summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore2
-rw-r--r--Makefile.am2
-rwxr-xr-xcompound-split/compound-split.pl2
-rw-r--r--configure.ac2
-rw-r--r--decoder/decoder.cc4
-rw-r--r--decoder/decoder.h1
-rw-r--r--decoder/scfg_translator.cc19
-rw-r--r--decoder/translator.h3
-rw-r--r--dtrain/Makefile.am7
-rw-r--r--dtrain/README.md48
-rw-r--r--dtrain/dtrain.cc623
-rw-r--r--dtrain/dtrain.h95
-rwxr-xr-xdtrain/hstreaming/avg.rb32
-rw-r--r--dtrain/hstreaming/cdec.ini22
-rw-r--r--dtrain/hstreaming/dtrain.ini15
-rwxr-xr-xdtrain/hstreaming/dtrain.sh9
-rwxr-xr-xdtrain/hstreaming/hadoop-streaming-job.sh30
-rwxr-xr-xdtrain/hstreaming/lplp.rb131
-rw-r--r--dtrain/hstreaming/red-test9
-rw-r--r--dtrain/kbestget.h145
-rw-r--r--dtrain/ksampler.h52
-rw-r--r--dtrain/pairsampling.h112
-rw-r--r--dtrain/score.cc145
-rw-r--r--dtrain/score.h154
-rw-r--r--dtrain/test/example/README6
-rw-r--r--dtrain/test/example/cdec.ini24
-rw-r--r--dtrain/test/example/dtrain.ini21
-rw-r--r--dtrain/test/example/nc-wmt11.1k.gzbin0 -> 21185883 bytes
-rw-r--r--dtrain/test/example/nc-wmt11.en.srilm.gzbin0 -> 16017291 bytes
-rw-r--r--dtrain/test/toy/cdec.ini2
-rw-r--r--dtrain/test/toy/dtrain.ini12
-rw-r--r--dtrain/test/toy/input2
-rw-r--r--environment/LocalConfig.pm2
-rwxr-xr-xklm/compile.sh2
-rw-r--r--mira/kbest_mira.cc4
-rw-r--r--utils/dict.h2
-rw-r--r--utils/fast_sparse_vector.h16
-rw-r--r--utils/sampler.h2
38 files changed, 1749 insertions, 10 deletions
diff --git a/.gitignore b/.gitignore
index 28d5a60a..638ad83f 100644
--- a/.gitignore
+++ b/.gitignore
@@ -151,6 +151,8 @@ dpmert/Makefile.in
dpmert/mr_dpmert_generate_mapper_input
dpmert/*.o
decoder/logval_test
+dtrain/dtrain
+dtrain/*.o
extools/build_lexical_translation
extools/filter_grammar
extools/score_grammar
diff --git a/Makefile.am b/Makefile.am
index b5cba524..134d7aac 100644
--- a/Makefile.am
+++ b/Makefile.am
@@ -1,7 +1,7 @@
# warning - the subdirectories in the following list should
# be kept in topologically sorted order. Also, DO NOT introduce
# cyclic dependencies between these directories!
-SUBDIRS = utils mteval klm/util klm/lm decoder phrasinator training mira dpmert pro-train rampion extools gi/pf gi/markov_al rst_parser
+SUBDIRS = utils mteval klm/util klm/lm decoder phrasinator training mira dtrain dpmert pro-train rampion extools gi/pf gi/markov_al rst_parser
#gi/pyp-topics/src gi/clda/src gi/posterior-regularisation/prjava
diff --git a/compound-split/compound-split.pl b/compound-split/compound-split.pl
index 62259146..807ddb0f 100755
--- a/compound-split/compound-split.pl
+++ b/compound-split/compound-split.pl
@@ -32,7 +32,7 @@ $LANG = lc $LANG;
die "Can't find $CDEC\n" unless -f $CDEC;
die "Can't execute $CDEC\n" unless -x $CDEC;
die "Don't know about language: $LANG\n" unless -d "./$LANG";
-my $CONFIG="cdec-$LANG.ini";
+my $CONFIG="/mnt/proj/developer/simianer/cdec_head/compound-split/cdec-$LANG.ini";
die "Can't find $CONFIG" unless -f $CONFIG;
die "--output must be '1best' or 'plf'\n" unless ($OUTPUT =~ /^(plf|1best)$/);
print STDERR "(Run with --help for options)\n";
diff --git a/configure.ac b/configure.ac
index 81773e08..b709a2c9 100644
--- a/configure.ac
+++ b/configure.ac
@@ -130,4 +130,4 @@ then
AM_CONDITIONAL([GLC], true)
fi
-AC_OUTPUT(Makefile rst_parser/Makefile utils/Makefile mteval/Makefile extools/Makefile decoder/Makefile phrasinator/Makefile training/Makefile dpmert/Makefile pro-train/Makefile rampion/Makefile klm/util/Makefile klm/lm/Makefile mira/Makefile gi/pyp-topics/src/Makefile gi/clda/src/Makefile gi/pf/Makefile gi/markov_al/Makefile)
+AC_OUTPUT(Makefile rst_parser/Makefile utils/Makefile mteval/Makefile extools/Makefile decoder/Makefile phrasinator/Makefile training/Makefile dpmert/Makefile pro-train/Makefile rampion/Makefile klm/util/Makefile klm/lm/Makefile mira/Makefile dtrain/Makefile gi/pyp-topics/src/Makefile gi/clda/src/Makefile gi/pf/Makefile gi/markov_al/Makefile)
diff --git a/decoder/decoder.cc b/decoder/decoder.cc
index d4f8f06d..ec6f75f7 100644
--- a/decoder/decoder.cc
+++ b/decoder/decoder.cc
@@ -734,6 +734,10 @@ void Decoder::SetSupplementalGrammar(const std::string& grammar_string) {
assert(pimpl_->translator->GetDecoderType() == "SCFG");
static_cast<SCFGTranslator&>(*pimpl_->translator).SetSupplementalGrammar(grammar_string);
}
+void Decoder::SetSentenceGrammarFromString(const std::string& grammar_str) {
+ assert(pimpl_->translator->GetDecoderType() == "SCFG");
+ static_cast<SCFGTranslator&>(*pimpl_->translator).SetSentenceGrammarFromString(grammar_str);
+}
bool DecoderImpl::Decode(const string& input, DecoderObserver* o) {
diff --git a/decoder/decoder.h b/decoder/decoder.h
index 9d009ffa..6b2f7b16 100644
--- a/decoder/decoder.h
+++ b/decoder/decoder.h
@@ -55,6 +55,7 @@ struct Decoder {
// that will be used on subsequent calls to Decode. rules should be in standard
// text format. This function does NOT read from a file.
void SetSupplementalGrammar(const std::string& grammar);
+ void SetSentenceGrammarFromString(const std::string& grammar_str);
private:
boost::program_options::variables_map conf;
boost::shared_ptr<DecoderImpl> pimpl_;
diff --git a/decoder/scfg_translator.cc b/decoder/scfg_translator.cc
index d978d8b9..646d67fa 100644
--- a/decoder/scfg_translator.cc
+++ b/decoder/scfg_translator.cc
@@ -103,6 +103,21 @@ struct SCFGTranslatorImpl {
grammars.push_back(sup_grammar_);
}
+ struct NameEquals { NameEquals(const string name) : name_(name) {}
+ bool operator()(const GrammarPtr& x) const { return x->GetGrammarName() == name_; } const string name_; };
+
+ void SetSentenceGrammarFromString(const std::string& grammar_str) {
+ assert( grammar_str != "" );
+ if (!SILENT) cerr << "Setting sentence grammar" << endl;
+ usingSentenceGrammar = true;
+ istringstream in( grammar_str );
+ TextGrammar* sent_grammar = new TextGrammar( &in );
+ sent_grammar->SetMaxSpan( max_span_limit );
+ sent_grammar->SetGrammarName( "__psg" );
+ grammars.erase ( remove_if(grammars.begin(), grammars.end(), NameEquals("__psg")), grammars.end() );
+ grammars.push_back( GrammarPtr(sent_grammar) );
+ }
+
bool Translate(const string& input,
SentenceMetadata* smeta,
const vector<double>& weights,
@@ -304,6 +319,10 @@ void SCFGTranslator::SetSupplementalGrammar(const std::string& grammar) {
pimpl_->SetSupplementalGrammar(grammar);
}
+void SCFGTranslator::SetSentenceGrammarFromString(const std::string& grammar_str) {
+ pimpl_->SetSentenceGrammarFromString(grammar_str);
+}
+
void SCFGTranslator::SentenceCompleteImpl() {
if(usingSentenceGrammar) // Drop the last sentence grammar from the list of grammars
diff --git a/decoder/translator.h b/decoder/translator.h
index 9d6dd97d..cfd3b08a 100644
--- a/decoder/translator.h
+++ b/decoder/translator.h
@@ -7,6 +7,8 @@
#include <boost/shared_ptr.hpp>
#include <boost/program_options/variables_map.hpp>
+#include "grammar.h"
+
class Hypergraph;
class SentenceMetadata;
@@ -57,6 +59,7 @@ class SCFGTranslator : public Translator {
public:
SCFGTranslator(const boost::program_options::variables_map& conf);
void SetSupplementalGrammar(const std::string& grammar);
+ void SetSentenceGrammarFromString(const std::string& grammar);
virtual std::string GetDecoderType() const;
protected:
bool TranslateImpl(const std::string& src,
diff --git a/dtrain/Makefile.am b/dtrain/Makefile.am
new file mode 100644
index 00000000..f39d161e
--- /dev/null
+++ b/dtrain/Makefile.am
@@ -0,0 +1,7 @@
+bin_PROGRAMS = dtrain
+
+dtrain_SOURCES = dtrain.cc score.cc
+dtrain_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
+
+AM_CPPFLAGS = -O3 -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval
+
diff --git a/dtrain/README.md b/dtrain/README.md
new file mode 100644
index 00000000..92d6ba0d
--- /dev/null
+++ b/dtrain/README.md
@@ -0,0 +1,48 @@
+This is a simple (and parallelizable) tuning method for cdec
+which is able to train the weights of very many (sparse) features.
