summaryrefslogtreecommitdiff
path: root/training
diff options
context:
space:
mode:
authorChris Dyer <cdyer@Chriss-MacBook-Air.local>2013-11-10 00:58:44 -0500
committerChris Dyer <cdyer@Chriss-MacBook-Air.local>2013-11-10 00:58:44 -0500
commit2d3948b98bb9e8c7bad60f1acd99ff0b42b3ae30 (patch)
tree22cd235bd6c94ee25c1ab9b2cf2a2d1d9aaec5c5 /training
parent074fa88375967adababc632ea763e9dea389831e (diff)
guard against direct includes of tr1
Diffstat (limited to 'training')
-rw-r--r--training/crf/mpi_online_optimize.cc8
-rw-r--r--training/mira/kbest_cut_mira.cc65
-rw-r--r--training/mira/kbest_mira.cc18
-rwxr-xr-xtraining/mira/mira.py98
-rw-r--r--training/pro/mr_pro_map.cc1
-rw-r--r--training/utils/candidate_set.cc11
-rw-r--r--training/utils/online_optimizer.h8
-rw-r--r--training/utils/optimize_test.cc6
8 files changed, 109 insertions, 106 deletions
diff --git a/training/crf/mpi_online_optimize.cc b/training/crf/mpi_online_optimize.cc
index 9e1ae34c..6b5b7d64 100644
--- a/training/crf/mpi_online_optimize.cc
+++ b/training/crf/mpi_online_optimize.cc
@@ -4,11 +4,11 @@
#include <vector>
#include <cassert>
#include <cmath>
-#include <tr1/memory>
#include <ctime>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
+#include <boost/shared_ptr.hpp>
#include "stringlib.h"
#include "verbose.h"
@@ -219,7 +219,7 @@ int main(int argc, char** argv) {
#endif
if (size > 1) SetSilent(true); // turn off verbose decoder output
register_feature_functions();
- std::tr1::shared_ptr<MT19937> rng;
+ boost::shared_ptr<MT19937> rng;
po::variables_map conf;
if (!InitCommandLine(argc, argv, &conf))
@@ -264,8 +264,8 @@ int main(int argc, char** argv) {
ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids);
assert(corpus.size() > 0);
- std::tr1::shared_ptr<OnlineOptimizer> o;
- std::tr1::shared_ptr<LearningRateSchedule> lr;
+ boost::shared_ptr<OnlineOptimizer> o;
+ boost::shared_ptr<LearningRateSchedule> lr;
const unsigned size_per_proc = conf["minibatch_size_per_proc"].as<unsigned>();
if (size_per_proc > corpus.size()) {
diff --git a/training/mira/kbest_cut_mira.cc b/training/mira/kbest_cut_mira.cc
index 59fa860a..3b1108e0 100644
--- a/training/mira/kbest_cut_mira.cc
+++ b/training/mira/kbest_cut_mira.cc
@@ -30,7 +30,6 @@
#include "sparse_vector.h"
using namespace std;
-using boost::shared_ptr;
namespace po = boost::program_options;
bool invert_score;
@@ -149,7 +148,7 @@ struct HypothesisInfo {
double alpha;
double oracle_loss;
SparseVector<double> oracle_feat_diff;
- shared_ptr<HypothesisInfo> oracleN;
+ boost::shared_ptr<HypothesisInfo> oracleN;
};
bool ApproxEqual(double a, double b) {
@@ -157,7 +156,7 @@ bool ApproxEqual(double a, double b) {
return (fabs(a-b)/fabs(b)) < EPSILON;
}
-typedef shared_ptr<HypothesisInfo> HI;
+typedef boost::shared_ptr<HypothesisInfo> HI;
bool HypothesisCompareB(const HI& h1, const HI& h2 )
{
return h1->mt_metric > h2->mt_metric;
@@ -185,11 +184,11 @@ bool HypothesisCompareG(const HI& h1, const HI& h2 )
};
-void CuttingPlane(vector<shared_ptr<HypothesisInfo> >* cur_c, bool* again, vector<shared_ptr<HypothesisInfo> >& all_hyp, vector<weight_t> dense_weights)
+void CuttingPlane(vector<boost::shared_ptr<HypothesisInfo> >* cur_c, bool* again, vector<boost::shared_ptr<HypothesisInfo> >& all_hyp, vector<weight_t> dense_weights)
