summaryrefslogtreecommitdiff
path: root/training/lbl_model.cc
diff options
context:
space:
mode:
authorChris Dyer <cdyer@allegro.clab.cs.cmu.edu>2012-11-18 13:35:42 -0500
committerChris Dyer <cdyer@allegro.clab.cs.cmu.edu>2012-11-18 13:35:42 -0500
commit1b8181bf0d6e9137e6b9ccdbe414aec37377a1a9 (patch)
tree33e5f3aa5abff1f41314cf8f6afbd2c2c40e4bfd /training/lbl_model.cc
parent7c4665949fb93fb3de402e4ce1d19bef67850d05 (diff)
major restructure of the training code
Diffstat (limited to 'training/lbl_model.cc')
-rw-r--r--training/lbl_model.cc421
1 files changed, 0 insertions, 421 deletions
diff --git a/training/lbl_model.cc b/training/lbl_model.cc
deleted file mode 100644
index a46ce33c..00000000
--- a/training/lbl_model.cc
+++ /dev/null
@@ -1,421 +0,0 @@
-#include <iostream>
-
-#include "config.h"
-#ifndef HAVE_EIGEN
- int main() { std::cerr << "Please rebuild with --with-eigen PATH\n"; return 1; }
-#else
-
-#include <cstdlib>
-#include <algorithm>
-#include <cmath>
-#include <set>
-#include <cstring> // memset
-#include <ctime>
-
-#ifdef HAVE_MPI
-#include <boost/mpi/timer.hpp>
-#include <boost/mpi.hpp>
-#include <boost/archive/text_oarchive.hpp>
-namespace mpi = boost::mpi;
-#endif
-#include <boost/math/special_functions/fpclassify.hpp>
-#include <boost/program_options.hpp>
-#include <boost/program_options/variables_map.hpp>
-#include <Eigen/Dense>
-
-#include "corpus_tools.h"
-#include "optimize.h"
-#include "array2d.h"
-#include "m.h"
-#include "lattice.h"
-#include "stringlib.h"
-#include "filelib.h"
-#include "tdict.h"
-
-namespace po = boost::program_options;
-using namespace std;
-
-#define kDIMENSIONS 10
-typedef Eigen::Matrix<double, kDIMENSIONS, 1> RVector;
-typedef Eigen::Matrix<double, 1, kDIMENSIONS> RTVector;
-typedef Eigen::Matrix<double, kDIMENSIONS, kDIMENSIONS> TMatrix;
-vector<RVector> r_src, r_trg;
-
-#if HAVE_MPI
-namespace boost {
-namespace serialization {
-
-template<class Archive>
-void serialize(Archive & ar, RVector & v, const unsigned int version) {
- for (unsigned i = 0; i < kDIMENSIONS; ++i)
- ar & v[i];
-}
-
-} // namespace serialization
-} // namespace boost
-#endif
-
-bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
- po::options_description opts("Configuration options");
- opts.add_options()
- ("input,i",po::value<string>(),"Input file")
- ("iterations,I",po::value<unsigned>()->default_value(1000),"Number of iterations of training")
- ("regularization_strength,C",po::value<double>()->default_value(0.1),"L2 regularization strength (0 for no regularization)")
- ("eta", po::value<double>()->default_value(0.1f), "Eta for SGD")
- ("source_embeddings,f", po::value<string>(), "File containing source embeddings (if unset, random vectors will be used)")
- ("target_embeddings,e", po::value<string>(), "File containing target embeddings (if unset, random vectors will be used)")
- ("random_seed,s", po::value<unsigned>(), "Random seed")
- ("diagonal_tension,T", po::value<double>()->default_value(4.0), "How sharp or flat around the diagonal is the alignment distribution (0 = uniform, >0 sharpens)")
- ("testset,x", po::value<string>(), "After training completes, compute the log likelihood of this set of sentence pairs under the learned model");
- po::options_description clo("Command line options");
- clo.add_options()
- ("config", po::value<string>(), "Configuration file")