+It was used here:
+ "Joint Feature Selection in Distributed Stochastic
+ Learning for Large-Scale Discriminative Training in
+ SMT"
+(Simianer, Riezler, Dyer; ACL 2012)
+
+
+Building
+--------
+Builds when building cdec, see ../BUILDING .
+To build only parts needed for dtrain do
+```
+ autoreconf -ifv
+ ./configure [--disable-test]
+ cd dtrain/; make
+```
+
+Running
+-------
+To run this on a dev set locally:
+```
+ #define DTRAIN_LOCAL
+```
+otherwise remove that line or undef, then recompile. You need a single
+grammar file or input annotated with per-sentence grammars (psg) as you
+would use with cdec. Additionally you need to give dtrain a file with
+references (--refs) when running locally.
+
+The input for use with hadoop streaming looks like this:
+```
+ <sid>\t<source>\t<ref>\t<grammar rules separated by \t>
+```
+To convert a psg to this format you need to replace all "\n"
+by "\t". Make sure there are no tabs in your data.
+
+For an example of local usage (with the 'distributed' format)
+the see test/example/ . This expects dtrain to be built without
+DTRAIN_LOCAL.
+
+Legal
+-----
+Copyright (c) 2012 by Patrick Simianer <p@simianer.de>
+
+See the file ../LICENSE.txt for the licensing terms that this software is
+released under.
+
diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc
new file mode 100644
index 00000000..e817e7ab
--- /dev/null
+++ b/dtrain/dtrain.cc
@@ -0,0 +1,623 @@
+#include "dtrain.h"
+
+
+bool
+dtrain_init(int argc, char** argv, po::variables_map* cfg)
+{
+ po::options_description ini("Configuration File Options");
+ ini.add_options()
+ ("input", po::value<string>()->default_value("-"), "input file")
+ ("output", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT")
+ ("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)")
+ ("decoder_config", po::value<string>(), "configuration file for cdec")
+ ("print_weights", po::value<string>(), "weights to print on each iteration")
+ ("stop_after", po::value<unsigned>()->default_value(0), "stop after X input sentences")
+ ("tmp", po::value<string>()->default_value("/tmp"), "temp dir to use")
+ ("keep", po::value<bool>()->zero_tokens(), "keep weights files for each iteration")
+ ("hstreaming", po::value<string>(), "run in hadoop streaming mode, arg is a task id")
+ ("epochs", po::value<unsigned>()->default_value(10), "# of iterations T (per shard)")
+ ("k", po::value<unsigned>()->default_value(100), "how many translations to sample")
+ ("sample_from", po::value<string>()->default_value("kbest"), "where to sample translations from: 'kbest', 'forest'")
+ ("filter", po::value<string>()->default_value("uniq"), "filter kbest list: 'not', 'uniq'")
+ ("pair_sampling", po::value<string>()->default_value("XYX"), "how to sample pairs: 'all', 'XYX' or 'PRO'")
+ ("hi_lo", po::value<float>()->default_value(0.1), "hi and lo (X) for XYX (default 0.1), <= 0.5")
+ ("pair_threshold", po::value<score_t>()->default_value(0), "bleu [0,1] threshold to filter pairs")
+ ("N", po::value<unsigned>()->default_value(4), "N for Ngrams (BLEU)")
+ ("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring: bleu, stupid_, smooth_, approx_")
+ ("learning_rate", po::value<weight_t>()->default_value(0.0001), "learning rate")
+ ("gamma", po::value<weight_t>()->default_value(0), "gamma for SVM (0 for perceptron)")
+ ("select_weights", po::value<string>()->default_value("last"), "output best, last, avg weights ('VOID' to throw away)")
+ ("rescale", po::value<bool>()->zero_tokens(), "rescale weight vector after each input")
+ ("l1_reg", po::value<string>()->default_value("none"), "apply l1 regularization as in 'Tsuroka et al' (2010)")
+ ("l1_reg_strength", po::value<weight_t>(), "l1 regularization strength")
+ ("fselect", po::value<weight_t>()->default_value(-1), "TODO select top x percent of features after each epoch")
+ ("approx_bleu_d", po::value<score_t>()->default_value(0.9), "discount for approx. BLEU")
+#ifdef DTRAIN_LOCAL
+ ("refs,r", po::value<string>(), "references in local mode")
+#endif
+ ("noup", po::value<bool>()->zero_tokens(), "do not update weights");
+ po::options_description cl("Command Line Options");
+ cl.add_options()
+ ("config,c", po::value<string>(), "dtrain config file")
+ ("quiet,q", po::value<bool>()->zero_tokens(), "be quiet")
+ ("verbose,v", po::value<bool>()->zero_tokens(), "be verbose");
+ cl.add(ini);
+ po::store(parse_command_line(argc, argv, cl), *cfg);
+ if (cfg->count("config")) {
+ ifstream ini_f((*cfg)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(ini_f, ini), *cfg);
+ }
+ po::notify(*cfg);
+ if (!cfg->count("decoder_config")) {
+ cerr << cl << endl;
+ return false;
+ }
+ if (cfg->count("hstreaming") && (*cfg)["output"].as<string>() != "-") {
+ cerr << "When using 'hstreaming' the 'output' param should be '-'." << endl;
+ return false;
+ }
+#ifdef DTRAIN_LOCAL
+ if ((*cfg)["input"].as<string>() == "-") {
+ cerr << "Can't use stdin as input with this binary. Recompile without DTRAIN_LOCAL" << endl;
+ return false;
+ }
+#endif
+ if ((*cfg)["sample_from"].as<string>() != "kbest"
+ && (*cfg)["sample_from"].as<string>() != "forest") {
+ cerr << "Wrong 'sample_from' param: '" << (*cfg)["sample_from"].as<string>() << "', use 'kbest' or 'forest'." << endl;
+ return false;
+ }
+ if ((*cfg)["sample_from"].as<string>() == "kbest" && (*cfg)["filter"].as<string>() != "uniq" &&
+ (*cfg)["filter"].as<string>() != "not") {
+ cerr << "Wrong 'filter' param: '" << (*cfg)["filter"].as<string>() << "', use 'uniq' or 'not'." << endl;
+ return false;
+ }
+ if ((*cfg)["pair_sampling"].as<string>() != "all" && (*cfg)["pair_sampling"].as<string>() != "XYX" &&
+ (*cfg)["pair_sampling"].as<string>() != "PRO") {
+ cerr << "Wrong 'pair_sampling' param: '" << (*cfg)["pair_sampling"].as<string>() << "'." << endl;
+ return false;
+ }
+ if(cfg->count("hi_lo") && (*cfg)["pair_sampling"].as<string>() != "XYX") {
+ cerr << "Warning: hi_lo only works with pair_sampling XYX." << endl;
+ }
+ if((*cfg)["hi_lo"].as<float>() > 0.5 || (*cfg)["hi_lo"].as<float>() < 0.01) {
+ cerr << "hi_lo must lie in [0.01, 0.5]" << endl;
+ return false;
+ }
+ if ((*cfg)["pair_threshold"].as<score_t>() < 0) {
+ cerr << "The threshold must be >= 0!" << endl;
+ return false;
+ }
+ if ((*cfg)["select_weights"].as<string>() != "last" && (*cfg)["select_weights"].as<string>() != "best" &&
+ (*cfg)["select_weights"].as<string>() != "avg" && (*cfg)["select_weights"].as<string>() != "VOID") {
+ cerr << "Wrong 'select_weights' param: '" << (*cfg)["select_weights"].as<string>() << "', use 'last' or 'best'." << endl;
+ return false;
+ }
+ return true;
+}
+
+int
+main(int argc, char** argv)
+{
+ // handle most parameters
+ po::variables_map cfg;
+ if (!dtrain_init(argc, argv, &cfg)) exit(1); // something is wrong
+ bool quiet = false;
+ if (cfg.count("quiet")) quiet = true;
+ bool verbose = false;
+ if (cfg.count("verbose")) verbose = true;
+ bool noup = false;
+ if (cfg.count("noup")) noup = true;
+ bool hstreaming = false;
+ string task_id;
+ if (cfg.count("hstreaming")) {
+ hstreaming = true;
+ quiet = true;
+ task_id = cfg["hstreaming"].as<string>();
+ cerr.precision(17);
+ }
+ bool rescale = false;
+ if (cfg.count("rescale")) rescale = true;
+ HSReporter rep(task_id);
+ bool keep = false;
+ if (cfg.count("keep")) keep = true;
+
+ const unsigned k = cfg["k"].as<unsigned>();
+ const unsigned N = cfg["N"].as<unsigned>();
+ const unsigned T = cfg["epochs"].as<unsigned>();
+ const unsigned stop_after = cfg["stop_after"].as<unsigned>();
+ const string filter_type = cfg["filter"].as<string>();
+ const string sample_from = cfg["sample_from"].as<string>();
+ const string pair_sampling = cfg["pair_sampling"].as<string>();
+ const score_t pair_threshold = cfg["pair_threshold"].as<score_t>();
+ const string select_weights = cfg["select_weights"].as<string>();
+ const float hi_lo = cfg["hi_lo"].as<float>();
+ const score_t approx_bleu_d = cfg["approx_bleu_d"].as<score_t>();
+ bool average = false;
+ if (select_weights == "avg")
+ average = true;
+ vector<string> print_weights;
+ if (cfg.count("print_weights"))