{
bool DEBUG_CUT = false;
- shared_ptr<HypothesisInfo> max_fear, max_fear_in_set;
- vector<shared_ptr<HypothesisInfo> >& cur_constraint = *cur_c;
+ boost::shared_ptr<HypothesisInfo> max_fear, max_fear_in_set;
+ vector<boost::shared_ptr<HypothesisInfo> >& cur_constraint = *cur_c;
if(no_reweight)
{
@@ -235,9 +234,9 @@ void CuttingPlane(vector<shared_ptr<HypothesisInfo> >* cur_c, bool* again, vecto
}
-double ComputeDelta(vector<shared_ptr<HypothesisInfo> >* cur_p, double max_step_size,vector<weight_t> dense_weights )
+double ComputeDelta(vector<boost::shared_ptr<HypothesisInfo> >* cur_p, double max_step_size,vector<weight_t> dense_weights )
{
- vector<shared_ptr<HypothesisInfo> >& cur_pair = *cur_p;
+ vector<boost::shared_ptr<HypothesisInfo> >& cur_pair = *cur_p;
double loss = cur_pair[0]->oracle_loss - cur_pair[1]->oracle_loss;
double margin = -(cur_pair[0]->oracleN->features.dot(dense_weights)- cur_pair[0]->features.dot(dense_weights)) + (cur_pair[1]->oracleN->features.dot(dense_weights) - cur_pair[1]->features.dot(dense_weights));
@@ -261,12 +260,12 @@ double ComputeDelta(vector<shared_ptr<HypothesisInfo> >* cur_p, double max_step_
}
-vector<shared_ptr<HypothesisInfo> > SelectPair(vector<shared_ptr<HypothesisInfo> >* cur_c)
+vector<boost::shared_ptr<HypothesisInfo> > SelectPair(vector<boost::shared_ptr<HypothesisInfo> >* cur_c)
{
bool DEBUG_SELECT= false;
- vector<shared_ptr<HypothesisInfo> >& cur_constraint = *cur_c;
+ vector<boost::shared_ptr<HypothesisInfo> >& cur_constraint = *cur_c;
- vector<shared_ptr<HypothesisInfo> > pair;
+ vector<boost::shared_ptr<HypothesisInfo> > pair;
if (no_select || optimizer == 2){ //skip heuristic search and return oracle and fear for pa-mira
@@ -278,7 +277,7 @@ vector<shared_ptr<HypothesisInfo> > SelectPair(vector<shared_ptr<HypothesisInfo>
for(int u=0;u != cur_constraint.size();u++)
{
- shared_ptr<HypothesisInfo> max_fear;
+ boost::shared_ptr<HypothesisInfo> max_fear;
if(DEBUG_SELECT) cerr<< "cur alpha " << u << " " << cur_constraint[u]->alpha;
for(int i=0; i < cur_constraint.size();i++) //select maximal violator
@@ -323,8 +322,8 @@ vector<shared_ptr<HypothesisInfo> > SelectPair(vector<shared_ptr<HypothesisInfo>
}
struct GoodBadOracle {
- vector<shared_ptr<HypothesisInfo> > good;
- vector<shared_ptr<HypothesisInfo> > bad;
+ vector<boost::shared_ptr<HypothesisInfo> > good;
+ vector<boost::shared_ptr<HypothesisInfo> > bad;
};
struct BasicObserver: public DecoderObserver {
@@ -367,8 +366,8 @@ struct TrainingObserver : public DecoderObserver {
const DocScorer& ds;
vector<ScoreP>& corpus_bleu_sent_stats;
vector<GoodBadOracle>& oracles;
- vector<shared_ptr<HypothesisInfo> > cur_best;
- shared_ptr<HypothesisInfo> cur_oracle;
+ vector<boost::shared_ptr<HypothesisInfo> > cur_best;
+ boost::shared_ptr<HypothesisInfo> cur_oracle;
const int kbest_size;
Hypergraph forest;
int cur_sent;
@@ -386,7 +385,7 @@ struct TrainingObserver : public DecoderObserver {
return *cur_best[0];
}
- const vector<shared_ptr<HypothesisInfo> > GetCurrentBest() const {
+ const vector<boost::shared_ptr<HypothesisInfo> > GetCurrentBest() const {
return cur_best;
}
@@ -411,8 +410,8 @@ struct TrainingObserver : public DecoderObserver {
}
- shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double score, const vector<WordID>& hyp) {
- shared_ptr<HypothesisInfo> h(new HypothesisInfo);
+ boost::shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double score, const vector<WordID>& hyp) {
+ boost::shared_ptr<HypothesisInfo> h(new HypothesisInfo);
h->features = feats;
h->mt_metric = score;
h->hyp = hyp;
@@ -424,14 +423,14 @@ struct TrainingObserver : public DecoderObserver {
if (stream) sent_id = 0;
bool PRINT_LIST= false;
- vector<shared_ptr<HypothesisInfo> >& cur_good = oracles[sent_id].good;
- vector<shared_ptr<HypothesisInfo> >& cur_bad = oracles[sent_id].bad;
+ vector<boost::shared_ptr<HypothesisInfo> >& cur_good = oracles[sent_id].good;
+ vector<boost::shared_ptr<HypothesisInfo> >& cur_bad = oracles[sent_id].bad;
//TODO: look at keeping previous iterations hypothesis lists around
cur_best.clear();
cur_good.clear();
cur_bad.clear();
- vector<shared_ptr<HypothesisInfo> > all_hyp;
+ vector<boost::shared_ptr<HypothesisInfo> > all_hyp;
typedef KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,Filter> K;
K kbest(forest,kbest_size);
@@ -527,7 +526,7 @@ struct TrainingObserver : public DecoderObserver {
if(PRINT_LIST) { cerr << "GOOD" << endl; for(int u=0;u!=cur_good.size();u++) cerr << cur_good[u]->mt_metric << " " << cur_good[u]->hope << endl;}
//use hope for fear selection
- shared_ptr<HypothesisInfo>& oracleN = cur_good[0];
+ boost::shared_ptr<HypothesisInfo>& oracleN = cur_good[0];
if(fear_select == 1){ //compute fear hyps with model - bleu
if (PRINT_LIST) cerr << "FEAR " << endl;
@@ -663,13 +662,13 @@ int main(int argc, char** argv) {
invert_score = false;
}
- shared_ptr<DocScorer> ds;
+ boost::shared_ptr<DocScorer> ds;
//normal: load references, stream: start stream scorer
if (stream) {
- ds = shared_ptr<DocScorer>(new DocStreamScorer(type, vector<string>(0), ""));
+ ds = boost::shared_ptr<DocScorer>(new DocStreamScorer(type, vector<string>(0), ""));
cerr << "Scoring doc stream with " << metric_name << endl;
} else {
- ds = shared_ptr<DocScorer>(new DocScorer(type, conf["reference"].as<vector<string> >(), ""));
+ ds = boost::shared_ptr<DocScorer>(new DocScorer(type, conf["reference"].as<vector<string> >(), ""));
cerr << "Loaded " << ds->size() << " references for scoring with " << metric_name << endl;
}
vector<ScoreP> corpus_bleu_sent_stats;
@@ -774,9 +773,9 @@ int main(int argc, char** argv) {
const HypothesisInfo& cur_good = *oracles[cur_sent].good[0];
const HypothesisInfo& cur_bad = *oracles[cur_sent].bad[0];
- vector<shared_ptr<HypothesisInfo> >& cur_good_v = oracles[cur_sent].good;
- vector<shared_ptr<HypothesisInfo> >& cur_bad_v = oracles[cur_sent].bad;
- vector<shared_ptr<HypothesisInfo> > cur_best_v = observer.GetCurrentBest();
+ vector<boost::shared_ptr<HypothesisInfo> >& cur_good_v = oracles[cur_sent].good;
+ vector<boost::shared_ptr<HypothesisInfo> >& cur_bad_v = oracles[cur_sent].bad;
+ vector<boost::shared_ptr<HypothesisInfo> > cur_best_v = observer.GetCurrentBest();
tot_loss += cur_hyp.mt_metric;
@@ -824,13 +823,13 @@ int main(int argc, char** argv) {
}
else if(optimizer == 5) //full mira with n-best list of constraints from hope, fear, model best
{
- vector<shared_ptr<HypothesisInfo> > cur_constraint;
+ vector<boost::shared_ptr<HypothesisInfo> > cur_constraint;
