summaryrefslogtreecommitdiff
path: root/training/dtrain/examples
diff options
context:
space:
mode:
authorPatrick Simianer <simianer@cl.uni-heidelberg.de>2013-10-08 13:57:45 +0200
committerPatrick Simianer <simianer@cl.uni-heidelberg.de>2013-10-08 13:57:45 +0200
commit8fae8c224fc7a8f8a858ed9a022992d020057f65 (patch)
tree295c876d6fa8c8cc6725ec6cd2a9f164fb78e232 /training/dtrain/examples
parent61ab9164cce065ee3cb4fc6c72d0b7246874d18c (diff)
dtrain: added pclr variants and new expected-output; fixed bug in soft syntax features
Diffstat (limited to 'training/dtrain/examples')
-rw-r--r--training/dtrain/examples/standard/dtrain.ini6
-rw-r--r--training/dtrain/examples/standard/expected-output115
2 files changed, 74 insertions, 47 deletions
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index c0912a62..e6d6382e 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -1,6 +1,6 @@
input=./nc-wmt11.de.gz
refs=./nc-wmt11.en.gz
-output=asdf # a weights file (add .gz for gzip compression) or STDOUT '-'
+output=- # a weights file (add .gz for gzip compression) or STDOUT '-'
select_weights=VOID # output average (over epochs) weight vector
decoder_config=./cdec.ini # config for cdec
# weights for these features will be printed on each iteration
@@ -10,11 +10,11 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr
stop_after=10 # stop epoch after 10 inputs
# interesting stuff
-epochs=2 # run over input 2 times
+epochs=3 # run over input 3 times
k=100 # use 100best lists
N=4 # optimize (approx) BLEU4
scorer=fixed_stupid_bleu # use 'stupid' BLEU+1
-learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron)
+learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)
gamma=0 # use SVM reg
sample_from=kbest # use kbest lists (as opposed to forest)
filter=uniq # only unique entries in kbest (surface form)
diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output
index 21f91244..a35bbe6f 100644
--- a/training/dtrain/examples/standard/expected-output
+++ b/training/dtrain/examples/standard/expected-output
@@ -4,13 +4,13 @@ Reading ./nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
Example feature: Shape_S00000_T00000
-Seeding random number sequence to 970626287
+Seeding random number sequence to 4049211323
dtrain
Parameters:
k 100
N 4
- T 2
+ T 3
scorer 'fixed_stupid_bleu'
sample from 'kbest'
filter 'uniq'
@@ -23,6 +23,7 @@ Parameters:
pair threshold 0
select weights 'VOID'
l1 reg 0 'none'
+ pclr no
max pairs 4294967295
cdec cfg './cdec.ini'
input './nc-wmt11.de.gz'
@@ -30,62 +31,88 @@ Parameters:
output '-'
stop_after 10
(a dot represents 10 inputs)
-Iteration #1 of 2.
+Iteration #1 of 3.
. 10
Stopping after 10 input sentences.
WEIGHTS
- Glue = -614
- WordPenalty = +1256.8
- LanguageModel = +5610.5
- LanguageModel_OOV = -1449
- PhraseModel_0 = -2107
- PhraseModel_1 = -4666.1
- PhraseModel_2 = -2713.5
- PhraseModel_3 = +4204.3
- PhraseModel_4 = -1435.8
- PhraseModel_5 = +916
- PhraseModel_6 = +190
- PassThrough = -2527
+ Glue = -1100
+ WordPenalty = -82.082
+ LanguageModel = -3199.1
+ LanguageModel_OOV = -192
+ PhraseModel_0 = +3128.2
+ PhraseModel_1 = -1610.2
+ PhraseModel_2 = -4336.5
+ PhraseModel_3 = +2910.3
+ PhraseModel_4 = +2523.2
+ PhraseModel_5 = +506
+ PhraseModel_6 = +1467
+ PassThrough = -387
---
- 1best avg score: 0.17874 (+0.17874)
- 1best avg model score: 88399 (+88399)
- avg # pairs: 798.2 (meaningless)
- avg # rank err: 798.2
+ 1best avg score: 0.16966 (+0.16966)
+ 1best avg model score: 2.9874e+05 (+2.9874e+05)
+ avg # pairs: 906.3 (meaningless)
+ avg # rank err: 906.3
avg # margin viol: 0
- non0 feature count: 887
+ non0 feature count: 825
avg list sz: 91.3
- avg f count: 126.85
-(time 0.33 min, 2 s/S)
+ avg f count: 139.77
+(time 0.35 min, 2.1 s/S)
-Iteration #2 of 2.
+Iteration #2 of 3.
. 10
WEIGHTS
- Glue = -1025
- WordPenalty = +1751.5
- LanguageModel = +10059
- LanguageModel_OOV = -4490
- PhraseModel_0 = -2640.7
- PhraseModel_1 = -3757.4
- PhraseModel_2 = -1133.1
- PhraseModel_3 = +1837.3
- PhraseModel_4 = -3534.3
- PhraseModel_5 = +2308
- PhraseModel_6 = +1677
- PassThrough = -6222
+ Glue = -1221
+ WordPenalty = +836.89
+ LanguageModel = +2332.3
+ LanguageModel_OOV = -1451
+ PhraseModel_0 = +1507.2
+ PhraseModel_1 = -2728.4
+ PhraseModel_2 = -4183.6
+ PhraseModel_3 = +1816.3
+ PhraseModel_4 = -2894.7
+ PhraseModel_5 = +1403
+ PhraseModel_6 = +35
+ PassThrough = -1097
---
- 1best avg score: 0.30764 (+0.12891)
- 1best avg model score: -2.5042e+05 (-3.3882e+05)
- avg # pairs: 725.9 (meaningless)
- avg # rank err: 725.9
+ 1best avg score: 0.17399 (+0.004325)
+ 1best avg model score: 49369 (-2.4937e+05)
+ avg # pairs: 662.4 (meaningless)
+ avg # rank err: 662.4
avg # margin viol: 0
- non0 feature count: 1499
+ non0 feature count: 1235
avg list sz: 91.3
- avg f count: 114.34
-(time 0.32 min, 1.9 s/S)
+ avg f count: 125.11
+(time 0.27 min, 1.6 s/S)
+
+Iteration #3 of 3.
+ . 10
+WEIGHTS
+ Glue = -1574
+ WordPenalty = -17.372
+ LanguageModel = +6861.8
+ LanguageModel_OOV = -3997
+ PhraseModel_0 = -398.76
+ PhraseModel_1 = -3419.6
+ PhraseModel_2 = -3186.7
+ PhraseModel_3 = +1050.8
+ PhraseModel_4 = -2902.7
+ PhraseModel_5 = -486
+ PhraseModel_6 = -436
+ PassThrough = -2985
+ ---
+ 1best avg score: 0.30742 (+0.13343)
+ 1best avg model score: -1.5393e+05 (-2.0329e+05)
+ avg # pairs: 623.8 (meaningless)
+ avg # rank err: 623.8
+ avg # margin viol: 0
+ non0 feature count: 1770
+ avg list sz: 91.3
+ avg f count: 118.58
+(time 0.25 min, 1.5 s/S)
Writing weights file to '-' ...
done
---
-Best iteration: 2 [SCORE 'fixed_stupid_bleu'=0.30764].
-This took 0.65 min.
+Best iteration: 3 [SCORE 'fixed_stupid_bleu'=0.30742].
+This took 0.86667 min.