+ boost::split(print_weights, cfg["print_weights"].as<string>(), boost::is_any_of(" "));
+
+ // setup decoder
+ register_feature_functions();
+ SetSilent(true);
+ ReadFile ini_rf(cfg["decoder_config"].as<string>());
+ if (!quiet)
+ cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl;
+ Decoder decoder(ini_rf.stream());
+
+ // scoring metric/scorer
+ string scorer_str = cfg["scorer"].as<string>();
+ LocalScorer* scorer;
+ if (scorer_str == "bleu") {
+ scorer = dynamic_cast<BleuScorer*>(new BleuScorer);
+ } else if (scorer_str == "stupid_bleu") {
+ scorer = dynamic_cast<StupidBleuScorer*>(new StupidBleuScorer);
+ } else if (scorer_str == "smooth_bleu") {
+ scorer = dynamic_cast<SmoothBleuScorer*>(new SmoothBleuScorer);
+ } else if (scorer_str == "approx_bleu") {
+ scorer = dynamic_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d));
+ } else {
+ cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl;
+ exit(1);
+ }
+ vector<score_t> bleu_weights;
+ scorer->Init(N, bleu_weights);
+
+ // setup decoder observer
+ MT19937 rng; // random number generator, only for forest sampling
+ HypSampler* observer;
+ if (sample_from == "kbest")
+ observer = dynamic_cast<KBestGetter*>(new KBestGetter(k, filter_type));
+ else
+ observer = dynamic_cast<KSampler*>(new KSampler(k, &rng));
+ observer->SetScorer(scorer);
+
+ // init weights
+ vector<weight_t>& dense_weights = decoder.CurrentWeightVector();
+ SparseVector<weight_t> lambdas, cumulative_penalties, w_average;
+ if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as<string>(), &dense_weights);
+ Weights::InitSparseVector(dense_weights, &lambdas);
+
+ // meta params for perceptron, SVM
+ weight_t eta = cfg["learning_rate"].as<weight_t>();
+ weight_t gamma = cfg["gamma"].as<weight_t>();
+
+ // l1 regularization
+ bool l1naive = false;
+ bool l1clip = false;
+ bool l1cumul = false;
+ weight_t l1_reg = 0;
+ if (cfg["l1_reg"].as<string>() != "none") {
+ string s = cfg["l1_reg"].as<string>();
+ if (s == "naive") l1naive = true;
+ else if (s == "clip") l1clip = true;
+ else if (s == "cumul") l1cumul = true;
+ l1_reg = cfg["l1_reg_strength"].as<weight_t>();
+ }
+
+ // output
+ string output_fn = cfg["output"].as<string>();
+ // input
+ string input_fn = cfg["input"].as<string>();
+ ReadFile input(input_fn);
+ // buffer input for t > 0
+ vector<string> src_str_buf; // source strings (decoder takes only strings)
+ vector<vector<WordID> > ref_ids_buf; // references as WordID vecs
+ // where temp files go
+ string tmp_path = cfg["tmp"].as<string>();
+#ifdef DTRAIN_LOCAL
+ string refs_fn = cfg["refs"].as<string>();
+ ReadFile refs(refs_fn);
+#else
+ string grammar_buf_fn = gettmpf(tmp_path, "dtrain-grammars");
+ ogzstream grammar_buf_out;
+ grammar_buf_out.open(grammar_buf_fn.c_str());
+#endif
+
+ unsigned in_sz = UINT_MAX; // input index, input size
+ vector<pair<score_t, score_t> > all_scores;
+ score_t max_score = 0.;
+ unsigned best_it = 0;
+ float overall_time = 0.;
+
+ // output cfg
+ if (!quiet) {
+ cerr << _p5;
+ cerr << endl << "dtrain" << endl << "Parameters:" << endl;
+ cerr << setw(25) << "k " << k << endl;
+ cerr << setw(25) << "N " << N << endl;
+ cerr << setw(25) << "T " << T << endl;
+ cerr << setw(25) << "scorer '" << scorer_str << "'" << endl;
+ if (scorer_str == "approx_bleu")
+ cerr << setw(25) << "approx. B discount " << approx_bleu_d << endl;
+ cerr << setw(25) << "sample from " << "'" << sample_from << "'" << endl;
+ if (sample_from == "kbest")
+ cerr << setw(25) << "filter " << "'" << filter_type << "'" << endl;
+ cerr << setw(25) << "learning rate " << eta << endl;
+ cerr << setw(25) << "gamma " << gamma << endl;
+ cerr << setw(25) << "pairs " << "'" << pair_sampling << "'" << endl;
+ if (pair_sampling == "XYX")
+ cerr << setw(25) << "hi lo " << hi_lo << endl;
+ cerr << setw(25) << "pair threshold " << pair_threshold << endl;
+ cerr << setw(25) << "select weights " << "'" << select_weights << "'" << endl;
+ if (cfg.count("l1_reg"))
+ cerr << setw(25) << "l1 reg " << l1_reg << " '" << cfg["l1_reg"].as<string>() << "'" << endl;
+ if (rescale)
+ cerr << setw(25) << "rescale " << rescale << endl;
+ cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl;
+ cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
+#ifdef DTRAIN_LOCAL
+ cerr << setw(25) << "refs " << "'" << refs_fn << "'" << endl;
+#endif
+ cerr << setw(25) << "output " << "'" << output_fn << "'" << endl;
+ if (cfg.count("input_weights"))
+ cerr << setw(25) << "weights in " << "'" << cfg["input_weights"].as<string>() << "'" << endl;
+ if (cfg.count("stop-after"))
+ cerr << setw(25) << "stop_after " << stop_after << endl;
+ if (!verbose) cerr << "(a dot represents " << DTRAIN_DOTS << " inputs)" << endl;
+ }
+
+
+ for (unsigned t = 0; t < T; t++) // T epochs
+ {
+
+ if (hstreaming) cerr << "reporter:status:Iteration #" << t+1 << " of " << T << endl;
+
+ time_t start, end;
+ time(&start);
+#ifndef DTRAIN_LOCAL
+ igzstream grammar_buf_in;
+ if (t > 0) grammar_buf_in.open(grammar_buf_fn.c_str());
+#endif
+ score_t score_sum = 0.;
+ score_t model_sum(0);
+ unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0;
+ if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl;
+
+ while(true)
+ {
+
+ string in;
+ bool next = false, stop = false; // next iteration or premature stop
+ if (t == 0) {
+ if(!getline(*input, in)) next = true;
+ } else {
+ if (ii == in_sz) next = true; // stop if we reach the end of our input
+ }
+ // stop after X sentences (but still go on for those)
+ if (stop_after > 0 && stop_after == ii && !next) stop = true;
+
+ // produce some pretty output
+ if (!quiet && !verbose) {
+ if (ii == 0) cerr << " ";
+ if ((ii+1) % (DTRAIN_DOTS) == 0) {
+ cerr << ".";
+ cerr.flush();
+ }
+ if ((ii+1) % (20*DTRAIN_DOTS) == 0) {
+ cerr << " " << ii+1 << endl;
+ if (!next && !stop) cerr << " ";
+ }
+ if (stop) {
+ if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
+ cerr << "Stopping after " << stop_after << " input sentences." << endl;
+ } else {
+ if (next) {
+ if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
+ }
+ }
+ }
+
+ // next iteration
+ if (next || stop) break;
+
+ // weights
+ lambdas.init_vector(&dense_weights);
+
+ // getting input
+ vector<WordID> ref_ids; // reference as vector<WordID>
+#ifndef DTRAIN_LOCAL
+ vector<string> in_split; // input: sid\tsrc\tref\tpsg
+ if (t == 0) {
+ // handling input
+ split_in(in, in_split);
+ if (hstreaming && ii == 0) cerr << "reporter:counter:" << task_id << ",First ID," << in_split[0] << endl;
+ // getting reference
+ vector<string> ref_tok;
+ boost::split(ref_tok, in_split[2], boost::is_any_of(" "));
+ register_and_convert(ref_tok, ref_ids);
+ ref_ids_buf.push_back(ref_ids);
+ // process and set grammar
+ bool broken_grammar = true; // ignore broken grammars
+ for (string::iterator it = in.begin(); it != in.end(); it++) {
+ if (!isspace(*it)) {
+ broken_grammar = false;
+ break;
+ }
+ }
+ if (broken_grammar) {
+ cerr << "Broken grammar for " << ii+1 << "! Ignoring this input." << endl;
+ continue;
+ }
+ boost::replace_all(in, "\t", "\n");
+ in += "\n";
+ grammar_buf_out << in << DTRAIN_GRAMMAR_DELIM << " " << in_split[0] << endl;
+ decoder.SetSentenceGrammarFromString(in);
+ src_str_buf.push_back(in_split[1]);
+ // decode
+ observer->SetRef(ref_ids);
+ decoder.Decode(in_split[1], observer);
+ } else {
+ // get buffered grammar
+ string grammar_str;
+ while (true) {
+ string rule;
+ getline(grammar_buf_in, rule);
+ if (boost::starts_with(rule, DTRAIN_GRAMMAR_DELIM)) break;
+ grammar_str += rule + "\n";
+ }
+ decoder.SetSentenceGrammarFromString(grammar_str);
+ // decode
+ observer->SetRef(ref_ids_buf[ii]);
+ decoder.Decode(src_str_buf[ii], observer);
+ }
+#else
+ if (t == 0) {
+ string r_;
+ getline(*refs, r_);
+ vector<string> ref_tok;
+ boost::split(ref_tok, r_, boost::is_any_of(" "));
+ register_and_convert(ref_tok, ref_ids);
+ ref_ids_buf.push_back(ref_ids);
+ src_str_buf.push_back(in);
+ } else {
+ ref_ids = ref_ids_buf[ii];
+ }
+ observer->SetRef(ref_ids);
+ if (t == 0)
+ decoder.Decode(in, observer);
+ else