cur_constraint.insert(cur_constraint.begin(), cur_bad_v.begin(), cur_bad_v.end());
cur_constraint.insert(cur_constraint.begin(), cur_best_v.begin(), cur_best_v.end());
cur_constraint.insert(cur_constraint.begin(), cur_good_v.begin(), cur_good_v.end());
bool optimize_again;
- vector<shared_ptr<HypothesisInfo> > cur_pair;
+ vector<boost::shared_ptr<HypothesisInfo> > cur_pair;
//SMO
for(int u=0;u!=cur_constraint.size();u++)
cur_constraint[u]->alpha =0;
@@ -879,7 +878,7 @@ int main(int argc, char** argv) {
else if(optimizer == 2 || optimizer == 3) //PA and Cutting Plane MIRA update
{
bool DEBUG_SMO= true;
- vector<shared_ptr<HypothesisInfo> > cur_constraint;
+ vector<boost::shared_ptr<HypothesisInfo> > cur_constraint;
cur_constraint.push_back(cur_good_v[0]); //add oracle to constraint set
bool optimize_again = true;
int cut_plane_calls = 0;
@@ -919,7 +918,7 @@ int main(int argc, char** argv) {
while (iter < smo_iter)
{
//select pair to optimize from constraint set
- vector<shared_ptr<HypothesisInfo> > cur_pair = SelectPair(&cur_constraint);
+ vector<boost::shared_ptr<HypothesisInfo> > cur_pair = SelectPair(&cur_constraint);
if(cur_pair.empty()){
iter=MAX_SMO;
diff --git a/training/mira/kbest_mira.cc b/training/mira/kbest_mira.cc
index d59b4224..2868de0c 100644
--- a/training/mira/kbest_mira.cc
+++ b/training/mira/kbest_mira.cc
@@ -3,10 +3,10 @@
#include <vector>
#include <cassert>
#include <cmath>
-#include <tr1/memory>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
+#include <boost/shared_ptr.hpp>
#include "stringlib.h"
#include "hg_sampler.h"
@@ -30,7 +30,7 @@ using namespace std;
namespace po = boost::program_options;
bool invert_score;
-std::tr1::shared_ptr<MT19937> rng;
+boost::shared_ptr<MT19937> rng;
void RandomPermutation(int len, vector<int>* p_ids) {
vector<int>& ids = *p_ids;
@@ -88,8 +88,8 @@ struct HypothesisInfo {
};
struct GoodBadOracle {
- std::tr1::shared_ptr<HypothesisInfo> good;
- std::tr1::shared_ptr<HypothesisInfo> bad;
+ boost::shared_ptr<HypothesisInfo> good;
+ boost::shared_ptr<HypothesisInfo> bad;
};
struct TrainingObserver : public DecoderObserver {
@@ -97,7 +97,7 @@ struct TrainingObserver : public DecoderObserver {
const DocumentScorer& ds;
const EvaluationMetric& metric;
vector<GoodBadOracle>& oracles;
- std::tr1::shared_ptr<HypothesisInfo> cur_best;
+ boost::shared_ptr<HypothesisInfo> cur_best;
const int kbest_size;
const bool sample_forest;
@@ -109,16 +109,16 @@ struct TrainingObserver : public DecoderObserver {
UpdateOracles(smeta.GetSentenceID(), *hg);
}
- std::tr1::shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double score) {
- std::tr1::shared_ptr<HypothesisInfo> h(new HypothesisInfo);
+ boost::shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double score) {
+ boost::shared_ptr<HypothesisInfo> h(new HypothesisInfo);
h->features = feats;
h->mt_metric = score;
return h;
}
void UpdateOracles(int sent_id, const Hypergraph& forest) {
- std::tr1::shared_ptr<HypothesisInfo>& cur_good = oracles[sent_id].good;
- std::tr1::shared_ptr<HypothesisInfo>& cur_bad = oracles[sent_id].bad;
+ boost::shared_ptr<HypothesisInfo>& cur_good = oracles[sent_id].good;
+ boost::shared_ptr<HypothesisInfo>& cur_bad = oracles[sent_id].bad;
cur_bad.reset(); // TODO get rid of??
