summaryrefslogtreecommitdiff
path: root/utils/owlqn.cpp
diff options
context:
space:
mode:
authorWu, Ke <wuke@cs.umd.edu>2014-10-07 18:44:05 -0400
committerWu, Ke <wuke@cs.umd.edu>2014-10-07 18:44:05 -0400
commit8c26c195213805face566a6407597ba2a871a122 (patch)
tree378301ff345bf465f407f1447ad5fe126b3cd47c /utils/owlqn.cpp
parent6c7bf8cf49db88ca47e5b08aa449032995736854 (diff)
Move synutils under utils
Diffstat (limited to 'utils/owlqn.cpp')
-rw-r--r--utils/owlqn.cpp127
1 files changed, 127 insertions, 0 deletions
diff --git a/utils/owlqn.cpp b/utils/owlqn.cpp
new file mode 100644
index 00000000..c3a0f0da
--- /dev/null
+++ b/utils/owlqn.cpp
@@ -0,0 +1,127 @@
+#include <vector>
+#include <iostream>
+#include <cmath>
+#include <stdio.h>
+#include "mathvec.h"
+#include "lbfgs.h"
+#include "maxent.h"
+
+using namespace std;
+
+const static int M = LBFGS_M;
+const static double LINE_SEARCH_ALPHA = 0.1;
+const static double LINE_SEARCH_BETA = 0.5;
+
+// stopping criteria
+int OWLQN_MAX_ITER = 300;
+const static double MIN_GRAD_NORM = 0.0001;
+
+Vec approximate_Hg(const int iter, const Vec& grad, const Vec s[],
+ const Vec y[], const double z[]);
+
+inline int sign(double x) {
+ if (x > 0) return 1;
+ if (x < 0) return -1;
+ return 0;
+};
+
+static Vec pseudo_gradient(const Vec& x, const Vec& grad0, const double C) {
+ Vec grad = grad0;
+ for (size_t i = 0; i < x.Size(); i++) {
+ if (x[i] != 0) {
+ grad[i] += C * sign(x[i]);
+ continue;
+ }
+ const double gm = grad0[i] - C;
+ if (gm > 0) {
+ grad[i] = gm;
+ continue;
+ }
+ const double gp = grad0[i] + C;
+ if (gp < 0) {
+ grad[i] = gp;
+ continue;
+ }
+ grad[i] = 0;
+ }
+
+ return grad;
+}
+
+double ME_Model::regularized_func_grad(const double C, const Vec& x,
+ Vec& grad) {
+ double f = FunctionGradient(x.STLVec(), grad.STLVec());
+ for (size_t i = 0; i < x.Size(); i++) {
+ f += C * fabs(x[i]);
+ }
+
+ return f;
+}
+
+double ME_Model::constrained_line_search(double C, const Vec& x0,
+ const Vec& grad0, const double f0,
+ const Vec& dx, Vec& x, Vec& grad1) {
+ // compute the orthant to explore
+ Vec orthant = x0;
+ for (size_t i = 0; i < orthant.Size(); i++) {
+ if (orthant[i] == 0) orthant[i] = -grad0[i];
+ }
+
+ double t = 1.0 / LINE_SEARCH_BETA;
+
+ double f;
+ do {
+ t *= LINE_SEARCH_BETA;
+ x = x0 + t * dx;
+ x.Project(orthant);
+ // for (size_t i = 0; i < x.Size(); i++) {
+ // if (x0[i] != 0 && sign(x[i]) != sign(x0[i])) x[i] = 0;
+ // }
+
+ f = regularized_func_grad(C, x, grad1);
+ // cout << "*";
+ } while (f > f0 + LINE_SEARCH_ALPHA * dot_product(x - x0, grad0));
+
+ return f;
+}
+
+vector<double> ME_Model::perform_OWLQN(const vector<double>& x0,
+ const double C) {
+ const size_t dim = x0.size();
+ Vec x = x0;
+
+ Vec grad(dim), dx(dim);
+ double f = regularized_func_grad(C, x, grad);
+
+ Vec s[M], y[M];
+ double z[M]; // rho
+
+ for (int iter = 0; iter < OWLQN_MAX_ITER; iter++) {
+ Vec pg = pseudo_gradient(x, grad, C);
+
+ fprintf(stderr, "%3d obj(err) = %f (%6.4f)", iter + 1, -f, _train_error);
+ if (_nheldout > 0) {
+ const double heldout_logl = heldout_likelihood();
+ fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", heldout_logl,
+ _heldout_error);
+ }
+ fprintf(stderr, "\n");
+
+ if (sqrt(dot_product(pg, pg)) < MIN_GRAD_NORM) break;
+
+ dx = -1 * approximate_Hg(iter, pg, s, y, z);
+ if (dot_product(dx, pg) >= 0) dx.Project(-1 * pg);
+
+ Vec x1(dim), grad1(dim);
+ f = constrained_line_search(C, x, pg, f, dx, x1, grad1);
+
+ s[iter % M] = x1 - x;
+ y[iter % M] = grad1 - grad;
+ z[iter % M] = 1.0 / dot_product(y[iter % M], s[iter % M]);
+
+ x = x1;
+ grad = grad1;
+ }
+
+ return x.STLVec();
+}