
+
#endif
diff --git a/utils/tdict.cc b/utils/tdict.cc
index c21b2b48..de234323 100644
--- a/utils/tdict.cc
+++ b/utils/tdict.cc
@@ -13,6 +13,10 @@ using namespace std;
Dict TD::dict_;
+unsigned int TD::NumWords() {
+ return dict_.max();
+}
+
WordID TD::Convert(const std::string& s) {
return dict_.Convert(s);
}
diff --git a/utils/ts.cc b/utils/ts.cc
index 3694e076..bf4f8f69 100644
--- a/utils/ts.cc
+++ b/utils/ts.cc
@@ -7,6 +7,7 @@
#include "prob.h"
#include "sparse_vector.h"
#include "fast_sparse_vector.h"
+#include "stringlib.h"
using namespace std;
@@ -79,6 +80,11 @@ int main() {
y -= y;
}
cerr << "Counted " << c << " times\n";
+
+ cerr << md5("this is a test") << endl;
+ cerr << md5("some other ||| string is") << endl;
+ map<string,string> x; x["id"] = "12"; x["grammar"] = "/path/to/grammar.gz";
+ cerr << SGMLOpenSegTag(x) << endl;
return 0;
}
diff --git a/utils/weights.cc b/utils/weights.cc
index 6b7e58ed..f1406cbf 100644
--- a/utils/weights.cc
+++ b/utils/weights.cc
@@ -8,101 +8,149 @@
using namespace std;
-void Weights::InitFromFile(const std::string& filename, vector<string>* feature_list) {
+void Weights::InitFromFile(const string& filename,
+ vector<weight_t>* pweights,
+ vector<string>* feature_list) {
+ vector<weight_t>& weights = *pweights;
if (!SILENT) cerr << "Reading weights from " << filename << endl;
ReadFile in_file(filename);
istream& in = *in_file.stream();
assert(in);
- int weight_count = 0;
- bool fl = false;
- string buf;
- double val = 0;
- while (in) {
- getline(in, buf);
- if (buf.size() == 0) continue;
- if (buf[0] == '#') continue;
- for (int i = 0; i < buf.size(); ++i)
- if (buf[i] == '=') buf[i] = ' ';
- int start = 0;
- while(start < buf.size() && buf[start] == ' ') ++start;
- int end = 0;
- while(end < buf.size() && buf[end] != ' ') ++end;
- const int fid = FD::Convert(buf.substr(start, end - start));
- while(end < buf.size() && buf[end] == ' ') ++end;
- val = strtod(&buf.c_str()[end], NULL);
- if (isnan(val)) {
- cerr << FD::Convert(fid) << " has weight NaN!\n";
- abort();
+
+ bool read_text = true;
+ if (1) {
+ ReadFile hdrrf(filename);
+ istream& hi = *hdrrf.stream();
+ assert(hi);
+ char buf[10];
+ hi.read(buf, 5);
+ assert(hi.good());
+ if (strncmp(buf, "_PHWf", 5) == 0) {
+ read_text = false;
+ }
+ }
+
+ if (read_text) {
+ int weight_count = 0;
+ bool fl = false;
+ string buf;
+ weight_t val = 0;
+ while (in) {
+ getline(in, buf);
+ if (buf.size() == 0) continue;
+ if (buf[0] == '#') continue;
+ if (buf[0] == ' ') {
+ cerr << "Weights file lines may not start with whitespace.\n" << buf << endl;
+ abort();
+ }
+ for (int i = buf.size() - 1; i > 0; --i)
+ if (buf[i] == '=' || buf[i] == '\t') { buf[i] = ' '; break; }
+ int start = 0;
+ while(start < buf.size() && buf[start] == ' ') ++start;
+ int end = 0;
+ while(end < buf.size() && buf[end] != ' ') ++end;
+ const int fid = FD::Convert(buf.substr(start, end - start));
+ if (feature_list) { feature_list->push_back(buf.substr(start, end - start)); }
+ while(end < buf.size() && buf[end] == ' ') ++end;
+ val = strtod(&buf.c_str()[end], NULL);
+ if (isnan(val)) {
+ cerr << FD::Convert(fid) << " has weight NaN!\n";
+ abort();
+ }
+ if (weights.size() <= fid)
+ weights.resize(fid + 1);
+ weights[fid] = val;
+ ++weight_count;
+ if (!SILENT) {
+ if (weight_count % 50000 == 0) { cerr << '.' << flush; fl = true; }
+ if (weight_count % 2000000 == 0) { cerr << " [" << weight_count << "]\n"; fl = false; }
+ }
}
- if (wv_.size() <= fid)
- wv_.resize(fid + 1);
- wv_[fid] = val;
- if (feature_list) { feature_list->push_back(FD::Convert(fid)); }
- ++weight_count;
if (!SILENT) {