if (sample_forest) {
diff --git a/training/mira/mira.py b/training/mira/mira.py
index 29c51e1d..7b2d06a3 100755
--- a/training/mira/mira.py
+++ b/training/mira/mira.py
@@ -4,8 +4,17 @@ import subprocess, shlex, glob
import argparse
import logging
import random, time
-import cdec.score
import gzip, itertools
+try:
+ import cdec.score
+except ImportError:
+ sys.stderr.write('Could not import pycdec, see cdec/python/README.md for details\n')
+ sys.exit(1)
+have_mpl = True
+try:
+ import matplotlib.pyplot as plt
+except ImportError:
+ have_mpl = False
#mira run script
#requires pycdec to be built, since it is used for scoring hypothesis
@@ -16,17 +25,17 @@ import gzip, itertools
#scoring function using pycdec scoring
def fast_score(hyps, refs, metric):
scorer = cdec.score.Scorer(metric)
- logging.info('loaded {0} references for scoring with {1}\n'.format(
+ logging.info('loaded {0} references for scoring with {1}'.format(
len(refs), metric))
if metric=='BLEU':
logging.warning('BLEU is ambiguous, assuming IBM_BLEU\n')
metric = 'IBM_BLEU'
elif metric=='COMBI':
logging.warning('COMBI metric is no longer supported, switching to '
- 'COMB:TER=-0.5;BLEU=0.5\n')
+ 'COMB:TER=-0.5;BLEU=0.5')
metric = 'COMB:TER=-0.5;BLEU=0.5'
stats = sum(scorer(r).evaluate(h) for h,r in itertools.izip(hyps,refs))
- logging.info(stats.detail+'\n')
+ logging.info('Score={} ({})'.format(stats.score, stats.detail))
return stats.score
#create new parallel input file in output directory in sgml format
@@ -71,6 +80,8 @@ def main():
#set logging to write all info messages to stderr
logging.basicConfig(level=logging.INFO)
script_dir = os.path.dirname(os.path.abspath(sys.argv[0]))
+ if not have_mpl:
+ logging.warning('Failed to import matplotlib, graphs will not be generated.')
parser= argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
@@ -181,10 +192,11 @@ def main():
dev_size = enseg(args.devset, newdev, args.grammar_prefix)
args.devset = newdev
- write_config(args)
+ log_config(args)
args.weights, hope_best_fear = optimize(args, script_dir, dev_size)
- graph_file = graph(args.output_dir, hope_best_fear, args.metric)
+ graph_file = ''
+ if have_mpl: graph_file = graph(args.output_dir, hope_best_fear, args.metric)
dev_results, dev_bleu = evaluate(args.devset, args.weights, args.config,
script_dir, args.output_dir)
@@ -205,17 +217,12 @@ def main():
if graph_file:
logging.info('A graph of the best/hope/fear scores over the iterations '
- 'has been saved to {}\n'.format(graph_file))
+ 'has been saved to {}'.format(graph_file))
print 'final weights:\n{}\n'.format(args.weights)
#graph of hope/best/fear metric values across all iterations
def graph(output_dir, hope_best_fear, metric):
- try:
- import matplotlib.pyplot as plt
- except ImportError:
- logging.error('Error importing matplotlib. Graphing disabled.\n')
- return ''
max_y = float(max(hope_best_fear['best']))*1.5
plt.plot(hope_best_fear['best'], label='best')
plt.plot(hope_best_fear['hope'], label='hope')
@@ -308,6 +315,7 @@ def optimize(args, script_dir, dev_size):
decoder = script_dir+'/kbest_cut_mira'
(source, refs) = split_devset(args.devset, args.output_dir)
port = random.randint(15000,50000)
+ logging.info('using port {}'.format(port))