+ decoder.Decode(src_str_buf[ii], observer);
+#endif
+
+ // get (scored) samples
+ vector<ScoredHyp>* samples = observer->GetSamples();
+
+ if (verbose) {
+ cerr << "--- ref for " << ii << ": ";
+ if (t > 0) printWordIDVec(ref_ids_buf[ii]);
+ else printWordIDVec(ref_ids);
+ cerr << endl;
+ for (unsigned u = 0; u < samples->size(); u++) {
+ cerr << _p5 << _np << "[" << u << ". '";
+ printWordIDVec((*samples)[u].w);
+ cerr << "'" << endl;
+ cerr << "SCORE=" << (*samples)[u].score << ",model="<< (*samples)[u].model << endl;
+ cerr << "F{" << (*samples)[u].f << "} ]" << endl << endl;
+ }
+ }
+
+ score_sum += (*samples)[0].score; // stats for 1best
+ model_sum += (*samples)[0].model;
+
+ // weight updates
+ if (!noup) {
+ vector<pair<ScoredHyp,ScoredHyp> > pairs;
+ if (pair_sampling == "all")
+ all_pairs(samples, pairs, pair_threshold);
+ if (pair_sampling == "XYX")
+ partXYX(samples, pairs, pair_threshold, hi_lo);
+ if (pair_sampling == "PRO")
+ PROsampling(samples, pairs, pair_threshold);
+ npairs += pairs.size();
+
+ for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin();
+ it != pairs.end(); it++) {
+ bool rank_error = it->first.model <= it->second.model;
+ if (rank_error) rank_errors++;
+ score_t margin = fabs(it->first.model - it->second.model);
+ if (!rank_error && margin < 1) margin_violations++;
+ if (rank_error || (gamma && margin<1)) {
+ SparseVector<weight_t> diff_vec = it->first.f - it->second.f;
+ lambdas.plus_eq_v_times_s(diff_vec, eta);
+ if (gamma)
+ lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs));
+ }
+ }
+
+ // l1 regularization
+ if (l1naive) {
+ for (unsigned d = 0; d < lambdas.size(); d++) {
+ weight_t v = lambdas.get(d);
+ lambdas.set_value(d, v - sign(v) * l1_reg);
+ }
+ } else if (l1clip) {
+ for (unsigned d = 0; d < lambdas.size(); d++) {
+ if (lambdas.nonzero(d)) {
+ weight_t v = lambdas.get(d);
+ if (v > 0) {
+ lambdas.set_value(d, max(0., v - l1_reg));
+ } else {
+ lambdas.set_value(d, min(0., v + l1_reg));
+ }
+ }
+ }
+ } else if (l1cumul) {
+ weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input
+ for (unsigned d = 0; d < lambdas.size(); d++) {
+ if (lambdas.nonzero(d)) {
+ weight_t v = lambdas.get(d);
+ weight_t penalty = 0;
+ if (v > 0) {
+ penalty = max(0., v-(acc_penalty + cumulative_penalties.get(d)));
+ } else {
+ penalty = min(0., v+(acc_penalty - cumulative_penalties.get(d)));
+ }
+ lambdas.set_value(d, penalty);
+ cumulative_penalties.set_value(d, cumulative_penalties.get(d)+penalty);
+ }
+ }
+ }
+
+ }
+
+ if (rescale) lambdas /= lambdas.l2norm();
+
+ ++ii;
+
+ if (hstreaming) {
+ rep.update_counter("Seen #"+boost::lexical_cast<string>(t+1), 1u);
+ rep.update_counter("Seen", 1u);
+ }
+
+ } // input loop
+
+ if (average) w_average += lambdas;
+
+ if (scorer_str == "approx_bleu") scorer->Reset();
+
+ if (t == 0) {
+ in_sz = ii; // remember size of input (# lines)
+ if (hstreaming) {
+ rep.update_counter("|Input|", ii);
+ rep.update_gcounter("|Input|", ii);
+ rep.update_gcounter("Shards", 1u);
+ }
+ }
+
+#ifndef DTRAIN_LOCAL
+ if (t == 0) {
+ grammar_buf_out.close();
+ } else {
+ grammar_buf_in.close();
+ }
+#endif
+
+ // print some stats
+ score_t score_avg = score_sum/(score_t)in_sz;
+ score_t model_avg = model_sum/(score_t)in_sz;
+ score_t score_diff, model_diff;
+ if (t > 0) {
+ score_diff = score_avg - all_scores[t-1].first;
+ model_diff = model_avg - all_scores[t-1].second;
+ } else {
+ score_diff = score_avg;
+ model_diff = model_avg;
+ }
+
+ unsigned nonz = 0;
+ if (!quiet || hstreaming) nonz = (unsigned)lambdas.size_nonzero();
+
+ if (!quiet) {
+ cerr << _p9 << _p << "WEIGHTS" << endl;
+ for (vector<string>::iterator it = print_weights.begin(); it != print_weights.end(); it++) {
+ cerr << setw(18) << *it << " = " << lambdas.get(FD::Convert(*it)) << endl;
+ }
+ cerr << " ---" << endl;
+ cerr << _np << " 1best avg score: " << score_avg;
+ cerr << _p << " (" << score_diff << ")" << endl;
+ cerr << _np << " 1best avg model score: " << model_avg;
+ cerr << _p << " (" << model_diff << ")" << endl;
+ cerr << " avg # pairs: ";
+ cerr << _np << npairs/(float)in_sz << endl;
+ cerr << " avg # rank err: ";
+ cerr << rank_errors/(float)in_sz << endl;
+ cerr << " avg # margin viol: ";
+ cerr << margin_violations/(float)in_sz << endl;
+ cerr << " non0 feature count: " << nonz << endl;
+ }
+
+ if (hstreaming) {
+ rep.update_counter("Score 1best avg #"+boost::lexical_cast<string>(t+1), (unsigned)(score_avg*DTRAIN_SCALE));
+ rep.update_counter("Model 1best avg #"+boost::lexical_cast<string>(t+1), (unsigned)(model_avg*DTRAIN_SCALE));
+ rep.update_counter("Pairs avg #"+boost::lexical_cast<string>(t+1), (unsigned)((npairs/(weight_t)in_sz)*DTRAIN_SCALE));
+ rep.update_counter("Rank errors avg #"+boost::lexical_cast<string>(t+1), (unsigned)((rank_errors/(weight_t)in_sz)*DTRAIN_SCALE));
+ rep.update_counter("Margin violations avg #"+boost::lexical_cast<string>(t+1), (unsigned)((margin_violations/(weight_t)in_sz)*DTRAIN_SCALE));
+ rep.update_counter("Non zero feature count #"+boost::lexical_cast<string>(t+1), nonz);
+ rep.update_gcounter("Non zero feature count #"+boost::lexical_cast<string>(t+1), nonz);
+ }
+
+ pair<score_t,score_t> remember;
+ remember.first = score_avg;
+ remember.second = model_avg;
+ all_scores.push_back(remember);
+ if (score_avg > max_score) {
+ max_score = score_avg;
+ best_it = t;
+ }
+ time (&end);
+ float time_diff = difftime(end, start);
+ overall_time += time_diff;
+ if (!quiet) {
+ cerr << _p2 << _np << "(time " << time_diff/60. << " min, ";
+ cerr << time_diff/in_sz << " s/S)" << endl;
+ }
+ if (t+1 != T && !quiet) cerr << endl;
+
+ if (noup) break;
+
+ // write weights to file
+ if (select_weights == "best" || keep) {
+ lambdas.init_vector(&dense_weights);
+ string w_fn = "weights." + boost::lexical_cast<string>(t) + ".gz";
+ Weights::WriteToFile(w_fn, dense_weights, true);
+ }
+
+ } // outer loop
+
+ if (average) w_average /= (weight_t)T;
+
+#ifndef DTRAIN_LOCAL
+ unlink(grammar_buf_fn.c_str());
+#endif
+
+ if (!noup) {
+ if (!quiet) cerr << endl << "Writing weights file to '" << output_fn << "' ..." << endl;
+ if (select_weights == "last" || average) { // last, average
+ WriteFile of(output_fn); // works with '-'
+ ostream& o = *of.stream();
+ o.precision(17);
+ o << _np;
+ if (average) {
+ for (SparseVector<weight_t>::const_iterator it = w_average.begin(); it != w_average.end(); ++it) {
+ if (it->second == 0) continue;
+ o << FD::Convert(it->first) << '\t' << it->second << endl;
+ }
+ } else {
+ for (SparseVector<weight_t>::const_iterator it = lambdas.begin(); it != lambdas.end(); ++it) {
+ if (it->second == 0) continue;
+ o << FD::Convert(it->first) << '\t' << it->second << endl;
+ }
+ }
+ } else if (select_weights == "VOID") { // do nothing with the weights
+ } else { // best
+ if (output_fn != "-") {
+ CopyFile("weights."+boost::lexical_cast<string>(best_it)+".gz", output_fn);
+ } else {
+ ReadFile bestw("weights."+boost::lexical_cast<string>(best_it)+".gz");
+ string o;
+ cout.precision(17);
+ cout << _np;
+ while(getline(*bestw, o)) cout << o << endl;
+ }
+ if (!keep) {
+ for (unsigned i = 0; i < T; i++) {
+ string s = "weights." + boost::lexical_cast<string>(i) + ".gz";
+ unlink(s.c_str());
+ }
+ }
+ }
+ if (output_fn == "-" && hstreaming) cout << "__SHARD_COUNT__\t1" << endl;
+ if (!quiet) cerr << "done" << endl;
+ }
+
+ if (!quiet) {
+ cerr << _p5 << _np << endl << "---" << endl << "Best iteration: ";
+ cerr << best_it+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl;
+ cerr << _p2 << "This took " << overall_time/60. << " min." << endl;
+ }
+}
+
diff --git a/dtrain/dtrain.h b/dtrain/dtrain.h
new file mode 100644
index 00000000..15d32e36
--- /dev/null
+++ b/dtrain/dtrain.h
@@ -0,0 +1,95 @@
+#ifndef _DTRAIN_H_
+#define _DTRAIN_H_
+
+#include <iomanip>
+#include <climits>
+#include <string.h>
+
+#include <boost/algorithm/string.hpp>
+#include <boost/program_options.hpp>
+
+#include "ksampler.h"
+#include "pairsampling.h"
+
+#include "filelib.h"
+
+#define DTRAIN_LOCAL
+
+#define DTRAIN_DOTS 10 // after how many inputs to display a '.'