- ("help,h", "Print this help message and exit");
- po::options_description dconfig_options, dcmdline_options;
- dconfig_options.add(opts);
- dcmdline_options.add(opts).add(clo);
-
- po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
- if (conf->count("config")) {
- ifstream config((*conf)["config"].as<string>().c_str());
- po::store(po::parse_config_file(config, dconfig_options), *conf);
- }
- po::notify(*conf);
-
- if (argc < 2 || conf->count("help")) {
- cerr << "Usage " << argv[0] << " [OPTIONS] -i corpus.fr-en\n";
- cerr << dcmdline_options << endl;
- return false;
- }
- return true;
-}
-
-void Normalize(RVector* v) {
- double norm = v->norm();
- assert(norm > 0.0f);
- *v /= norm;
-}
-
-void Flatten(const TMatrix& m, vector<double>* v) {
- unsigned c = 0;
- v->resize(kDIMENSIONS * kDIMENSIONS);
- for (unsigned i = 0; i < kDIMENSIONS; ++i)
- for (unsigned j = 0; j < kDIMENSIONS; ++j) {
- assert(boost::math::isfinite(m(i, j)));
- (*v)[c++] = m(i,j);
- }
-}
-
-void Unflatten(const vector<double>& v, TMatrix* m) {
- unsigned c = 0;
- for (unsigned i = 0; i < kDIMENSIONS; ++i)
- for (unsigned j = 0; j < kDIMENSIONS; ++j) {
- assert(boost::math::isfinite(v[c]));
- (*m)(i, j) = v[c++];
- }
-}
-
-double ApplyRegularization(const double C,
- const vector<double>& weights,
- vector<double>* g) {
- assert(weights.size() == g->size());
- double reg = 0;
- for (size_t i = 0; i < weights.size(); ++i) {
- const double& w_i = weights[i];
- double& g_i = (*g)[i];
- reg += C * w_i * w_i;
- g_i += 2 * C * w_i;
- }
- return reg;
-}
-
-void LoadEmbeddings(const string& filename, vector<RVector>* pv) {
- vector<RVector>& v = *pv;
- cerr << "Reading embeddings from " << filename << " ...\n";
- ReadFile rf(filename);
- istream& in = *rf.stream();
- string line;
- unsigned lc = 0;
- while(getline(in, line)) {
- ++lc;
- size_t cur = line.find(' ');
- if (cur == string::npos || cur == 0) {
- cerr << "Parse error reading line " << lc << ":\n" << line << endl;
- abort();
- }
- WordID w = TD::Convert(line.substr(0, cur));
- if (w >= v.size()) continue;
- RVector& curv = v[w];
- line[cur] = 0;
- size_t start = cur + 1;
- cur = start + 1;
- size_t c = 0;
- while(cur < line.size()) {
- if (line[cur] == ' ') {
- line[cur] = 0;
- curv[c++] = strtod(&line[start], NULL);
- start = cur + 1;
- cur = start;
- if (c == kDIMENSIONS) break;
- }
- ++cur;
- }
- if (c < kDIMENSIONS && cur != start) {
- if (cur < line.size()) line[cur] = 0;
- curv[c++] = strtod(&line[start], NULL);
- }
- if (c != kDIMENSIONS) {
- static bool first = true;
- if (first) {
- cerr << " read " << c << " dimensions from embedding file, but built with " << kDIMENSIONS << " (filling in with random values)\n";
- first = false;
- }
- for (; c < kDIMENSIONS; ++c) curv[c] = rand();
- }
- if (c == kDIMENSIONS && cur != line.size()) {
- static bool first = true;
- if (first) {
- cerr << " embedding file contains more dimensions than configured with, truncating.\n";
- first = false;
- }
- }
- }
-}
-
-int main(int argc, char** argv) {
-#ifdef HAVE_MPI
- std::cerr << "**MPI enabled.\n";
- mpi::environment env(argc, argv);
- mpi::communicator world;
- const int size = world.size();
- const int rank = world.rank();
-#else
- std::cerr << "**MPI disabled.\n";
- const int rank = 0;
- const int size = 1;
-#endif
- po::variables_map conf;
- if (!InitCommandLine(argc, argv, &conf)) return 1;
