summaryrefslogtreecommitdiff
path: root/training
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cs.cmu.edu>2012-01-24 22:26:44 -0500
committerChris Dyer <cdyer@cs.cmu.edu>2012-01-24 22:26:44 -0500
commit4c2360119def2fb624d2691b355b1908c511f004 (patch)
tree9dd7ce4b2884750822b433e0c2254a1f99dc3cc5 /training
parent26d9ad04bd81508163d75c99726f970dd75f5127 (diff)
more models
Diffstat (limited to 'training')
-rw-r--r--training/model1.cc64
1 files changed, 61 insertions, 3 deletions
diff --git a/training/model1.cc b/training/model1.cc
index 346c0033..40249aa3 100644
--- a/training/model1.cc
+++ b/training/model1.cc
@@ -14,6 +14,11 @@
namespace po = boost::program_options;
using namespace std;
+inline double log_poisson(unsigned x, const double& lambda) {
+ assert(lambda > 0.0);
+ return log(lambda) * x - lgamma(x + 1) - lambda;
+}
+
bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
@@ -25,6 +30,7 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
("diagonal_tension,T", po::value<double>()->default_value(4.0), "How sharp or flat around the diagonal is the alignment distribution (<1 = flat >1 = sharp)")
("prob_align_null", po::value<double>()->default_value(0.08), "When --favor_diagonal is set, what's the probability of a null alignment?")
("variational_bayes,v","Add a symmetric Dirichlet prior and infer VB estimate of weights")
+ ("testset,x", po::value<string>(), "After training completes, compute the log likelihood of this set of sentence pairs under the learned model")
("alpha,a", po::value<double>()->default_value(0.01), "Hyperparameter for optional Dirichlet prior")
("no_add_viterbi,V","Do not add Viterbi alignment points (may generate a grammar where some training sentence pairs are unreachable)");
po::options_description clo("Command line options");
@@ -63,6 +69,8 @@ int main(int argc, char** argv) {
const bool write_alignments = (conf.count("write_alignments") > 0);
const double diagonal_tension = conf["diagonal_tension"].as<double>();
const double prob_align_null = conf["prob_align_null"].as<double>();
+ string testset;
+ if (conf.count("testset")) testset = conf["testset"].as<string>();
const double prob_align_not_null = 1.0 - prob_align_null;
const double alpha = conf["alpha"].as<double>();
const bool favor_diagonal = conf.count("favor_diagonal");
@@ -73,6 +81,8 @@ int main(int argc, char** argv) {
TTable tt;
TTable::Word2Word2Double was_viterbi;
+ double tot_len_ratio = 0;
+ double mean_srclen_multiplier = 0;
for (int iter = 0; iter < ITERATIONS; ++iter) {
const bool final_iteration = (iter == (ITERATIONS - 1));
cerr << "ITERATION " << (iter + 1) << (final_iteration ? " (FINAL)" : "") << endl;
@@ -83,13 +93,13 @@ int main(int argc, char** argv) {
int lc = 0;
bool flag = false;
string line;
+ string ssrc, strg;
while(true) {
getline(in, line);
if (!in) break;
++lc;
if (lc % 1000 == 0) { cerr << '.'; flag = true; }
if (lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; }
- string ssrc, strg;
ParseTranslatorInput(line, &ssrc, &strg);
Lattice src, trg;
LatticeTools::ConvertTextToLattice(ssrc, &src);
@@ -99,9 +109,10 @@ int main(int argc, char** argv) {
assert(src.size() > 0);
assert(trg.size() > 0);
}
+ if (iter == 0)
+ tot_len_ratio += static_cast<double>(trg.size()) / static_cast<double>(src.size());
denom += trg.size();
vector<double> probs(src.size() + 1);
- const double src_logprob = -log(src.size() + 1);
bool first_al = true; // used for write_alignments
for (int j = 0; j < trg.size(); ++j) {
const WordID& f_j = trg[j][0].label;
@@ -156,7 +167,7 @@ int main(int argc, char** argv) {
for (int i = 1; i <= src.size(); ++i)
tt.Increment(src[i-1][0].label, f_j, probs[i] / sum);
}
- likelihood += log(sum) + src_logprob;
+ likelihood += log(sum);
}
if (write_alignments && final_iteration) cout << endl;
}
@@ -165,6 +176,10 @@ int main(int argc, char** argv) {
double base2_likelihood = likelihood / log(2);
if (flag) { cerr << endl; }
+ if (iter == 0) {
+ mean_srclen_multiplier = tot_len_ratio / lc;
+ cerr << "expected target length = source length * " << mean_srclen_multiplier << endl;
+ }
cerr << " log_e likelihood: " << likelihood << endl;
cerr << " log_2 likelihood: " << base2_likelihood << endl;
cerr << " cross entropy: " << (-base2_likelihood / denom) << endl;
@@ -176,6 +191,49 @@ int main(int argc, char** argv) {
tt.Normalize();
}
}
+ if (testset.size()) {
+ ReadFile rf(testset);
+ istream& in = *rf.stream();
+ int lc = 0;
+ double tlp = 0;
+ string ssrc, strg, line;
+ while (getline(in, line)) {
+ ++lc;
+ ParseTranslatorInput(line, &ssrc, &strg);
+ Lattice src, trg;
+ LatticeTools::ConvertTextToLattice(ssrc, &src);
+ LatticeTools::ConvertTextToLattice(strg, &trg);
+ double log_prob = log_poisson(trg.size(), 0.05 + src.size() * mean_srclen_multiplier);
+
+ // compute likelihood
+ for (int j = 0; j < trg.size(); ++j) {
+ const WordID& f_j = trg[j][0].label;
+ double sum = 0;
+ const double j_over_ts = double(j) / trg.size();
+ double prob_a_i = 1.0 / (src.size() + use_null); // uniform (model 1)
+ if (use_null) {
+ if (favor_diagonal) prob_a_i = prob_align_null;
+ sum += tt.prob(kNULL, f_j) * prob_a_i;
+ }
+ double az = 0;
+ if (favor_diagonal) {
+ for (int ta = 0; ta < src.size(); ++ta)
+ az += exp(-fabs(double(ta) / src.size() - j_over_ts) * diagonal_tension);
+ az /= prob_align_not_null;
+ }
+ for (int i = 1; i <= src.size(); ++i) {
+ if (favor_diagonal)
+ prob_a_i = exp(-fabs(double(i) / src.size() - j_over_ts) * diagonal_tension) / az;
+ sum += tt.prob(src[i-1][0].label, f_j) * prob_a_i;
+ }
+ log_prob += log(sum);
+ }
+ tlp += log_prob;
+ cerr << ssrc << " ||| " << strg << " ||| " << log_prob << endl;
+ }
+ cerr << "TOTAL LOG PROB " << tlp << endl;
+ }
+
if (write_alignments) return 0;
for (TTable::Word2Word2Double::iterator ei = tt.ttable.begin(); ei != tt.ttable.end(); ++ei) {