num_features = 0
last_p_score = 0
best_score_iter = -1
@@ -316,8 +324,8 @@ def optimize(args, script_dir, dev_size):
hope_best_fear = {'hope':[],'best':[],'fear':[]}
#main optimization loop
while i<args.max_iterations:
- logging.info('\n\nITERATION {}\n========\n'.format(i))
- logging.info('using port {}\n'.format(port))
+ logging.info('======= STARTING ITERATION {} ======='.format(i))
+ logging.info('Starting at {}'.format(time.asctime()))
#iteration specific files
runfile = args.output_dir+'/run.raw.'+str(i)
@@ -327,10 +335,8 @@ def optimize(args, script_dir, dev_size):
weightdir = args.output_dir+'/weights.pass'+str(i)
os.mkdir(logdir)
os.mkdir(weightdir)
-
- logging.info('RUNNING DECODER AT {}'.format(time.asctime()))
weightsfile = args.output_dir+'/weights.'+str(i)
- logging.info('ITER {}\n'.format(i))
+ logging.info(' log directory={}'.format(logdir))
curr_pass = '0{}'.format(i)
decoder_cmd = ('{0} -c {1} -w {2} -r{3} -m {4} -s {5} -b {6} -k {7} -o {8}'
' -p {9} -O {10} -D {11} -h {12} -f {13} -C {14}').format(
@@ -350,7 +356,7 @@ def optimize(args, script_dir, dev_size):
parallelize, logdir, args.jobs)
cmd = parallel_cmd + ' ' + decoder_cmd
- logging.info('COMMAND: \n{}\n'.format(cmd))
+ logging.info('OPTIMIZATION COMMAND: {}'.format(cmd))
dlog = open(decoderlog,'w')
runf = open(runfile,'w')
@@ -365,27 +371,26 @@ def optimize(args, script_dir, dev_size):
p1.stdout.close()
if exit_code:
- logging.error('Failed with exit code {}\n'.format(exit_code))
+ logging.error('Failed with exit code {}'.format(exit_code))
sys.exit(exit_code)
try:
f = open(runfile)
except IOError, msg:
- logging.error('Unable to open {}\n'.format(runfile))
+ logging.error('Unable to open {}'.format(runfile))
sys.exit()
num_topbest = sum(1 for line in f)
f.close()
if num_topbest == dev_size: break
- logging.warning('Incorrect number of top best. '
- 'Waiting for distributed filesystem and retrying.')
+ logging.warning('Incorrect number of top best. Sleeping for 10 seconds and retrying...')
time.sleep(10)
retries += 1
if dev_size != num_topbest:
logging.error("Dev set contains "+dev_size+" sentences, but we don't "
"have topbest for all of these. Decoder failure? "
- " Check "+decoderlog+'\n')
+ " Check "+decoderlog)
sys.exit()
dlog.close()
runf.close()
@@ -427,7 +432,7 @@ def optimize(args, script_dir, dev_size):
hope_best_fear['hope'].append(dec_score)
hope_best_fear['best'].append(dec_score_h)
hope_best_fear['fear'].append(dec_score_f)
- logging.info('DECODER SCORE: {0} HOPE: {1} FEAR: {2}\n'.format(
+ logging.info('DECODER SCORE: {0} HOPE: {1} FEAR: {2}'.format(
dec_score, dec_score_h, dec_score_f))
if dec_score > best_score:
best_score_iter = i
@@ -436,12 +441,13 @@ def optimize(args, script_dir, dev_size):
new_weights_file = '{}/weights.{}'.format(args.output_dir, i+1)
last_weights_file = '{}/weights.{}'.format(args.output_dir, i)
i += 1
- weight_files = weightdir+'/weights.mira-pass*.*[0-9].gz'
+ weight_files = args.output_dir+'/weights.pass*/weights.mira-pass*[0-9].gz'
average_weights(new_weights_file, weight_files)
- logging.info('\nBEST ITER: {} :: {}\n\n'.format(
+ logging.info('BEST ITERATION: {} (SCORE={})'.format(
best_score_iter, best_score))