+#define DTRAIN_GRAMMAR_DELIM "########EOS########"
+#define DTRAIN_SCALE 100000
+
+using namespace std;
+using namespace dtrain;
+namespace po = boost::program_options;
+
+inline void register_and_convert(const vector<string>& strs, vector<WordID>& ids)
+{
+ vector<string>::const_iterator it;
+ for (it = strs.begin(); it < strs.end(); it++)
+ ids.push_back(TD::Convert(*it));
+}
+
+inline string gettmpf(const string path, const string infix)
+{
+ char fn[1024];
+ strcpy(fn, path.c_str());
+ strcat(fn, "/");
+ strcat(fn, infix.c_str());
+ strcat(fn, "-XXXXXX");
+ if (!mkstemp(fn)) {
+ cerr << "Cannot make temp file in" << path << " , exiting." << endl;
+ exit(1);
+ }
+ return string(fn);
+}
+
+inline void split_in(string& s, vector<string>& parts)
+{
+ unsigned f = 0;
+ for(unsigned i = 0; i < 3; i++) {
+ unsigned e = f;
+ f = s.find("\t", f+1);
+ if (e != 0) parts.push_back(s.substr(e+1, f-e-1));
+ else parts.push_back(s.substr(0, f));
+ }
+ s.erase(0, f+1);
+}
+
+struct HSReporter
+{
+ string task_id_;
+
+ HSReporter(string task_id) : task_id_(task_id) {}
+
+ inline void update_counter(string name, unsigned amount) {
+ cerr << "reporter:counter:" << task_id_ << "," << name << "," << amount << endl;
+ }
+ inline void update_gcounter(string name, unsigned amount) {
+ cerr << "reporter:counter:Global," << name << "," << amount << endl;
+ }
+};
+
+inline ostream& _np(ostream& out) { return out << resetiosflags(ios::showpos); }
+inline ostream& _p(ostream& out) { return out << setiosflags(ios::showpos); }
+inline ostream& _p2(ostream& out) { return out << setprecision(2); }
+inline ostream& _p5(ostream& out) { return out << setprecision(5); }
+inline ostream& _p9(ostream& out) { return out << setprecision(9); }
+
+inline void printWordIDVec(vector<WordID>& v)
+{
+ for (unsigned i = 0; i < v.size(); i++) {
+ cerr << TD::Convert(v[i]);
+ if (i < v.size()-1) cerr << " ";
+ }
+}
+
+template<typename T>
+inline T sign(T z)
+{
+ if (z == 0) return 0;
+ return z < 0 ? -1 : +1;
+}
+
+#endif
+
diff --git a/dtrain/hstreaming/avg.rb b/dtrain/hstreaming/avg.rb
new file mode 100755
index 00000000..2599c732
--- /dev/null
+++ b/dtrain/hstreaming/avg.rb
@@ -0,0 +1,32 @@
+#!/usr/bin/env ruby
+# first arg may be an int of custom shard count
+
+shard_count_key = "__SHARD_COUNT__"
+
+STDIN.set_encoding 'utf-8'
+STDOUT.set_encoding 'utf-8'
+
+w = {}
+c = {}
+w.default = 0
+c.default = 0
+while line = STDIN.gets
+ key, val = line.split /\s/
+ w[key] += val.to_f
+ c[key] += 1
+end
+
+if ARGV.size == 0
+ shard_count = w["__SHARD_COUNT__"]
+else
+ shard_count = ARGV[0].to_f
+end
+w.each_key { |k|
+ if k == shard_count_key
+ next
+ else
+ puts "#{k}\t#{w[k]/shard_count}"
+ #puts "# #{c[k]}"
+ end
+}
+
diff --git a/dtrain/hstreaming/cdec.ini b/dtrain/hstreaming/cdec.ini
new file mode 100644
index 00000000..d4f5cecd
--- /dev/null
+++ b/dtrain/hstreaming/cdec.ini
@@ -0,0 +1,22 @@
+formalism=scfg
+add_pass_through_rules=true
+scfg_max_span_limit=15
+intersection_strategy=cube_pruning
+cubepruning_pop_limit=30
+feature_function=WordPenalty
+feature_function=KLanguageModel nc-wmt11.en.srilm.gz
+#feature_function=ArityPenalty
+#feature_function=CMR2008ReorderingFeatures
+#feature_function=Dwarf
+#feature_function=InputIndicator
+#feature_function=LexNullJump
+#feature_function=NewJump
+#feature_function=NgramFeatures
+#feature_function=NonLatinCount
+#feature_function=OutputIndicator
+#feature_function=RuleIdentityFeatures
+#feature_function=RuleNgramFeatures
+#feature_function=RuleShape
+#feature_function=SourceSpanSizeFeatures
+#feature_function=SourceWordPenalty
+#feature_function=SpanFeatures
diff --git a/dtrain/hstreaming/dtrain.ini b/dtrain/hstreaming/dtrain.ini
new file mode 100644
index 00000000..a2c219a1
--- /dev/null
+++ b/dtrain/hstreaming/dtrain.ini
@@ -0,0 +1,15 @@
+input=-
+output=-
+decoder_config=cdec.ini
+tmp=/var/hadoop/mapred/local/
+epochs=1
+k=100
+N=4
+learning_rate=0.0001
+gamma=0
+scorer=stupid_bleu
+sample_from=kbest
+filter=uniq
+pair_sampling=XYX
+pair_threshold=0
+select_weights=last
diff --git a/dtrain/hstreaming/dtrain.sh b/dtrain/hstreaming/dtrain.sh
new file mode 100755
index 00000000..877ff94c
--- /dev/null
+++ b/dtrain/hstreaming/dtrain.sh
@@ -0,0 +1,9 @@
+#!/bin/bash
+# script to run dtrain with a task id
+
+pushd . &>/dev/null
+cd ..
+ID=$(basename $(pwd)) # attempt_...
+popd &>/dev/null
+./dtrain -c dtrain.ini --hstreaming $ID
+
diff --git a/dtrain/hstreaming/hadoop-streaming-job.sh b/dtrain/hstreaming/hadoop-streaming-job.sh
new file mode 100755
index 00000000..92419956
--- /dev/null
+++ b/dtrain/hstreaming/hadoop-streaming-job.sh
@@ -0,0 +1,30 @@
+#!/bin/sh
+
+EXP=a_simple_test
+
+# change these vars to fit your hadoop installation
+HADOOP_HOME=/usr/lib/hadoop-0.20
+JAR=contrib/streaming/hadoop-streaming-0.20.2-cdh3u1.jar
+HSTREAMING="$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/$JAR"
+
+ IN=input_on_hdfs
+OUT=output_weights_on_hdfs
+
+# you can -reducer to NONE if you want to
+# do feature selection/averaging locally (e.g. to
+# keep weights of all epochs)
+$HSTREAMING \
+ -mapper "dtrain.sh" \
+ -reducer "ruby lplp.rb l2 select_k 100000" \
+ -input $IN \
+ -output $OUT \
+ -file dtrain.sh \
+ -file lplp.rb \
+ -file ../dtrain \
+ -file dtrain.ini \
+ -file cdec.ini \
+ -file ../test/example/nc-wmt11.en.srilm.gz \
+ -jobconf mapred.reduce.tasks=30 \
+ -jobconf mapred.max.map.failures.percent=0 \
+ -jobconf mapred.job.name="dtrain $EXP"
+
diff --git a/dtrain/hstreaming/lplp.rb b/dtrain/hstreaming/lplp.rb
new file mode 100755
index 00000000..f0cd58c5
--- /dev/null
+++ b/dtrain/hstreaming/lplp.rb
@@ -0,0 +1,131 @@
+# lplp.rb
+
+# norms
+def l0(feature_column, n)
+ if feature_column.size >= n then return 1 else return 0 end
+end
+
+def l1(feature_column, n=-1)
+ return feature_column.map { |i| i.abs }.reduce { |sum,i| sum+i }
+end
+
+def l2(feature_column, n=-1)
+ return Math.sqrt feature_column.map { |i| i.abs2 }.reduce { |sum,i| sum+i }
+end
+
+def linfty(feature_column, n=-1)
+ return feature_column.map { |i| i.abs }.max
+end
+
+# stats
+def median(feature_column, n)
+ return feature_column.concat(0.step(n-feature_column.size-1).map{|i|0}).sort[feature_column.size/2]
+end
+
+def mean(feature_column, n)
+ return feature_column.reduce { |sum, i| sum+i } / n
+end
+
+# selection
+def select_k(weights, norm_fun, n, k=10000)
+ weights.sort{|a,b| norm_fun.call(b[1], n) <=> norm_fun.call(a[1], n)}.each { |p|
+ puts "#{p[0]}\t#{mean(p[1], n)}"
+ k -= 1
+ if k == 0 then break end
+ }
+end
+
+def cut(weights, norm_fun, n, epsilon=0.0001)
+ weights.each { |k,v|
+ if norm_fun.call(v, n).abs >= epsilon
+ puts "#{k}\t#{mean(v, n)}"
+ end
+ }
+end
+
+# test
+def _test()
+ puts
+ w = {}
+ w["a"] = [1, 2, 3]
+ w["b"] = [1, 2]
+ w["c"] = [66]
+ w["d"] = [10, 20, 30]
+ n = 3
+ puts w.to_s
+ puts
+ puts "select_k"
+ puts "l0 expect ad"
+ select_k(w, method(:l0), n, 2)
+ puts "l1 expect cd"
+ select_k(w, method(:l1), n, 2)
+ puts "l2 expect c"
+ select_k(w, method(:l2), n, 1)
+ puts
+ puts "cut"
+ puts "l1 expect cd"
+ cut(w, method(:l1), n, 7)
+ puts
+ puts "median"
+ a = [1,2,3,4,5]
+ puts a.to_s
+ puts median(a, 5)
+ puts
+ puts "#{median(a, 7)} <- that's because we add missing 0s:"
+ puts a.concat(0.step(7-a.size-1).map{|i|0}).to_s
+ puts
+ puts "mean expect bc"
+ w.clear
+ w["a"] = [2]
+ w["b"] = [2.1]
+ w["c"] = [2.2]
+ cut(w, method(:mean), 1, 2.05)
+ exit
+end
+#_test()
+
+# actually do something
+def usage()
+ puts "lplp.rb <l0,l1,l2,linfty,mean,median> <cut|select_k> <k|threshold> [n] < <input>"
+ puts " l0...: norms for selection"
+ puts "select_k: only output top k (according to the norm of their column vector) features"
+ puts " cut: output features with weight >= threshold"
+ puts " n: if we do not have a shard count use this number for averaging"
+ exit
+end
+