- const string fname = conf["input"].as<string>();
- const double reg_strength = conf["regularization_strength"].as<double>();
- const bool has_l2 = reg_strength;
- assert(reg_strength >= 0.0f);
- const int ITERATIONS = conf["iterations"].as<unsigned>();
- const double eta = conf["eta"].as<double>();
- const double diagonal_tension = conf["diagonal_tension"].as<double>();
- bool SGD = false;
- if (diagonal_tension < 0.0) {
- cerr << "Invalid value for diagonal_tension: must be >= 0\n";
- return 1;
- }
- string testset;
- if (conf.count("testset")) testset = conf["testset"].as<string>();
-
- unsigned lc = 0;
- vector<double> unnormed_a_i;
- bool flag = false;
- vector<vector<WordID> > srcs, trgs;
- vector<WordID> vocab_e;
- {
- set<WordID> svocab_e, svocab_f;
- CorpusTools::ReadFromFile(fname, &srcs, NULL, &trgs, &svocab_e, rank, size);
- copy(svocab_e.begin(), svocab_e.end(), back_inserter(vocab_e));
- }
- cerr << "Number of target word types: " << vocab_e.size() << endl;
- const double num_examples = lc;
-
- boost::shared_ptr<LBFGSOptimizer> lbfgs;
- if (rank == 0)
- lbfgs.reset(new LBFGSOptimizer(kDIMENSIONS * kDIMENSIONS, 100));
- r_trg.resize(TD::NumWords() + 1);
- r_src.resize(TD::NumWords() + 1);
- vector<set<unsigned> > trg_pos(TD::NumWords() + 1);
-
- if (conf.count("random_seed")) {
- srand(conf["random_seed"].as<unsigned>());
- } else {
- unsigned seed = time(NULL) + rank * 100;
- cerr << "Random seed: " << seed << endl;
- srand(seed);
- }
-
- TMatrix t = TMatrix::Zero();
- if (rank == 0) {
- t = TMatrix::Random() / 50.0;
- for (unsigned i = 1; i < r_trg.size(); ++i) {
- r_trg[i] = RVector::Random();
- r_src[i] = RVector::Random();
- }
- if (conf.count("source_embeddings"))
- LoadEmbeddings(conf["source_embeddings"].as<string>(), &r_src);
- if (conf.count("target_embeddings"))
- LoadEmbeddings(conf["target_embeddings"].as<string>(), &r_trg);
- }
-
- // do optimization
- TMatrix g = TMatrix::Zero();
- vector<TMatrix> exp_src;
- vector<double> z_src;
- vector<double> flat_g, flat_t, rcv_grad;
- Flatten(t, &flat_t);
- bool converged = false;
-#if HAVE_MPI
- mpi::broadcast(world, &flat_t[0], flat_t.size(), 0);
- mpi::broadcast(world, r_trg, 0);
- mpi::broadcast(world, r_src, 0);
-#endif
- cerr << "rank=" << rank << ": " << r_trg[0][4] << endl;
- for (int iter = 0; !converged && iter < ITERATIONS; ++iter) {
- if (rank == 0) cerr << "ITERATION " << (iter + 1) << endl;
- Unflatten(flat_t, &t);
- double likelihood = 0;
- double denom = 0.0;
- lc = 0;
- flag = false;
- g *= 0;
- for (unsigned i = 0; i < srcs.size(); ++i) {
- const vector<WordID>& src = srcs[i];
- const vector<WordID>& trg = trgs[i];
- ++lc;
- if (rank == 0 && lc % 1000 == 0) { cerr << '.'; flag = true; }
- if (rank == 0 && lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; }
- denom += trg.size();
-
- exp_src.clear(); exp_src.resize(src.size(), TMatrix::Zero());
- z_src.clear(); z_src.resize(src.size(), 0.0);
- Array2D<TMatrix> exp_refs(src.size(), trg.size(), TMatrix::Zero());
- Array2D<double> z_refs(src.size(), trg.size(), 0.0);
- for (unsigned j = 0; j < trg.size(); ++j)
- trg_pos[trg[j]].insert(j);
-
- for (unsigned i = 0; i < src.size(); ++i) {
- const RVector& r_s = r_src[src[i]];
- const RTVector pred = r_s.transpose() * t;
- TMatrix& exp_m = exp_src[i];
- double& z = z_src[i];
- for (unsigned k = 0; k < vocab_e.size(); ++k) {
