summaryrefslogtreecommitdiff
path: root/training/mr_em_adapted_reduce.cc
diff options
context:
space:
mode:
authorChris Dyer <redpony@gmail.com>2010-02-18 17:06:59 -0500
committerChris Dyer <redpony@gmail.com>2010-02-18 17:06:59 -0500
commit4d47dbd7da0434de67ac619392d516c678e1f2ca (patch)
treefdb327696aa30e79983602c0e7d5fde372efbde5 /training/mr_em_adapted_reduce.cc
parentc97b8a8b58f7385fb48b74e2cf1ea9610cd1202f (diff)
add generative word alignment model and primitive EM trainer. Model 1 and HMM are supported, without NULL source words
Diffstat (limited to 'training/mr_em_adapted_reduce.cc')
-rw-r--r--training/mr_em_adapted_reduce.cc194
1 files changed, 194 insertions, 0 deletions
diff --git a/training/mr_em_adapted_reduce.cc b/training/mr_em_adapted_reduce.cc
new file mode 100644
index 00000000..52387e7f
--- /dev/null
+++ b/training/mr_em_adapted_reduce.cc
@@ -0,0 +1,194 @@
+#include <iostream>
+#include <vector>
+#include <cassert>
+#include <cmath>
+
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "config.h"
+#ifdef HAVE_BOOST_DIGAMMA
+#include <boost/math/special_functions/digamma.hpp>
+using boost::math::digamma;
+#endif
+
+#include "filelib.h"
+#include "fdict.h"
+#include "weights.h"
+#include "sparse_vector.h"
+
+using namespace std;
+namespace po = boost::program_options;
+
+#ifndef HAVE_BOOST_DIGAMMA
+#warning Using Mark Johnsons digamma()
+double digamma(double x) {
+ double result = 0, xx, xx2, xx4;
+ assert(x > 0);
+ for ( ; x < 7; ++x)
+ result -= 1/x;
+ x -= 1.0/2.0;
+ xx = 1.0/x;
+ xx2 = xx*xx;
+ xx4 = xx2*xx2;
+ result += log(x)+(1./24.)*xx2-(7.0/960.0)*xx4+(31.0/8064.0)*xx4*xx2-(127.0/30720.0)*xx4*xx4;
+ return result;
+}
+#endif
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("optimization_method,m", po::value<string>()->default_value("em"), "Optimization method (em, vb)")
+ ("input_format,f",po::value<string>()->default_value("b64"),"Encoding of the input (b64 or text)");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help")) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+double NoZero(const double& x) {
+ if (x) return x;
+ return 1e-35;
+}
+
+void Maximize(const bool use_vb,
+ const double& alpha,
+ const int total_event_types,
+ SparseVector<double>* pc) {
+ const SparseVector<double>& counts = *pc;
+
+ if (use_vb)
+ assert(total_event_types >= counts.num_active());
+
+ double tot = 0;
+ for (SparseVector<double>::const_iterator it = counts.begin();
+ it != counts.end(); ++it)
+ tot += it->second;
+// cerr << " = " << tot << endl;
+ assert(tot > 0.0);
+ double ltot = log(tot);
+ if (use_vb)
+ ltot = digamma(tot + total_event_types * alpha);
+ for (SparseVector<double>::const_iterator it = counts.begin();
+ it != counts.end(); ++it) {
+ if (use_vb) {
+ pc->set_value(it->first, NoZero(digamma(it->second + alpha) - ltot));
+ } else {
+ pc->set_value(it->first, NoZero(log(it->second) - ltot));
+ }
+ }
+#if 0
+ if (counts.num_active() < 50) {
+ for (SparseVector<double>::const_iterator it = counts.begin();
+ it != counts.end(); ++it) {
+ cerr << " p(" << FD::Convert(it->first) << ")=" << exp(it->second);
+ }
+ cerr << endl;
+ }
+#endif
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+
+ const bool use_b64 = conf["input_format"].as<string>() == "b64";
+ const bool use_vb = conf["optimization_method"].as<string>() == "vb";
+ const double alpha = 1e-09;
+ if (use_vb)
+ cerr << "Using variational Bayes, make sure alphas are set\n";
+
+ const string s_obj = "**OBJ**";
+ // E-step
+ string cur_key = "";
+ SparseVector<double> acc;
+ double logprob = 0;
+ while(cin) {
+ string line;
+ getline(cin, line);
+ if (line.empty()) continue;
+ int feat;
+ double val;
+ size_t i = line.find("\t");
+ const string key = line.substr(0, i);
+ assert(i != string::npos);
+ ++i;
+ if (key != cur_key) {
+ if (cur_key.size() > 0) {
+ // TODO shouldn't be num_active, should be total number
+ // of events
+ Maximize(use_vb, alpha, acc.num_active(), &acc);
+ cout << cur_key << '\t';
+ if (use_b64)
+ B64::Encode(0.0, acc, &cout);
+ else
+ cout << acc;
+ cout << endl;
+ acc.clear();
+ }
+ cur_key = key;
+ }
+ if (use_b64) {
+ SparseVector<double> g;
+ double obj;
+ if (!B64::Decode(&obj, &g, &line[i], line.size() - i)) {
+ cerr << "B64 decoder returned error, skipping!\n";
+ continue;
+ }
+ logprob += obj;
+ acc += g;
+ } else { // text encoding - your counts will not be accurate!
+ while (i < line.size()) {
+ size_t start = i;
+ while (line[i] != '=' && i < line.size()) ++i;
+ if (i == line.size()) { cerr << "FORMAT ERROR\n"; break; }
+ string fname = line.substr(start, i - start);
+ if (fname == s_obj) {
+ feat = -1;
+ } else {
+ feat = FD::Convert(line.substr(start, i - start));
+ }
+ ++i;
+ start = i;
+ while (line[i] != ';' && i < line.size()) ++i;
+ if (i - start == 0) continue;
+ val = atof(line.substr(start, i - start).c_str());
+ ++i;
+ if (feat == -1) {
+ logprob += val;
+ } else {
+ acc.add_value(feat, val);
+ }
+ }
+ }
+ }
+ // TODO shouldn't be num_active, should be total number
+ // of events
+ Maximize(use_vb, alpha, acc.num_active(), &acc);
+ cout << cur_key << '\t';
+ if (use_b64)
+ B64::Encode(0.0, acc, &cout);
+ else
+ cout << acc;
+ cout << endl << flush;
+
+ cerr << "LOGPROB: " << logprob << endl;
+
+ return 0;
+}