+if ARGV.size < 3 then usage end
+norm_fun = method(ARGV[0].to_sym)
+type = ARGV[1]
+x = ARGV[2].to_f
+
+shard_count_key = "__SHARD_COUNT__"
+
+STDIN.set_encoding 'utf-8'
+STDOUT.set_encoding 'utf-8'
+
+w = {}
+shard_count = 0
+while line = STDIN.gets
+ key, val = line.split /\s+/
+ if key == shard_count_key
+ shard_count += 1
+ next
+ end
+ if w.has_key? key
+ w[key].push val.to_f
+ else
+ w[key] = [val.to_f]
+ end
+end
+
+if ARGV.size == 4 then shard_count = ARGV[3].to_f end
+
+if type == 'cut'
+ cut(w, norm_fun, shard_count, x)
+elsif type == 'select_k'
+ select_k(w, norm_fun, shard_count, x)
+else
+ puts "oh oh"
+end
+
diff --git a/dtrain/hstreaming/red-test b/dtrain/hstreaming/red-test
new file mode 100644
index 00000000..2623d697
--- /dev/null
+++ b/dtrain/hstreaming/red-test
@@ -0,0 +1,9 @@
+a 1
+b 2
+c 3.5
+a 1
+b 2
+c 3.5
+d 1
+e 2
+__SHARD_COUNT__ 2
diff --git a/dtrain/kbestget.h b/dtrain/kbestget.h
new file mode 100644
index 00000000..77d4a139
--- /dev/null
+++ b/dtrain/kbestget.h
@@ -0,0 +1,145 @@
+#ifndef _DTRAIN_KBESTGET_H_
+#define _DTRAIN_KBESTGET_H_
+
+#include "kbest.h" // cdec
+#include "sentence_metadata.h"
+
+#include "verbose.h"
+#include "viterbi.h"
+#include "ff_register.h"
+#include "decoder.h"
+#include "weights.h"
+#include "logval.h"
+
+using namespace std;
+
+namespace dtrain
+{
+
+
+typedef double score_t;
+
+struct ScoredHyp
+{
+ vector<WordID> w;
+ SparseVector<double> f;
+ score_t model;
+ score_t score;
+ unsigned rank;
+};
+
+struct LocalScorer
+{
+ unsigned N_;
+ vector<score_t> w_;
+
+ virtual score_t
+ Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len)=0;
+
+ void Reset() {} // only for approx bleu
+
+ inline void
+ Init(unsigned N, vector<score_t> weights)
+ {
+ assert(N > 0);
+ N_ = N;
+ if (weights.empty()) for (unsigned i = 0; i < N_; i++) w_.push_back(1./N_);
+ else w_ = weights;
+ }
+
+ inline score_t
+ brevity_penalty(const unsigned hyp_len, const unsigned ref_len)
+ {
+ if (hyp_len > ref_len) return 1;
+ return exp(1 - (score_t)ref_len/hyp_len);
+ }
+};
+
+struct HypSampler : public DecoderObserver
+{
+ LocalScorer* scorer_;
+ vector<WordID>* ref_;
+ virtual vector<ScoredHyp>* GetSamples()=0;
+ inline void SetScorer(LocalScorer* scorer) { scorer_ = scorer; }
+ inline void SetRef(vector<WordID>& ref) { ref_ = &ref; }
+};
+////////////////////////////////////////////////////////////////////////////////
+
+
+
+
+struct KBestGetter : public HypSampler
+{
+ const unsigned k_;
+ const string filter_type_;
+ vector<ScoredHyp> s_;
+ unsigned src_len_;
+
+ KBestGetter(const unsigned k, const string filter_type) :
+ k_(k), filter_type_(filter_type) {}
+
+ virtual void
+ NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg)
+ {
+ src_len_ = smeta.GetSourceLength();
+ KBestScored(*hg);
+ }
+
+ vector<ScoredHyp>* GetSamples() { return &s_; }
+
+ void
+ KBestScored(const Hypergraph& forest)
+ {
+ if (filter_type_ == "uniq") {
+ KBestUnique(forest);
+ } else if (filter_type_ == "not") {
+ KBestNoFilter(forest);
+ }
+ }
+
+ void
+ KBestUnique(const Hypergraph& forest)
+ {
+ s_.clear();
+ KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,
+ KBest::FilterUnique, prob_t, EdgeProb> kbest(forest, k_);
+ for (unsigned i = 0; i < k_; ++i) {
+ const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique,
+ prob_t, EdgeProb>::Derivation* d =
+ kbest.LazyKthBest(forest.nodes_.size() - 1, i);
+ if (!d) break;
+ ScoredHyp h;
+ h.w = d->yield;
+ h.f = d->feature_values;
+ h.model = log(d->score);
+ h.rank = i;
+ h.score = scorer_->Score(h.w, *ref_, i, src_len_);
+ s_.push_back(h);
+ }
+ }
+
+ void
+ KBestNoFilter(const Hypergraph& forest)
+ {
+ s_.clear();
+ KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, k_);
+ for (unsigned i = 0; i < k_; ++i) {
+ const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
+ kbest.LazyKthBest(forest.nodes_.size() - 1, i);
+ if (!d) break;
+ ScoredHyp h;
+ h.w = d->yield;
+ h.f = d->feature_values;
+ h.model = log(d->score);
+ h.rank = i;
+ h.score = scorer_->Score(h.w, *ref_, i, src_len_);
+ s_.push_back(h);
+ }
+ }
+};
+
+
+} // namespace
+
+#endif
+
diff --git a/dtrain/ksampler.h b/dtrain/ksampler.h
new file mode 100644
index 00000000..0783f98b
--- /dev/null
+++ b/dtrain/ksampler.h
@@ -0,0 +1,52 @@
+#ifndef _DTRAIN_KSAMPLER_H_
+#define _DTRAIN_KSAMPLER_H_
+
+#include "hg_sampler.h" // cdec
+#include "kbestget.h"
+#include "score.h"
+
+namespace dtrain
+{
+
+
+struct KSampler : public HypSampler
+{
+ const unsigned k_;
+ vector<ScoredHyp> s_;
+ MT19937* prng_;
+ score_t (*scorer)(NgramCounts&, const unsigned, const unsigned, unsigned, vector<score_t>);
+ unsigned src_len_;
+
+ explicit KSampler(const unsigned k, MT19937* prng) :
+ k_(k), prng_(prng) {}
+
+ virtual void
+ NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg)
+ {
+ src_len_ = smeta.GetSourceLength();
+ ScoredSamples(*hg);
+ }
+
+ vector<ScoredHyp>* GetSamples() { return &s_; }
+
+ void ScoredSamples(const Hypergraph& forest) {
+ s_.clear();
+ std::vector<HypergraphSampler::Hypothesis> samples;
+ HypergraphSampler::sample_hypotheses(forest, k_, prng_, &samples);
+ for (unsigned i = 0; i < k_; ++i) {
+ ScoredHyp h;
+ h.w = samples[i].words;
+ h.f = samples[i].fmap;
+ h.model = log(samples[i].model_score);
+ h.rank = i;
+ h.score = scorer_->Score(h.w, *ref_, i, src_len_);
+ s_.push_back(h);
+ }
+ }
+};
+
+
+} // namespace
+
+#endif
+
diff --git a/dtrain/pairsampling.h b/dtrain/pairsampling.h
new file mode 100644
index 00000000..bb01cf4f
--- /dev/null
+++ b/dtrain/pairsampling.h
@@ -0,0 +1,112 @@
+#ifndef _DTRAIN_PAIRSAMPLING_H_
+#define _DTRAIN_PAIRSAMPLING_H_
+
+namespace dtrain
+{
+
+
+bool
+accept_pair(score_t a, score_t b, score_t threshold)
+{
+ if (fabs(a - b) < threshold) return false;
+ return true;
+}
+
+inline void
+all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, float _unused = 1)
+{
+ unsigned sz = s->size();
+ for (unsigned i = 0; i < sz-1; i++) {
+ for (unsigned j = i+1; j < sz; j++) {
+ if (threshold > 0) {
+ if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ } else {
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ }
+ }
+ }
+}
+
+/*
+ * multipartite ranking
+ * sort (descending) by bleu
+ * compare top X to middle Y and low X
+ * cmp middle Y to low X
+ */
+bool
+_XYX_cmp_hyp_by_score(ScoredHyp a, ScoredHyp b)
+{
+ return a.score > b.score;
+}
+inline void
+partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, float hi_lo)
+{
+ sort(s->begin(), s->end(), _XYX_cmp_hyp_by_score);
+ unsigned sz = s->size();
+ unsigned sep = round(sz*hi_lo);
+ for (unsigned i = 0; i < sep; i++) {
+ for (unsigned j = sep; j < sz; j++) {
+ if (threshold > 0) {
+ if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ } else {
+ if((*s)[i].score != (*s)[j].score)
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ }
+ }
+ }
+ for (unsigned i = sep; i < sz-sep; i++) {
+ for (unsigned j = sz-sep; j < sz; j++) {
+ if (threshold > 0) {
+ if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ } else {
+ if((*s)[i].score != (*s)[j].score)
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ }
+ }
+ }
+}
+
+/*
+ * pair sampling as in
+ * 'Tuning as Ranking' (Hopkins & May, 2011)
+ * count = 5000
+ * threshold = 5% BLEU (0.05 for param 3)
+ * cut = top 50
+ */
+bool
+_PRO_cmp_pair_by_diff(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b)
+{
+ return (fabs(a.first.score - a.second.score)) > (fabs(b.first.score - b.second.score));
+}
+inline void
+PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, float _unused = 1)
+{
+ unsigned max_count = 5000, count = 0;
+ bool b = false;
+ for (unsigned i = 0; i < s->size()-1; i++) {
+ for (unsigned j = i+1; j < s->size(); j++) {
+ if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) {
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ if (++count == max_count) {