weights_final = args.output_dir+'/weights.final'
+ logging.info('WEIGHTS FILE: {}'.format(weights_final))
shutil.copy(last_weights_file, weights_final)
average_final_weights(args.output_dir)
@@ -481,15 +487,15 @@ def gzip_file(filename):
#average the weights for a given pass
def average_weights(new_weights, weight_files):
- logging.info('AVERAGE {} {}\n'.format(new_weights, weight_files))
+ logging.info('AVERAGE {} {}'.format(new_weights, weight_files))
feature_weights = {}
total_mult = 0.0
for path in glob.glob(weight_files):
score = gzip.open(path)
mult = 0
- logging.info('FILE {}\n'.format(path))
+ logging.info(' FILE {}'.format(path))
msg, ran, mult = score.readline().strip().split(' ||| ')
- logging.info('Processing {} {}'.format(ran, mult))
+ logging.info(' Processing {} {}'.format(ran, mult))
for line in score:
f,w = line.split(' ',1)
if f in feature_weights:
@@ -500,34 +506,30 @@ def average_weights(new_weights, weight_files):
score.close()
#write new weights to outfile
+ logging.info('Writing averaged weights to {}'.format(new_weights))
out = open(new_weights, 'w')
for f in iter(feature_weights):
avg = feature_weights[f]/total_mult
- logging.info('{} {} {} ||| Printing {} {}\n'.format(f,feature_weights[f],
- total_mult, f, avg))
out.write('{} {}\n'.format(f,avg))
-def write_config(args):
- config = ('\n'
- 'DECODER: '
- '/usr0/home/eschling/cdec/training/mira/kbest_cut_mira\n'
- 'INI FILE: '+args.config+'\n'
- 'WORKING DIRECTORY: '+args.output_dir+'\n'
- 'DEVSET: '+args.devset+'\n'
- 'EVAL METRIC: '+args.metric+'\n'
- 'MAX ITERATIONS: '+str(args.max_iterations)+'\n'
- 'DECODE NODES: '+str(args.jobs)+'\n'
- 'INITIAL WEIGHTS: '+args.weights+'\n')
+def log_config(args):
+ logging.info('WORKING DIRECTORY={}'.format(args.output_dir))
+ logging.info('INI FILE={}'.format(args.config))
+ logging.info('DEVSET={}'.format(args.devset))
+ logging.info('EVAL METRIC={}'.format(args.metric))
+ logging.info('MAX ITERATIONS={}'.format(args.max_iterations))
+ logging.info('PARALLEL JOBS={}'.format(args.jobs))
+ logging.info('INITIAL WEIGHTS={}'.format(args.weights))
if args.grammar_prefix:
- config += 'GRAMMAR PREFIX: '+str(args.grammar_prefix)+'\n'
+ logging.info('GRAMMAR PREFIX={}'.format(args.grammar_prefix))
if args.test:
- config += 'TEST SET: '+args.test+'\n'
+ logging.info('TEST SET={}'.format(args.test))
+ else:
+ logging.info('TEST SET=none specified')
if args.test_config:
- config += 'TEST CONFIG: '+args.test_config+'\n'
+ logging.info('TEST CONFIG={}'.format(args.test_config))
if args.email:
- config += 'EMAIL: '+args.email+'\n'
-
- logging.info(config)
+ logging.info('EMAIL={}'.format(args.email))
if __name__=='__main__':
main()
diff --git a/training/pro/mr_pro_map.cc b/training/pro/mr_pro_map.cc
index eef40b8a..a5e6e48f 100644
--- a/training/pro/mr_pro_map.cc
+++ b/training/pro/mr_pro_map.cc
@@ -2,7 +2,6 @@
#include <iostream>
#include <fstream>
#include <vector>
-#include <tr1/unordered_map>
#include <boost/functional/hash.hpp>
#include <boost/shared_ptr.hpp>
diff --git a/training/utils/candidate_set.cc b/training/utils/candidate_set.cc
index 087efec3..1dec9609 100644
--- a/training/utils/candidate_set.cc
+++ b/training/utils/candidate_set.cc
@@ -1,6 +1,11 @@
#include "candidate_set.h"