- if (weight_count % 50000 == 0) { cerr << '.' << flush; fl = true; }
- if (weight_count % 2000000 == 0) { cerr << " [" << weight_count << "]\n"; fl = false; }
+ if (fl) { cerr << endl; }
+ cerr << "Loaded " << weight_count << " feature weights\n";
+ }
+ } else { // !read_text
+ char buf[6];
+ in.read(buf, 5);
+ size_t num_keys;
+ in.read(reinterpret_cast<char*>(&num_keys), sizeof(size_t));
+ if (num_keys != FD::NumFeats()) {
+ cerr << "Hash function reports " << FD::NumFeats() << " keys but weights file contains " << num_keys << endl;
+ abort();
+ }
+ weights.resize(num_keys);
+ in.read(reinterpret_cast<char*>(&weights.front()), num_keys * sizeof(weight_t));
+ if (!in.good()) {
+ cerr << "Error loading weights!\n";
+ abort();
+ } else {
+ cerr << " Successfully loaded " << (num_keys * sizeof(weight_t)) << " bytes\n";
}
- }
- if (!SILENT) {
- if (fl) { cerr << endl; }
- cerr << "Loaded " << weight_count << " feature weights\n";
}
}
-void Weights::WriteToFile(const std::string& fname, bool hide_zero_value_features, const string* extra) const {
+void Weights::WriteToFile(const string& fname,
+ const vector<weight_t>& weights,
+ bool hide_zero_value_features,
+ const string* extra) {
WriteFile out(fname);
ostream& o = *out.stream();
assert(o);
- if (extra) { o << "# " << *extra << endl; }
- o.precision(17);
- const int num_feats = FD::NumFeats();
- for (int i = 1; i < num_feats; ++i) {
- const double val = (i < wv_.size() ? wv_[i] : 0.0);
- if (hide_zero_value_features && val == 0.0) continue;
- o << FD::Convert(i) << ' ' << val << endl;
- }
-}
-
-void Weights::InitVector(std::vector<double>* w) const {
- *w = wv_;
-}
+ bool write_text = !FD::UsingPerfectHashFunction();
-void Weights::InitSparseVector(SparseVector<double>* w) const {
- for (int i = 1; i < wv_.size(); ++i) {
- const double& weight = wv_[i];
- if (weight) w->set_value(i, weight);
+ if (write_text) {
+ if (extra) { o << "# " << *extra << endl; }
+ o.precision(17);
+ const int num_feats = FD::NumFeats();
+ for (int i = 1; i < num_feats; ++i) {
+ const weight_t val = (i < weights.size() ? weights[i] : 0.0);
+ if (hide_zero_value_features && val == 0.0) continue;
+ o << FD::Convert(i) << ' ' << val << endl;
+ }
+ } else {
+ o.write("_PHWf", 5);
+ const size_t keys = FD::NumFeats();
+ assert(keys <= weights.size());
+ o.write(reinterpret_cast<const char*>(&keys), sizeof(keys));
+ o.write(reinterpret_cast<const char*>(&weights[0]), keys * sizeof(weight_t));
}
}
-void Weights::InitFromVector(const std::vector<double>& w) {
- wv_ = w;
- if (wv_.size() > FD::NumFeats())
- cerr << "WARNING: initializing weight vector has more features than the global feature dictionary!\n";
- wv_.resize(FD::NumFeats(), 0);
-}
-
-void Weights::InitFromVector(const SparseVector<double>& w) {
- wv_.clear();
- wv_.resize(FD::NumFeats(), 0.0);
- for (int i = 1; i < FD::NumFeats(); ++i)
- wv_[i] = w.value(i);
+void Weights::InitSparseVector(const vector<weight_t>& dv,
+ SparseVector<weight_t>* sv) {
+ sv->clear();
+ for (unsigned i = 1; i < dv.size(); ++i) {
+ if (dv[i]) sv->set_value(i, dv[i]);
+ }
}
-void Weights::SetWeight(SparseVector<double>* v, const string fname, const double w) {
- WordID fid = FD::Convert(fname);
- cout << "fid " << fid << endl;
- SetWeight(v, fid, w);
+void Weights::SanityCheck(const vector<weight_t>& w) {
+ for (int i = 0; i < w.size(); ++i) {
+ assert(!isnan(w[i]));
+ assert(!isinf(w[i]));
+ }
}
-void Weights::SetWeight(SparseVector<double>* v, const WordID fid, const double w) {
- wv_.resize(FD::NumFeats(), 0.0);
- wv_[fid] = w;
- //v->set_value(fid, w);
-}
+struct FComp {
+ const vector<weight_t>& w_;
+ FComp(const vector<weight_t>& w) : w_(w) {}