+ b = true;
+ break;
+ }
+ }
+ }
+ if (b) break;
+ }
+ if (training.size() > 50) {
+ sort(training.begin(), training.end(), _PRO_cmp_pair_by_diff);
+ training.erase(training.begin()+50, training.end());
+ }
+ return;
+}
+
+
+} // namespace
+
+#endif
+
diff --git a/dtrain/score.cc b/dtrain/score.cc
new file mode 100644
index 00000000..b09d32ba
--- /dev/null
+++ b/dtrain/score.cc
@@ -0,0 +1,145 @@
+#include "score.h"
+
+namespace dtrain
+{
+
+
+/*
+ * bleu
+ *
+ * as in "BLEU: a Method for Automatic Evaluation
+ * of Machine Translation"
+ * (Papineni et al. '02)
+ *
+ * NOTE: 0 if for one n \in {1..N} count is 0
+ */
+score_t
+BleuScorer::Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len)
+{
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ unsigned M = N_;
+ vector<score_t> v = w_;
+ if (ref_len < N_) {
+ M = ref_len;
+ for (unsigned i = 0; i < M; i++) v[i] = 1./((score_t)M);
+ }
+ score_t sum = 0;
+ for (unsigned i = 0; i < M; i++) {
+ if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) return 0.;
+ sum += v[i] * log((score_t)counts.clipped_[i]/counts.sum_[i]);
+ }
+ return brevity_penalty(hyp_len, ref_len) * exp(sum);
+}
+
+score_t
+BleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned /*rank*/, const unsigned /*src_len*/)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ NgramCounts counts = make_ngram_counts(hyp, ref, N_);
+ return Bleu(counts, hyp_len, ref_len);
+}
+
+/*
+ * 'stupid' bleu
+ *
+ * as in "ORANGE: a Method for Evaluating
+ * Automatic Evaluation Metrics
+ * for Machine Translation"
+ * (Lin & Och '04)
+ *
+ * NOTE: 0 iff no 1gram match
+ */
+score_t
+StupidBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned /*rank*/, const unsigned /*src_len*/)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ NgramCounts counts = make_ngram_counts(hyp, ref, N_);
+ unsigned M = N_;
+ vector<score_t> v = w_;
+ if (ref_len < N_) {
+ M = ref_len;
+ for (unsigned i = 0; i < M; i++) v[i] = 1./((score_t)M);
+ }
+ score_t sum = 0, add = 0;
+ for (unsigned i = 0; i < M; i++) {
+ if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.;
+ if (i == 1) add = 1;
+ sum += v[i] * log(((score_t)counts.clipped_[i] + add)/((counts.sum_[i] + add)));
+ }
+ return brevity_penalty(hyp_len, ref_len) * exp(sum);
+}
+
+/*
+ * smooth bleu
+ *
+ * as in "An End-to-End Discriminative Approach
+ * to Machine Translation"
+ * (Liang et al. '06)
+ *
+ * NOTE: max is 0.9375
+ */
+score_t
+SmoothBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned /*rank*/, const unsigned /*src_len*/)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ NgramCounts counts = make_ngram_counts(hyp, ref, N_);
+ unsigned M = N_;
+ if (ref_len < N_) M = ref_len;
+ score_t sum = 0.;
+ vector<score_t> i_bleu;
+ for (unsigned i = 0; i < M; i++) i_bleu.push_back(0.);
+ for (unsigned i = 0; i < M; i++) {
+ if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) {
+ break;
+ } else {
+ score_t i_ng = log((score_t)counts.clipped_[i]/counts.sum_[i]);
+ for (unsigned j = i; j < M; j++) {
+ i_bleu[j] += (1/((score_t)j+1)) * i_ng;
+ }
+ }
+ sum += exp(i_bleu[i])/(pow(2, N_-i));
+ }
+ return brevity_penalty(hyp_len, ref_len) * sum;
+}
+
+/*
+ * approx. bleu
+ *
+ * as in "Online Large-Margin Training of Syntactic
+ * and Structural Translation Features"
+ * (Chiang et al. '08)
+ *
+ * NOTE: needs some more code in dtrain.cc
+ */
+score_t
+ApproxBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned rank, const unsigned src_len)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (ref_len == 0) return 0.;
+ score_t score = 0.;
+ NgramCounts counts(N_);
+ if (hyp_len > 0) {
+ counts = make_ngram_counts(hyp, ref, N_);
+ NgramCounts tmp = glob_onebest_counts_ + counts;
+ score = Bleu(tmp, hyp_len, ref_len);
+ }
+ if (rank == 0) { // 'context of 1best translations'
+ glob_onebest_counts_ += counts;
+ glob_onebest_counts_ *= discount_;
+ glob_hyp_len_ = discount_ * (glob_hyp_len_ + hyp_len);
+ glob_ref_len_ = discount_ * (glob_ref_len_ + ref_len);
+ glob_src_len_ = discount_ * (glob_src_len_ + src_len);
+ }
+ return (score_t)glob_src_len_ * score;
+}
+
+
+} // namespace
+
diff --git a/dtrain/score.h b/dtrain/score.h
new file mode 100644
index 00000000..eb8ad912
--- /dev/null
+++ b/dtrain/score.h
@@ -0,0 +1,154 @@
+#ifndef _DTRAIN_SCORE_H_
+#define _DTRAIN_SCORE_H_
+
+#include "kbestget.h"
+
+using namespace std;
+
+namespace dtrain
+{
+
+
+struct NgramCounts
+{
+ unsigned N_;
+ map<unsigned, score_t> clipped_;
+ map<unsigned, score_t> sum_;
+
+ NgramCounts(const unsigned N) : N_(N) { Zero(); }
+
+ inline void
+ operator+=(const NgramCounts& rhs)
+ {
+ assert(N_ == rhs.N_);
+ for (unsigned i = 0; i < N_; i++) {
+ this->clipped_[i] += rhs.clipped_.find(i)->second;
+ this->sum_[i] += rhs.sum_.find(i)->second;
+ }
+ }
+
+ inline const NgramCounts
+ operator+(const NgramCounts &other) const
+ {
+ NgramCounts result = *this;
+ result += other;
+ return result;
+ }
+
+ inline void
+ operator*=(const score_t rhs)
+ {
+ for (unsigned i = 0; i < N_; i++) {
+ this->clipped_[i] *= rhs;
+ this->sum_[i] *= rhs;
+ }
+ }
+
+ inline void
+ Add(const unsigned count, const unsigned ref_count, const unsigned i)
+ {
+ assert(i < N_);
+ if (count > ref_count) {
+ clipped_[i] += ref_count;
+ } else {
+ clipped_[i] += count;
+ }
+ sum_[i] += count;
+ }
+
+ inline void
+ Zero()
+ {
+ unsigned i;
+ for (i = 0; i < N_; i++) {
+ clipped_[i] = 0.;
+ sum_[i] = 0.;
+ }
+ }
+
+ inline void
+ Print()
+ {
+ for (unsigned i = 0; i < N_; i++) {
+ cout << i+1 << "grams (clipped):\t" << clipped_[i] << endl;
+ cout << i+1 << "grams:\t\t\t" << sum_[i] << endl;
+ }
+ }
+};
+
+typedef map<vector<WordID>, unsigned> Ngrams;
+
+inline Ngrams
+make_ngrams(const vector<WordID>& s, const unsigned N)
+{
+ Ngrams ngrams;
+ vector<WordID> ng;
+ for (size_t i = 0; i < s.size(); i++) {
+ ng.clear();
+ for (unsigned j = i; j < min(i+N, s.size()); j++) {
+ ng.push_back(s[j]);
+ ngrams[ng]++;
+ }
+ }
+ return ngrams;
+}
+
+inline NgramCounts
+make_ngram_counts(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned N)
+{
+ Ngrams hyp_ngrams = make_ngrams(hyp, N);
+ Ngrams ref_ngrams = make_ngrams(ref, N);
+ NgramCounts counts(N);
+ Ngrams::iterator it;
+ Ngrams::iterator ti;
+ for (it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++) {
+ ti = ref_ngrams.find(it->first);
+ if (ti != ref_ngrams.end()) {
+ counts.Add(it->second, ti->second, it->first.size() - 1);
+ } else {
+ counts.Add(it->second, 0, it->first.size() - 1);
+ }
+ }
+ return counts;
+}
+
+struct BleuScorer : public LocalScorer
+{
+ score_t Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len);
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
+};
+
+struct StupidBleuScorer : public LocalScorer
+{
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
+};
+
+struct SmoothBleuScorer : public LocalScorer
+{
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
+};
+
+struct ApproxBleuScorer : public BleuScorer
+{
+ NgramCounts glob_onebest_counts_;
+ unsigned glob_hyp_len_, glob_ref_len_, glob_src_len_;
+ score_t discount_;
+
+ ApproxBleuScorer(unsigned N, score_t d) : glob_onebest_counts_(NgramCounts(N)), discount_(d)
+ {
+ glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0;
+ }
+
+ inline void Reset() {
+ glob_onebest_counts_.Zero();
+ glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0.;
+ }
+
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len);
+};
+
+
+} // namespace
+
+#endif
+
diff --git a/dtrain/test/example/README b/dtrain/test/example/README
new file mode 100644
index 00000000..e5a5de59
--- /dev/null
+++ b/dtrain/test/example/README
@@ -0,0 +1,6 @@
+Small example of input format for distributed training.
+Call dtrain from cdec/dtrain/ with ./dtrain -c test/example/dtrain.ini .
+
+For this to work, disable '#define DTRAIN_LOCAL' from dtrain.h
+and recompile.
