summaryrefslogtreecommitdiff
path: root/training/mpi_flex_optimize.cc
diff options
context:
space:
mode:
authorChris Dyer <cdyer@allegro.clab.cs.cmu.edu>2012-11-18 13:35:42 -0500
committerChris Dyer <cdyer@allegro.clab.cs.cmu.edu>2012-11-18 13:35:42 -0500
commit1b8181bf0d6e9137e6b9ccdbe414aec37377a1a9 (patch)
tree33e5f3aa5abff1f41314cf8f6afbd2c2c40e4bfd /training/mpi_flex_optimize.cc
parent7c4665949fb93fb3de402e4ce1d19bef67850d05 (diff)
major restructure of the training code
Diffstat (limited to 'training/mpi_flex_optimize.cc')
-rw-r--r--training/mpi_flex_optimize.cc386
1 files changed, 0 insertions, 386 deletions
diff --git a/training/mpi_flex_optimize.cc b/training/mpi_flex_optimize.cc
deleted file mode 100644
index b52decdc..00000000
--- a/training/mpi_flex_optimize.cc
+++ /dev/null
@@ -1,386 +0,0 @@
-#include <sstream>
-#include <iostream>
-#include <fstream>
-#include <vector>
-#include <cassert>
-#include <cmath>
-
-#include <boost/shared_ptr.hpp>
-#include <boost/program_options.hpp>
-#include <boost/program_options/variables_map.hpp>
-
-#include "stringlib.h"
-#include "verbose.h"
-#include "hg.h"
-#include "prob.h"
-#include "inside_outside.h"
-#include "ff_register.h"
-#include "decoder.h"
-#include "filelib.h"
-#include "optimize.h"
-#include "fdict.h"
-#include "weights.h"
-#include "sparse_vector.h"
-#include "sampler.h"
-
-#ifdef HAVE_MPI
-#include <boost/mpi/timer.hpp>
-#include <boost/mpi.hpp>
-namespace mpi = boost::mpi;
-#endif
-
-using namespace std;
-namespace po = boost::program_options;
-
-bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
- po::options_description opts("Configuration options");
- opts.add_options()
- ("cdec_config,c",po::value<string>(),"Decoder configuration file")
- ("weights,w",po::value<string>(),"Initial feature weights")
- ("training_data,d",po::value<string>(),"Training data")
- ("minibatch_size_per_proc,s", po::value<unsigned>()->default_value(6), "Number of training instances evaluated per processor in each minibatch")
- ("minibatch_iterations,i", po::value<unsigned>()->default_value(10), "Number of optimization iterations per minibatch")
- ("iterations,I", po::value<unsigned>()->default_value(50), "Number of passes through the training data before termination")
- ("regularization_strength,C", po::value<double>()->default_value(0.2), "Regularization strength")
- ("time_series_strength,T", po::value<double>()->default_value(0.0), "Time series regularization strength")
- ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
- ("lbfgs_memory_buffers,M", po::value<unsigned>()->default_value(10), "Number of memory buffers for LBFGS history");
- po::options_description clo("Command line options");
- clo.add_options()
- ("config", po::value<string>(), "Configuration file")
- ("help,h", "Print this help message and exit");
- po::options_description dconfig_options, dcmdline_options;
- dconfig_options.add(opts);
- dcmdline_options.add(opts).add(clo);
-
- po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
- if (conf->count("config")) {
- ifstream config((*conf)["config"].as<string>().c_str());
- po::store(po::parse_config_file(config, dconfig_options), *conf);
- }
- po::notify(*conf);
-
- if (conf->count("help") || !conf->count("training_data") || !conf->count("cdec_config")) {
- cerr << "LBFGS minibatch online optimizer (MPI support "
-#if HAVE_MPI
- << "enabled"
-#else
- << "not enabled"
-#endif
- << ")\n" << dcmdline_options << endl;
- return false;
- }
- return true;
-}
-
-void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* order) {
- ReadFile rf(fname);
- istream& in = *rf.stream();
- string line;
- int id = 0;
- while(in) {
- getline(in, line);
- if (!in) break;
- if (id % size == rank) {
- c->push_back(line);
- order->push_back(id);
- }
- ++id;
- }
-}
-
-static const double kMINUS_EPSILON = -1e-6;
-
-struct CopyHGsObserver : public DecoderObserver {
- Hypergraph* hg_;
- Hypergraph* gold_hg_;
-
- // this can free up some memory
- void RemoveRules(Hypergraph* h) {
- for (unsigned i = 0; i < h->edges_.size(); ++i)
- h->edges_[i].rule_.reset();
- }
-
