summaryrefslogtreecommitdiff
path: root/utils/lbfgs.cpp
diff options
context:
space:
mode:
authorWu, Ke <wuke@cs.umd.edu>2014-12-17 16:15:13 -0500
committerWu, Ke <wuke@cs.umd.edu>2014-12-17 16:15:13 -0500
commit6829a0bc624b02ebefc79f8cf9ec89d7d64a7c30 (patch)
tree125dfb20f73342873476c793995397b26fd202dd /utils/lbfgs.cpp
parentb455a108a21f4ba5a58ab1bc53a8d2bf4d829067 (diff)
parent7468e8d85e99b4619442c7afaf4a0d92870111bb (diff)
Merge branch 'const_reorder_2' into softsyn_2
Diffstat (limited to 'utils/lbfgs.cpp')
-rw-r--r--utils/lbfgs.cpp108
1 files changed, 0 insertions, 108 deletions
diff --git a/utils/lbfgs.cpp b/utils/lbfgs.cpp
deleted file mode 100644
index bd26f048..00000000
--- a/utils/lbfgs.cpp
+++ /dev/null
@@ -1,108 +0,0 @@
-#include <vector>
-#include <iostream>
-#include <cmath>
-#include <stdio.h>
-#include "mathvec.h"
-#include "lbfgs.h"
-#include "maxent.h"
-
-using namespace std;
-
-const static int M = LBFGS_M;
-const static double LINE_SEARCH_ALPHA = 0.1;
-const static double LINE_SEARCH_BETA = 0.5;
-
-// stopping criteria
-int LBFGS_MAX_ITER = 300;
-const static double MIN_GRAD_NORM = 0.0001;
-
-double ME_Model::backtracking_line_search(const Vec& x0, const Vec& grad0,
- const double f0, const Vec& dx,
- Vec& x, Vec& grad1) {
- double t = 1.0 / LINE_SEARCH_BETA;
-
- double f;
- do {
- t *= LINE_SEARCH_BETA;
- x = x0 + t * dx;
- f = FunctionGradient(x.STLVec(), grad1.STLVec());
- // cout << "*";
- } while (f > f0 + LINE_SEARCH_ALPHA * t * dot_product(dx, grad0));
-
- return f;
-}
-
-//
-// Jorge Nocedal, "Updating Quasi-Newton Matrices With Limited Storage",
-// Mathematics of Computation, Vol. 35, No. 151, pp. 773-782, 1980.
-//
-Vec approximate_Hg(const int iter, const Vec& grad, const Vec s[],
- const Vec y[], const double z[]) {
- int offset, bound;
- if (iter <= M) {
- offset = 0;
- bound = iter;
- } else {
- offset = iter - M;
- bound = M;
- }
-
- Vec q = grad;
- double alpha[M], beta[M];
- for (int i = bound - 1; i >= 0; i--) {
- const int j = (i + offset) % M;
- alpha[i] = z[j] * dot_product(s[j], q);
- q += -alpha[i] * y[j];
- }
- if (iter > 0) {
- const int j = (iter - 1) % M;
- const double gamma = ((1.0 / z[j]) / dot_product(y[j], y[j]));
- // static double gamma;
- // if (gamma == 0) gamma = ((1.0 / z[j]) / dot_product(y[j], y[j]));
- q *= gamma;
- }
- for (int i = 0; i <= bound - 1; i++) {
- const int j = (i + offset) % M;
- beta[i] = z[j] * dot_product(y[j], q);
- q += s[j] * (alpha[i] - beta[i]);
- }
-
- return q;
-}
-
-vector<double> ME_Model::perform_LBFGS(const vector<double>& x0) {
- const size_t dim = x0.size();
- Vec x = x0;
-
- Vec grad(dim), dx(dim);
- double f = FunctionGradient(x.STLVec(), grad.STLVec());
-
- Vec s[M], y[M];
- double z[M]; // rho
-
- for (int iter = 0; iter < LBFGS_MAX_ITER; iter++) {
-
- fprintf(stderr, "%3d obj(err) = %f (%6.4f)", iter + 1, -f, _train_error);
- if (_nheldout > 0) {
- const double heldout_logl = heldout_likelihood();
- fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", heldout_logl,
- _heldout_error);
- }
- fprintf(stderr, "\n");
-
- if (sqrt(dot_product(grad, grad)) < MIN_GRAD_NORM) break;
-
- dx = -1 * approximate_Hg(iter, grad, s, y, z);
-
- Vec x1(dim), grad1(dim);
- f = backtracking_line_search(x, grad, f, dx, x1, grad1);
-
- s[iter % M] = x1 - x;
- y[iter % M] = grad1 - grad;
- z[iter % M] = 1.0 / dot_product(y[iter % M], s[iter % M]);
- x = x1;
- grad = grad1;
- }
-
- return x.STLVec();
-}