+
diff --git a/dtrain/test/example/cdec.ini b/dtrain/test/example/cdec.ini
new file mode 100644
index 00000000..6642107f
--- /dev/null
+++ b/dtrain/test/example/cdec.ini
@@ -0,0 +1,24 @@
+formalism=scfg
+add_pass_through_rules=true
+scfg_max_span_limit=15
+intersection_strategy=cube_pruning
+cubepruning_pop_limit=30
+feature_function=WordPenalty
+feature_function=KLanguageModel test/example/nc-wmt11.en.srilm.gz
+# all currently working feature functions for translation:
+# (with those features active that were used in the ACL paper)
+#feature_function=ArityPenalty
+#feature_function=CMR2008ReorderingFeatures
+#feature_function=Dwarf
+#feature_function=InputIndicator
+#feature_function=LexNullJump
+#feature_function=NewJump
+#feature_function=NgramFeatures
+#feature_function=NonLatinCount
+#feature_function=OutputIndicator
+feature_function=RuleIdentityFeatures
+feature_function=RuleNgramFeatures
+feature_function=RuleShape
+#feature_function=SourceSpanSizeFeatures
+#feature_function=SourceWordPenalty
+#feature_function=SpanFeatures
diff --git a/dtrain/test/example/dtrain.ini b/dtrain/test/example/dtrain.ini
new file mode 100644
index 00000000..2ad44688
--- /dev/null
+++ b/dtrain/test/example/dtrain.ini
@@ -0,0 +1,21 @@
+input=test/example/nc-wmt11.1k.gz # use '-' for STDIN
+output=- # a weights file (add .gz for gzip compression) or STDOUT '-'
+decoder_config=test/example/cdec.ini # config for cdec
+# weights for these features will be printed on each iteration
+print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough
+tmp=/tmp
+stop_after=20 # stop epoch after 20 inputs
+
+# interesting stuff
+epochs=3 # run over input 3 times
+k=100 # use 100best lists
+N=4 # optimize (approx) BLEU4
+scorer=stupid_bleu # use 'stupid' BLEU+1
+learning_rate=0.0001 # learning rate
+gamma=0 # use SVM reg
+sample_from=kbest # use kbest lists (as opposed to forest)
+filter=uniq # only unique entries in kbest (surface form)
+pair_sampling=XYX
+hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here
+pair_threshold=0 # minimum distance in BLEU (this will still only use pairs with diff > 0)
+select_weights=VOID # don't output weights
diff --git a/dtrain/test/example/nc-wmt11.1k.gz b/dtrain/test/example/nc-wmt11.1k.gz
new file mode 100644
index 00000000..45496cd8
--- /dev/null
+++ b/dtrain/test/example/nc-wmt11.1k.gz
Binary files differ
diff --git a/dtrain/test/example/nc-wmt11.en.srilm.gz b/dtrain/test/example/nc-wmt11.en.srilm.gz
new file mode 100644
index 00000000..7ce81057
--- /dev/null
+++ b/dtrain/test/example/nc-wmt11.en.srilm.gz
Binary files differ
diff --git a/dtrain/test/toy/cdec.ini b/dtrain/test/toy/cdec.ini
new file mode 100644
index 00000000..98b02d44
--- /dev/null
+++ b/dtrain/test/toy/cdec.ini
@@ -0,0 +1,2 @@
+formalism=scfg
+add_pass_through_rules=true
diff --git a/dtrain/test/toy/dtrain.ini b/dtrain/test/toy/dtrain.ini
new file mode 100644
index 00000000..a091732f
--- /dev/null
+++ b/dtrain/test/toy/dtrain.ini
@@ -0,0 +1,12 @@
+decoder_config=test/toy/cdec.ini
+input=test/toy/input
+output=-
+print_weights=logp shell_rule house_rule small_rule little_rule PassThrough
+k=4
+N=4
+epochs=2
+scorer=bleu
+sample_from=kbest
+filter=uniq
+pair_sampling=all
+learning_rate=1
diff --git a/dtrain/test/toy/input b/dtrain/test/toy/input
new file mode 100644
index 00000000..4d10a9ea
--- /dev/null
+++ b/dtrain/test/toy/input
@@ -0,0 +1,2 @@
+0 ich sah ein kleines haus i saw a little house [S] ||| [NP,1] [VP,2] ||| [1] [2] ||| logp=0 [NP] ||| ich ||| i ||| logp=0 [NP] ||| ein [NN,1] ||| a [1] ||| logp=0 [NN] ||| [JJ,1] haus ||| [1] house ||| logp=0 house_rule=1 [NN] ||| [JJ,1] haus ||| [1] shell ||| logp=0 shell_rule=1 [JJ] ||| kleines ||| small ||| logp=0 small_rule=1 [JJ] ||| kleines ||| little ||| logp=0 little_rule=1 [JJ] ||| grosses ||| big ||| logp=0 [JJ] ||| grosses ||| large ||| logp=0 [VP] ||| [V,1] [NP,2] ||| [1] [2] ||| logp=0 [V] ||| sah ||| saw ||| logp=0 [V] ||| fand ||| found ||| logp=0
+1 ich fand ein kleines haus i found a little house [S] ||| [NP,1] [VP,2] ||| [1] [2] ||| logp=0 [NP] ||| ich ||| i ||| logp=0 [NP] ||| ein [NN,1] ||| a [1] ||| logp=0 [NN] ||| [JJ,1] haus ||| [1] house ||| logp=0 house_rule=1 [NN] ||| [JJ,1] haus ||| [1] shell ||| logp=0 shell_rule=1 [JJ] ||| kleines ||| small ||| logp=0 small_rule=1 [JJ] ||| kleines ||| little ||| logp=0 little_rule=1 [JJ] ||| grosses ||| big ||| logp=0 [JJ] ||| grosses ||| large ||| logp=0 [VP] ||| [V,1] [NP,2] ||| [1] [2] ||| logp=0 [V] ||| sah ||| saw ||| logp=0 [V] ||| fand ||| found ||| logp=0
diff --git a/environment/LocalConfig.pm b/environment/LocalConfig.pm
index abae1e3b..ecabe75d 100644
--- a/environment/LocalConfig.pm
+++ b/environment/LocalConfig.pm
@@ -66,7 +66,7 @@ my $CCONFIG = {
'QSubMemFlag' => ' ',
'JobControl' => 'fork',
'DefaultJobs' => 2,
- },
+ }
};
our $senvironment_name = 'LOCAL';
diff --git a/klm/compile.sh b/klm/compile.sh
index 56f2e9b2..8ca89da4 100755
--- a/klm/compile.sh
+++ b/klm/compile.sh
@@ -3,8 +3,6 @@
#If your code uses ICU, edit util/string_piece.hh and uncomment #define USE_ICU
#I use zlib by default. If you don't want to depend on zlib, remove #define USE_ZLIB from util/file_piece.hh
-#don't need to use if compiling with moses Makefiles already
-
set -e
for i in util/{bit_packing,ersatz_progress,exception,file_piece,murmur_hash,file,mmap} lm/{bhiksha,binary_format,config,lm_exception,model,quantize,read_arpa,search_hashed,search_trie,trie,trie_sort,virtual_interface,vocab}; do
diff --git a/mira/kbest_mira.cc b/mira/kbest_mira.cc
index dc0200d6..60c9ac2b 100644
--- a/mira/kbest_mira.cc
+++ b/mira/kbest_mira.cc
@@ -52,7 +52,7 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)")
("mt_metric,m",po::value<string>()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)")
("max_step_size,C", po::value<double>()->default_value(0.01), "regularization strength (C)")
- ("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Amount to scale MT loss function by")
+ //("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Amount to scale MT loss function by")
("k_best_size,k", po::value<int>()->default_value(250), "Size of hypothesis list to search for oracles")
("sample_forest,f", "Instead of a k-best list, sample k hypotheses from the decoder's forest")
("sample_forest_unit_weight_vector,x", "Before sampling (must use -f option), rescale the weight vector used so it has unit length; this may improve the quality of the samples")
@@ -218,7 +218,7 @@ int main(int argc, char** argv) {
Weights::InitSparseVector(dense_weights, &lambdas);
const double max_step_size = conf["max_step_size"].as<double>();
- const double mt_metric_scale = conf["mt_metric_scale"].as<double>();
+ const double mt_metric_scale = 1.0;//conf["mt_metric_scale"].as<double>();
assert(corpus.size() > 0);
vector<GoodBadOracle> oracles(corpus.size());
diff --git a/utils/dict.h b/utils/dict.h
index 75ea3def..a3400868 100644
--- a/utils/dict.h
+++ b/utils/dict.h
@@ -1,7 +1,6 @@
#ifndef DICT_H_
#define DICT_H_
-
#include <cassert>
#include <cstring>
@@ -74,6 +73,7 @@ class Dict {
inline const std::string& Convert(const WordID& id) const {
if (id == 0) return b0_;
assert(id <= (int)words_.size());
+ //if (id < 0 || id > (int)words_.size()) return b0_;
return words_[id-1];
}
diff --git a/utils/fast_sparse_vector.h b/utils/fast_sparse_vector.h
index d11be48f..2c49948c 100644
--- a/utils/fast_sparse_vector.h
+++ b/utils/fast_sparse_vector.h
@@ -196,6 +196,14 @@ class FastSparseVector {
else
return local_size_;
}
+ size_t size_nonzero() const {
+ size_t sz = 0;
+ const_iterator it = this->begin();
+ for (; it != this->end(); ++it) {
+ if (nonzero(it->first)) sz++;
+ }
+ return sz;
+ }
inline void clear() {
if (is_remote_) delete data_.rbmap;
is_remote_ = false;
@@ -220,6 +228,14 @@ class FastSparseVector {
}
return *this;
}
+ template <typename O>
+ inline FastSparseVector<O>& plus_eq_v_times_s(const FastSparseVector<O>& other, const O scalar) {
+ const typename FastSparseVector<O>::const_iterator end = other.end();
+ for (typename FastSparseVector<O>::const_iterator it = other.begin(); it != end; ++it) {
+ get_or_create_bin(it->first) += it->second * scalar;
+ }
+ return *this;
+ }
inline FastSparseVector& operator-=(const FastSparseVector& other) {
const typename FastSparseVector::const_iterator end = other.end();
for (typename FastSparseVector::const_iterator it = other.begin(); it != end; ++it) {
diff --git a/utils/sampler.h b/utils/sampler.h
index 22c873d4..bdbc01b0 100644
--- a/utils/sampler.h
+++ b/utils/sampler.h
@@ -32,7 +32,7 @@ struct RandomNumberGenerator {
std::cerr << "Warning: could not read from /dev/urandom. Seeding from clock" << std::endl;
seed = std::time(NULL);
}
- std::cerr << "Seeding random number sequence to " << seed << std::endl;
+ //std::cerr << "Seeding random number sequence to " << seed << std::endl;
return seed;
}