- void SetCurrentHypergraphs(Hypergraph* h, Hypergraph* gold_h) {
- hg_ = h;
- gold_hg_ = gold_h;
- }
-
- virtual void NotifyDecodingStart(const SentenceMetadata&) {
- state = 1;
- }
-
- // compute model expectations, denominator of objective
- virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) {
- *hg_ = *hg;
- RemoveRules(hg_);
- assert(state == 1);
- state = 2;
- }
-
- // compute "empirical" expectations, numerator of objective
- virtual void NotifyAlignmentForest(const SentenceMetadata&, Hypergraph* hg) {
- assert(state == 2);
- state = 3;
- *gold_hg_ = *hg;
- RemoveRules(gold_hg_);
- }
-
- virtual void NotifyDecodingComplete(const SentenceMetadata&) {
- if (state == 3) {
- } else {
- hg_->clear();
- gold_hg_->clear();
- }
- }
-
- int state;
-};
-
-void ReadConfig(const string& ini, istringstream* out) {
- ReadFile rf(ini);
- istream& in = *rf.stream();
- ostringstream os;
- while(in) {
- string line;
- getline(in, line);
- if (!in) continue;
- os << line << endl;
- }
- out->str(os.str());
-}
-
-#ifdef HAVE_MPI
-namespace boost { namespace mpi {
- template<>
- struct is_commutative<std::plus<SparseVector<double> >, SparseVector<double> >
- : mpl::true_ { };
-} } // end namespace boost::mpi
-#endif
-
-void AddGrad(const SparseVector<prob_t> x, double s, SparseVector<double>* acc) {
- for (SparseVector<prob_t>::const_iterator it = x.begin(); it != x.end(); ++it)
- acc->add_value(it->first, it->second.as_float() * s);
-}
-
-double PNorm(const vector<double>& v, const double p) {
- double acc = 0;
- for (int i = 0; i < v.size(); ++i)
- acc += pow(v[i], p);
- return pow(acc, 1.0 / p);
-}
-
-void VV(ostream&os, const vector<double>& v) {
- for (int i = 1; i < v.size(); ++i)
- if (v[i]) os << FD::Convert(i) << "=" << v[i] << " ";
-}
-
-double ApplyRegularizationTerms(const double C,
- const double T,
- const vector<double>& weights,
- const vector<double>& prev_weights,
- double* g) {
- double reg = 0;
- for (size_t i = 0; i < weights.size(); ++i) {
- const double prev_w_i = (i < prev_weights.size() ? prev_weights[i] : 0.0);
- const double& w_i = weights[i];
- reg += C * w_i * w_i;
- g[i] += 2 * C * w_i;
-
- reg += T * (w_i - prev_w_i) * (w_i - prev_w_i);
- g[i] += 2 * T * (w_i - prev_w_i);
- }
- return reg;
-}
-
-int main(int argc, char** argv) {
-#ifdef HAVE_MPI
- mpi::environment env(argc, argv);
- mpi::communicator world;
- const int size = world.size();
- const int rank = world.rank();
-#else
- const int size = 1;
- const int rank = 0;
-#endif
- if (size > 1) SetSilent(true); // turn off verbose decoder output
- register_feature_functions();
- MT19937* rng = NULL;
-
- po::variables_map conf;
- if (!InitCommandLine(argc, argv, &conf))
- return 1;
-
- boost::shared_ptr<BatchOptimizer> o;
- const unsigned lbfgs_memory_buffers = conf["lbfgs_memory_buffers"].as<unsigned>();
- const unsigned size_per_proc = conf["minibatch_size_per_proc"].as<unsigned>();
- const unsigned minibatch_iterations = conf["minibatch_iterations"].as<unsigned>();
- const double regularization_strength = conf["regularization_strength"].as<double>();
- const double time_series_strength = conf["time_series_strength"].as<double>();
- const bool use_time_series_reg = time_series_strength > 0.0;
- const unsigned max_iteration = conf["iterations"].as<unsigned>();
-
- vector<string> corpus;
- vector<int> ids;
- ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids);
- assert(corpus.size() > 0);
-
- if (size_per_proc > corpus.size()) {
- cerr << "Minibatch size (per processor) must be smaller or equal to the local corpus size!\n";
- return 1;
- }
-
- // initialize decoder (loads hash functions if necessary)
- istringstream ins;
- ReadConfig(conf["cdec_config"].as<string>(), &ins);
- Decoder decoder(&ins);
-
- // load initial weights
- vector<weight_t> prev_weights;
- if (conf.count("weights"))
- Weights::InitFromFile(conf["weights"].as<string>(), &prev_weights);
-
- if (conf.count("random_seed"))
- rng = new MT19937(conf["random_seed"].as<uint32_t>());
- else
- rng = new MT19937;
-
- size_t total_corpus_size = 0;
-#ifdef HAVE_MPI