- const WordID v_k = vocab_e[k];
- const RVector& r_t = r_trg[v_k];
- const double dot_prod = pred * r_t;
- const double u = exp(dot_prod);
- z += u;
- const TMatrix v = r_s * r_t.transpose() * u;
- exp_m += v;
- set<unsigned>& ref_locs = trg_pos[v_k];
- if (!ref_locs.empty()) {
- for (set<unsigned>::iterator it = ref_locs.begin(); it != ref_locs.end(); ++it) {
- TMatrix& exp_ref_ij = exp_refs(i, *it);
- double& z_ref_ij = z_refs(i, *it);
- z_ref_ij += u;
- exp_ref_ij += v;
- }
- }
- }
- }
- for (unsigned j = 0; j < trg.size(); ++j)
- trg_pos[trg[j]].clear();
-
- // model expectations for a single target generation with
- // uniform alignment prior
- // TODO: when using a non-uniform alignment, m_exp will be
- // a function of j (below)
- double m_z = 0;
- TMatrix m_exp = TMatrix::Zero();
- for (unsigned i = 0; i < src.size(); ++i) {
- m_exp += exp_src[i];
- m_z += z_src[i];
- }
- m_exp /= m_z;
-
- Array2D<bool> al(src.size(), trg.size(), false);
- for (unsigned j = 0; j < trg.size(); ++j) {
- double ref_z = 0;
- TMatrix ref_exp = TMatrix::Zero();
- int max_i = 0;
- double max_s = -9999999;
- for (unsigned i = 0; i < src.size(); ++i) {
- ref_exp += exp_refs(i, j);
- ref_z += z_refs(i, j);
- if (log(z_refs(i, j)) > max_s) {
- max_s = log(z_refs(i, j));
- max_i = i;
- }
- // TODO handle alignment prob
- }
- if (ref_z <= 0) {
- cerr << "TRG=" << TD::Convert(trg[j]) << endl;
- cerr << " LINE=" << lc << " (RANK=" << rank << "/" << size << ")" << endl;
- cerr << " REF_EXP=\n" << ref_exp << endl;
- cerr << " M_EXP=\n" << m_exp << endl;
- abort();
- }
- al(max_i, j) = true;
- ref_exp /= ref_z;
- g += m_exp - ref_exp;
- likelihood += log(ref_z) - log(m_z);
- if (SGD) {
- t -= g * eta / num_examples;
- g *= 0;
- }
- }
-
- if (rank == 0 && (iter == (ITERATIONS - 1) || lc < 12)) { cerr << al << endl; }
- }
- if (flag && rank == 0) { cerr << endl; }
-
- double obj = 0;
- if (!SGD) {
- Flatten(g, &flat_g);
- obj = -likelihood;
-#if HAVE_MPI
- rcv_grad.resize(flat_g.size(), 0.0);
- mpi::reduce(world, &flat_g[0], flat_g.size(), &rcv_grad[0], plus<double>(), 0);
- swap(flat_g, rcv_grad);
- rcv_grad.clear();
-
- double to = 0;
- mpi::reduce(world, obj, to, plus<double>(), 0);
- obj = to;
- double tlh = 0;
- mpi::reduce(world, likelihood, tlh, plus<double>(), 0);
- likelihood = tlh;
- double td = 0;
- mpi::reduce(world, denom, td, plus<double>(), 0);
- denom = td;
-#endif
- }
-
- if (rank == 0) {
- double gn = 0;
- for (unsigned i = 0; i < flat_g.size(); ++i)
- gn += flat_g[i]*flat_g[i];
- const double base2_likelihood = likelihood / log(2);
- cerr << " log_e likelihood: " << likelihood << endl;
- cerr << " log_2 likelihood: " << base2_likelihood << endl;
- cerr << " cross entropy: " << (-base2_likelihood / denom) << endl;
- cerr << " perplexity: " << pow(2.0, -base2_likelihood / denom) << endl;
- cerr << " gradient norm: " << sqrt(gn) << endl;
- if (!SGD) {
- if (has_l2) {
- const double r = ApplyRegularization(reg_strength,
- flat_t,
- &flat_g);
- obj += r;
- cerr << " regularization: " << r << endl;
- }
- lbfgs->Optimize(obj, flat_g, &flat_t);
- converged = (lbfgs->HasConverged());
- }
- }
-#ifdef HAVE_MPI
- mpi::broadcast(world, &flat_t[0], flat_t.size(), 0);
- mpi::broadcast(world, converged, 0);
-#endif
- }
- if (rank == 0)
- cerr << "TRANSLATION MATRIX:" << endl << t << endl;
- return 0;
-}
-
-#endif
-