+ bool operator()(int a, int b) const {
+ return fabs(w_[a]) > fabs(w_[b]);
+ }
+};
-void Weights::sz()
-{
- cout << "wv_.size() " << wv_.size() << endl;
+void Weights::ShowLargestFeatures(const vector<weight_t>& w) {
+ vector<int> fnums(w.size());
+ for (int i = 0; i < w.size(); ++i)
+ fnums[i] = i;
+ vector<int>::iterator mid = fnums.begin();
+ mid += (w.size() > 10 ? 10 : w.size());
+ partial_sort(fnums.begin(), mid, fnums.end(), FComp(w));
+ cerr << "TOP FEATURES:";
+ for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) {
+ cerr << ' ' << FD::Convert(*i) << '=' << w[*i];
+ }
+ cerr << endl;
}
diff --git a/utils/weights.h b/utils/weights.h
index 86701add..30f71db0 100644
--- a/utils/weights.h
+++ b/utils/weights.h
@@ -2,25 +2,29 @@
#define _WEIGHTS_H_
#include <string>
-#include <map>
#include <vector>
#include "sparse_vector.h"
+// warning: in the future this will become float
+typedef double weight_t;
+
class Weights {
public:
- Weights() {}
- void InitFromFile(const std::string& fname, std::vector<std::string>* feature_list = NULL);
- void WriteToFile(const std::string& fname, bool hide_zero_value_features = true, const std::string* extra = NULL) const;
- void InitVector(std::vector<double>* w) const;
- void InitSparseVector(SparseVector<double>* w) const;
- void InitFromVector(const std::vector<double>& w);
- void InitFromVector(const SparseVector<double>& w);
- void SetWeight(SparseVector<double>* v, const std::string f, const double w);
- void SetWeight(SparseVector<double>* v, const WordID fid, const double w);
- std::vector<double>* getw() { return &wv_; }; // probably a hack
- void sz();
+ static void InitFromFile(const std::string& fname,
+ std::vector<weight_t>* weights,
+ std::vector<std::string>* feature_list = NULL);
+ static void WriteToFile(const std::string& fname,
+ const std::vector<weight_t>& weights,
+ bool hide_zero_value_features = true,
+ const std::string* extra = NULL);
+ static void InitSparseVector(const std::vector<weight_t>& dv,
+ SparseVector<weight_t>* sv);
+ // check for infinities, NaNs, etc
+ static void SanityCheck(const std::vector<weight_t>& w);
+ // write weights with largest magnitude to cerr
+ static void ShowLargestFeatures(const std::vector<weight_t>& w);
private:
- std::vector<double> wv_;
+ Weights();
};
#endif
diff --git a/utils/weights_test.cc b/utils/weights_test.cc
index 8a4c26ef..938b311f 100644
--- a/utils/weights_test.cc
+++ b/utils/weights_test.cc
@@ -14,11 +14,10 @@ class WeightsTest : public testing::Test {
virtual void TearDown() { }
};
-
TEST_F(WeightsTest,Load) {
- Weights w;
- w.InitFromFile("test_data/weights");
- w.WriteToFile("-");
+ vector<weight_t> v;
+ Weights::InitFromFile("test_data/weights", &v);
+ Weights::WriteToFile("-", v);
}
int main(int argc, char **argv) {
diff --git a/vest/mr_vest_generate_mapper_input.cc b/vest/mr_vest_generate_mapper_input.cc
index b84c44bc..0c094fd5 100644
--- a/vest/mr_vest_generate_mapper_input.cc
+++ b/vest/mr_vest_generate_mapper_input.cc
@@ -223,16 +223,16 @@ struct oracle_directions {
cerr << "Forest repo: " << forest_repository << endl;
assert(DirectoryExists(forest_repository));
vector<string> features;
- weights.InitFromFile(weights_file, &features);
+ vector<weight_t> dorigin;
+ Weights::InitFromFile(weights_file, &dorigin, &features);
if (optimize_features.size())
features=optimize_features;
- weights.InitSparseVector(&origin);
+ Weights::InitSparseVector(dorigin, &origin);
fids.clear();
AddFeatureIds(features);
oracles.resize(dev_set_size);
}
- Weights weights;
void AddFeatureIds(vector<string> const& features) {
int i = fids.size();
fids.resize(fids.size()+features.size());