- reduce(world, corpus.size(), total_corpus_size, std::plus<size_t>(), 0);
-#else
- total_corpus_size = corpus.size();
-#endif
-
- if (rank == 0)
- cerr << "Total corpus size: " << total_corpus_size << endl;
-
- CopyHGsObserver observer;
-
- int write_weights_every_ith = 100; // TODO configure
- int titer = -1;
-
- vector<weight_t>& cur_weights = decoder.CurrentWeightVector();
- if (use_time_series_reg) {
- cur_weights = prev_weights;
- } else {
- cur_weights.swap(prev_weights);
- prev_weights.clear();
- }
-
- int iter = -1;
- bool converged = false;
- vector<double> gg;
- while (!converged) {
-#ifdef HAVE_MPI
- mpi::timer timer;
-#endif
- ++iter; ++titer;
- if (rank == 0) {
- converged = (iter == max_iteration);
- string fname = "weights.cur.gz";
- if (iter % write_weights_every_ith == 0) {
- ostringstream o; o << "weights.epoch_" << iter << ".gz";
- fname = o.str();
- }
- if (converged) { fname = "weights.final.gz"; }
- ostringstream vv;
- vv << "total iter=" << titer << " (of current config iter=" << iter << ") minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << FD::NumFeats() << " passes_thru_data=" << (titer * size_per_proc / static_cast<double>(corpus.size()));
- const string svv = vv.str();
- Weights::WriteToFile(fname, cur_weights, true, &svv);
- }
-
- vector<Hypergraph> hgs(size_per_proc);
- vector<Hypergraph> gold_hgs(size_per_proc);
- for (int i = 0; i < size_per_proc; ++i) {
- int ei = corpus.size() * rng->next();
- int id = ids[ei];
- observer.SetCurrentHypergraphs(&hgs[i], &gold_hgs[i]);
- decoder.SetId(id);
- decoder.Decode(corpus[ei], &observer);
- }
-
- SparseVector<double> local_grad, g;
- double local_obj = 0;
- o.reset();
- for (unsigned mi = 0; mi < minibatch_iterations; ++mi) {
- local_grad.clear();
- g.clear();
- local_obj = 0;
-
- for (unsigned i = 0; i < size_per_proc; ++i) {
- Hypergraph& hg = hgs[i];
- Hypergraph& hg_gold = gold_hgs[i];
- if (hg.edges_.size() < 2) continue;
-
- hg.Reweight(cur_weights);
- hg_gold.Reweight(cur_weights);
- SparseVector<prob_t> model_exp, gold_exp;
- const prob_t z = InsideOutside<prob_t,
- EdgeProb,
- SparseVector<prob_t>,
- EdgeFeaturesAndProbWeightFunction>(hg, &model_exp);
- local_obj += log(z);
- model_exp /= z;
- AddGrad(model_exp, 1.0, &local_grad);
- model_exp.clear();
-
- const prob_t goldz = InsideOutside<prob_t,
- EdgeProb,
- SparseVector<prob_t>,
- EdgeFeaturesAndProbWeightFunction>(hg_gold, &gold_exp);
- local_obj -= log(goldz);
-
- if (log(z) - log(goldz) < kMINUS_EPSILON) {
- cerr << "DIFF. ERR! log_model_z < log_gold_z: " << log(z) << " " << log(goldz) << endl;
- return 1;
- }
-
- gold_exp /= goldz;
- AddGrad(gold_exp, -1.0, &local_grad);
- }
-
- double obj = 0;
-#ifdef HAVE_MPI
- reduce(world, local_obj, obj, std::plus<double>(), 0);
- reduce(world, local_grad, g, std::plus<SparseVector<double> >(), 0);
-#else
- obj = local_obj;
- g.swap(local_grad);
-#endif
- local_grad.clear();
- if (rank == 0) {
- // g /= (size_per_proc * size);
- if (!o)
- o.reset(new LBFGSOptimizer(FD::NumFeats(), lbfgs_memory_buffers));
- gg.clear();
- gg.resize(FD::NumFeats());
- if (gg.size() != cur_weights.size()) { cur_weights.resize(gg.size()); }
- for (SparseVector<double>::iterator it = g.begin(); it != g.end(); ++it)
- if (it->first) { gg[it->first] = it->second; }
- g.clear();
- double r = ApplyRegularizationTerms(regularization_strength,
- time_series_strength, // * (iter == 0 ? 0.0 : 1.0),
- cur_weights,
- prev_weights,
- &gg[0]);
- obj += r;
- if (mi == 0 || mi == (minibatch_iterations - 1)) {
- if (!mi) cerr << iter << ' '; else cerr << ' ';
- cerr << "OBJ=" << obj << " (REG=" << r << ")" << " |g|=" << PNorm(gg, 2) << " |w|=" << PNorm(cur_weights, 2);
- if (mi > 0) cerr << endl << flush; else cerr << ' ';
- } else { cerr << '.' << flush; }
- // cerr << "w = "; VV(cerr, cur_weights); cerr << endl;
- // cerr << "g = "; VV(cerr, gg); cerr << endl;
- o->Optimize(obj, gg, &cur_weights);
- }
-#ifdef HAVE_MPI
- broadcast(world, cur_weights, 0);
- broadcast(world, converged, 0);
- world.barrier();
-#endif
- }
- prev_weights = cur_weights;
- }
- return 0;
-}