diff options
author | Patrick Simianer <p@simianer.de> | 2012-03-13 09:24:47 +0100 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2012-03-13 09:24:47 +0100 |
commit | ef6085e558e26c8819f1735425761103021b6470 (patch) | |
tree | 5cf70e4c48c64d838e1326b5a505c8c4061bff4a /utils/m.h | |
parent | 10a232656a0c882b3b955d2bcfac138ce11e8a2e (diff) | |
parent | dfbc278c1057555fda9312291c8024049e00b7d8 (diff) |
merge with upstream
Diffstat (limited to 'utils/m.h')
-rw-r--r-- | utils/m.h | 140 |
1 files changed, 140 insertions, 0 deletions
diff --git a/utils/m.h b/utils/m.h new file mode 100644 index 00000000..dc881b36 --- /dev/null +++ b/utils/m.h @@ -0,0 +1,140 @@ +#ifndef _M_H_ +#define _M_H_ + +#include <cassert> +#include <cmath> +#include <boost/math/special_functions/digamma.hpp> +#include <boost/math/constants/constants.hpp> + +// TODO right now I sometimes assert that x is in the support of the distributions +// should be configurable to return -inf instead + +template <typename F> +struct M { + // support [0, 1, 2 ...) + static inline F log_poisson(unsigned x, const F& lambda) { + assert(lambda > 0.0); + return std::log(lambda) * x - lgamma(x + 1) - lambda; + } + + // support [0, 1, 2 ...) + static inline F log_geometric(unsigned x, const F& p) { + assert(p > 0.0); + assert(p < 1.0); + return std::log(1 - p) * x + std::log(p); + } + + // log of the binomial coefficient + static inline F log_binom_coeff(unsigned n, unsigned k) { + assert(n >= k); + if (n == k) return 0.0; + return lgamma(n + 1) - lgamma(k + 1) - lgamma(n - k + 1); + } + + // http://en.wikipedia.org/wiki/Negative_binomial_distribution + // support [0, 1, 2 ...) + static inline F log_negative_binom(unsigned x, unsigned r, const F& p) { + assert(p > 0.0); + assert(p < 1.0); + return log_binom_coeff(x + r - 1u, x) + r * std::log(F(1) - p) + x * std::log(p); + } + + // this is the Beta function, *not* the beta probability density + // http://mathworld.wolfram.com/BetaFunction.html + static inline F log_beta_fn(const F& x, const F& y) { + return lgamma(x) + lgamma(y) - lgamma(x + y); + } + + // support x >= 0.0 + static F log_gamma_density(const F& x, const F& shape, const F& rate) { + assert(x >= 0.0); + assert(shape > 0.0); + assert(rate > 0.0); + return (shape-1)*std::log(x) - shape*std::log(rate) - x/rate - lgamma(shape); + } + + // this is the Beta *density* p(x ; alpha, beta) + // support x \in (0,1) + static inline F log_beta_density(const F& x, const F& alpha, const F& beta) { + assert(x > 0.0); + assert(x < 1.0); + assert(alpha > 0.0); + assert(beta > 0.0); + return (alpha-1)*std::log(x)+(beta-1)*std::log(1-x) - log_beta_fn(alpha, beta); + } + + // support x \in R + static inline F log_laplace_density(const F& x, const F& mu, const F& b) { + assert(b > 0.0); + return -std::log(2*b) - std::fabs(x - mu) / b; + } + + // support x \in R + // this is NOT the "log normal" density, it is the log of the "normal density at x" + static inline F log_gaussian_density(const F& x, const F& mu, const F& var) { + assert(var > 0.0); + return -0.5 * std::log(var * 2 * boost::math::constants::pi<F>()) - (x - mu)*(x - mu) / (2 * var); + } + + // (x1,x2) \in R^2 + // parameterized in terms of two means, a two "variances", a correlation < 1 + static inline F log_bivariate_gaussian_density(const F& x1, const F& x2, + const F& mu1, const F& mu2, + const F& var1, const F& var2, + const F& cor) { + assert(var1 > 0); + assert(var2 > 0); + assert(std::fabs(cor) < 1.0); + const F cor2 = cor*cor; + const F var1var22 = var1 * var2; + const F Z = 0.5 * std::log(var1var22 * (1 - cor2)) + std::log(2 * boost::math::constants::pi<F>()); + return -Z -1.0 / (2 * (1 - cor2)) * ((x1 - mu1)*(x1-mu1) / var1 + (x2-mu2)*(x2-mu2) / var2 - 2*cor*(x1 - mu1)*(x2-mu2) / std::sqrt(var1var22)); + } + + // support x \in [a,b] + static inline F log_triangle_density(const F& x, const F& a, const F& b, const F& c) { + assert(a < b); + assert(a <= c); + assert(c <= b); + assert(x >= a); + assert(x <= b); + if (x <= c) + return std::log(2) + std::log(x - a) - std::log(b - a) - std::log(c - a); + else + return std::log(2) + std::log(b - x) - std::log(b - a) - std::log(b - c); + } + + // note: this has been adapted so that 0 is in the support of the distribution + // support [0, 1, 2 ...) + static inline F log_yule_simon(unsigned x, const F& rho) { + assert(rho > 0.0); + return std::log(rho) + log_beta_fn(x + 1, rho + 1); + } + + // see http://www.gatsby.ucl.ac.uk/~ywteh/research/compling/hpylm.pdf + // when y=1, sometimes written x^{\overline{n}} or x^{(n)} "Pochhammer symbol" + static inline F log_generalized_factorial(const F& x, const F& n, const F& y = 1.0) { + assert(x > 0.0); + assert(y >= 0.0); + assert(n > 0.0); + if (!n) return 0.0; + if (y == F(1)) { + return lgamma(x + n) - lgamma(x); + } else if (y) { + return n * std::log(y) + lgamma(x/y + n) - lgamma(x/y); + } else { // y == 0.0 + return n * std::log(x); + } + } + + // digamma is the first derivative of the log-gamma function + static inline F digamma(const F& x) { + return boost::math::digamma(x); + } + +}; + +typedef M<double> Md; +typedef M<double> Mf; + +#endif |