diff options
author | Wu, Ke <wuke@cs.umd.edu> | 2014-12-06 12:17:27 -0500 |
---|---|---|
committer | Wu, Ke <wuke@cs.umd.edu> | 2014-12-06 12:17:27 -0500 |
commit | 16827862bcc4f04ada087abc255c6604d88076c1 (patch) | |
tree | 394f8585409ca2d132fc1400c906c39df43613e6 /utils/tsuruoka_maxent.h | |
parent | a21959213f9b1cc15befae52dbb5091e848de7a1 (diff) |
Move non-MaxEnt code out of utils
1. alignment.h, argument_reorder_model.h, src_sentence.h, tree.h,
tsuruoka_maxent.h -> decoder/ff_const_reorder_common.h.
2. Trainers source files (argument_reorder_model.cc and
constituent_reorder_model.cc) are moved to training/const_reorder.
Diffstat (limited to 'utils/tsuruoka_maxent.h')
-rw-r--r-- | utils/tsuruoka_maxent.h | 153 |
1 files changed, 0 insertions, 153 deletions
diff --git a/utils/tsuruoka_maxent.h b/utils/tsuruoka_maxent.h deleted file mode 100644 index 82da44ff..00000000 --- a/utils/tsuruoka_maxent.h +++ /dev/null @@ -1,153 +0,0 @@ -/* - * tsuruoka_maxent.h - * - */ - -#ifndef TSURUOKA_MAXENT_H_ -#define TSURUOKA_MAXENT_H_ - -#include <assert.h> -#include <string.h> -#include <string> -#include <unordered_map> -#include <utility> -#include <vector> - -#include "stringlib.h" -#include "maxent.h" - -typedef std::unordered_map<std::string, int> Map; -typedef std::unordered_map<std::string, int>::iterator Iterator; - -struct Tsuruoka_Maxent { - Tsuruoka_Maxent(const char* pszModelFName) { - if (pszModelFName != NULL) { - m_pModel = new ME_Model(); - m_pModel->load_from_file(pszModelFName); - } else - m_pModel = NULL; - } - - ~Tsuruoka_Maxent() { - if (m_pModel != NULL) delete m_pModel; - } - - void fnTrain(const char* pszInstanceFName, const char* pszAlgorithm, - const char* pszModelFName, int /*iNumIteration*/) { - assert(strcmp(pszAlgorithm, "l1") == 0 || strcmp(pszAlgorithm, "l2") == 0 || - strcmp(pszAlgorithm, "sgd") == 0 || - strcmp(pszAlgorithm, "SGD") == 0); - FILE* fpIn = fopen(pszInstanceFName, "r"); - - ME_Model* pModel = new ME_Model(); - - char* pszLine = new char[100001]; - int iNumInstances = 0; - int iLen; - while (!feof(fpIn)) { - pszLine[0] = '\0'; - fgets(pszLine, 20000, fpIn); - if (strlen(pszLine) == 0) { - continue; - } - - iLen = strlen(pszLine); - while (iLen > 0 && pszLine[iLen - 1] > 0 && pszLine[iLen - 1] < 33) { - pszLine[iLen - 1] = '\0'; - iLen--; - } - - iNumInstances++; - - ME_Sample* pmes = new ME_Sample(); - - char* p = strrchr(pszLine, ' '); - assert(p != NULL); - p[0] = '\0'; - p++; - std::vector<std::string> vecContext; - SplitOnWhitespace(std::string(pszLine), &vecContext); - - pmes->label = std::string(p); - for (size_t i = 0; i < vecContext.size(); i++) - pmes->add_feature(vecContext[i]); - pModel->add_training_sample((*pmes)); - if (iNumInstances % 100000 == 0) - fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances); - delete pmes; - } - fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances); - fclose(fpIn); - - if (strcmp(pszAlgorithm, "l1") == 0) - pModel->use_l1_regularizer(1.0); - else if (strcmp(pszAlgorithm, "l2") == 0) - pModel->use_l2_regularizer(1.0); - else - pModel->use_SGD(); - - pModel->train(); - pModel->save_to_file(pszModelFName); - - delete pModel; - fprintf(stdout, "......Finished Training\n"); - fprintf(stdout, "......Model saved as %s\n", pszModelFName); - delete[] pszLine; - } - - double fnEval(const char* pszContext, const char* pszOutcome) const { - std::vector<std::string> vecContext; - ME_Sample* pmes = new ME_Sample(); - SplitOnWhitespace(std::string(pszContext), &vecContext); - - for (size_t i = 0; i < vecContext.size(); i++) - pmes->add_feature(vecContext[i]); - std::vector<double> vecProb = m_pModel->classify(*pmes); - delete pmes; - int iLableID = m_pModel->get_class_id(pszOutcome); - return vecProb[iLableID]; - } - void fnEval(const char* pszContext, - std::vector<std::pair<std::string, double> >& vecOutput) const { - std::vector<std::string> vecContext; - ME_Sample* pmes = new ME_Sample(); - SplitOnWhitespace(std::string(pszContext), &vecContext); - - vecOutput.clear(); - - for (size_t i = 0; i < vecContext.size(); i++) - pmes->add_feature(vecContext[i]); - std::vector<double> vecProb = m_pModel->classify(*pmes); - - for (size_t i = 0; i < vecProb.size(); i++) { - std::string label = m_pModel->get_class_label(i); - vecOutput.push_back(make_pair(label, vecProb[i])); - } - delete pmes; - } - void fnEval(const char* pszContext, std::vector<double>& vecOutput) const { - std::vector<std::string> vecContext; - ME_Sample* pmes = new ME_Sample(); - SplitOnWhitespace(std::string(pszContext), &vecContext); - - vecOutput.clear(); - - for (size_t i = 0; i < vecContext.size(); i++) - pmes->add_feature(vecContext[i]); - std::vector<double> vecProb = m_pModel->classify(*pmes); - - for (size_t i = 0; i < vecProb.size(); i++) { - std::string label = m_pModel->get_class_label(i); - vecOutput.push_back(vecProb[i]); - } - delete pmes; - } - int fnGetClassId(const std::string& strLabel) const { - return m_pModel->get_class_id(strLabel); - } - - private: - ME_Model* m_pModel; -}; - -#endif /* TSURUOKA_MAXENT_H_ */ |