-#include <tr1/unordered_set>
+#ifdef HAVE_CXX11
+# include <unordered_set>
+#else
+# include <tr1/unordered_set>
+namespace std { using std::tr1::unordered_set; }
+#endif
#include <boost/functional/hash.hpp>
@@ -139,12 +144,12 @@ void CandidateSet::ReadFromFile(const string& file) {
void CandidateSet::Dedup() {
if(!SILENT) cerr << "Dedup in=" << cs.size();
- tr1::unordered_set<Candidate, CandidateHasher, CandidateCompare> u;
+ unordered_set<Candidate, CandidateHasher, CandidateCompare> u;
while(cs.size() > 0) {
u.insert(cs.back());
cs.pop_back();
}
- tr1::unordered_set<Candidate, CandidateHasher, CandidateCompare>::iterator it = u.begin();
+ unordered_set<Candidate, CandidateHasher, CandidateCompare>::iterator it = u.begin();
while (it != u.end()) {
cs.push_back(*it);
it = u.erase(it);
diff --git a/training/utils/online_optimizer.h b/training/utils/online_optimizer.h
index 28d89344..19223e9d 100644
--- a/training/utils/online_optimizer.h
+++ b/training/utils/online_optimizer.h
@@ -1,10 +1,10 @@
#ifndef _ONL_OPTIMIZE_H_
#define _ONL_OPTIMIZE_H_
-#include <tr1/memory>
#include <set>
#include <string>
#include <cmath>
+#include <boost/shared_ptr.hpp>
#include "sparse_vector.h"
struct LearningRateSchedule {
@@ -56,7 +56,7 @@ struct ExponentialDecayLearningRate : public LearningRateSchedule {
class OnlineOptimizer {
public:
virtual ~OnlineOptimizer();
- OnlineOptimizer(const std::tr1::shared_ptr<LearningRateSchedule>& s,
+ OnlineOptimizer(const boost::shared_ptr<LearningRateSchedule>& s,
size_t batch_size,
const std::vector<int>& frozen_feats = std::vector<int>())
: N_(batch_size),schedule_(s),k_() {
@@ -77,13 +77,13 @@ class OnlineOptimizer {
std::set<int> frozen_; // frozen (non-optimizing) features
private:
- std::tr1::shared_ptr<LearningRateSchedule> schedule_;
+ boost::shared_ptr<LearningRateSchedule> schedule_;
int k_; // iteration count
};
class CumulativeL1OnlineOptimizer : public OnlineOptimizer {
public:
- CumulativeL1OnlineOptimizer(const std::tr1::shared_ptr<LearningRateSchedule>& s,
+ CumulativeL1OnlineOptimizer(const boost::shared_ptr<LearningRateSchedule>& s,
size_t training_instances, double C,
const std::vector<int>& frozen) :
OnlineOptimizer(s, training_instances, frozen), C_(C), u_() {}
diff --git a/training/utils/optimize_test.cc b/training/utils/optimize_test.cc
index bff2ca03..72fcef6d 100644
--- a/training/utils/optimize_test.cc
+++ b/training/utils/optimize_test.cc
@@ -2,6 +2,7 @@
#include <iostream>
#include <sstream>
#include <boost/program_options/variables_map.hpp>
+#include <boost/shared_ptr.hpp>
#include "optimize.h"
#include "online_optimizer.h"
#include "sparse_vector.h"
@@ -96,14 +97,11 @@ void TestOptimizerVariants(int num_vars) {
cerr << oa.Name() << " SUCCESS\n";
}
-using namespace std::tr1;
-
void TestOnline() {
size_t N = 20;
double C = 1.0;
double eta0 = 0.2;
- std::tr1::shared_ptr<LearningRateSchedule> r(new ExponentialDecayLearningRate(N, eta0, 0.85));
- //shared_ptr<LearningRateSchedule> r(new StandardLearningRate(N, eta0));
+ boost::shared_ptr<LearningRateSchedule> r(new ExponentialDecayLearningRate(N, eta0, 0.85));
CumulativeL1OnlineOptimizer opt(r, N, C, std::vector<int>());
assert(r->eta(10) < r->eta(1));
}