summaryrefslogtreecommitdiff
path: root/training/dtrain/examples/standard/dtrain.ini
diff options
context:
space:
mode:
authorMichael Denkowski <mdenkows@cs.cmu.edu>2013-08-19 08:24:48 -0700
committerMichael Denkowski <mdenkows@cs.cmu.edu>2013-08-19 08:24:48 -0700
commitcd666f441d91109d402e4f3993a9ec3c45306dd0 (patch)
tree3ef5083b5a52929b89ed18730104aace4934faf6 /training/dtrain/examples/standard/dtrain.ini
parentac469cdf4c70154a1c2cedce9edf5cdc3bdb2d61 (diff)
parent951e7daa9539ffe640f9421897c374f786af53e7 (diff)
Merge branch 'master' of github.com:redpony/cdec
Diffstat (limited to 'training/dtrain/examples/standard/dtrain.ini')
-rw-r--r--training/dtrain/examples/standard/dtrain.ini24
1 files changed, 12 insertions, 12 deletions
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index e1072d30..23e94285 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -10,15 +10,15 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr
stop_after=10 # stop epoch after 10 inputs
# interesting stuff
-epochs=2 # run over input 2 times
-k=100 # use 100best lists
-N=4 # optimize (approx) BLEU4
-scorer=stupid_bleu # use 'stupid' BLEU+1
-learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron)
-gamma=0 # use SVM reg
-sample_from=kbest # use kbest lists (as opposed to forest)
-filter=uniq # only unique entries in kbest (surface form)
-pair_sampling=XYX #
-hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here
-pair_threshold=0 # minimum distance in BLEU (here: > 0)
-loss_margin=0 # update if correctly ranked, but within this margin
+epochs=2 # run over input 2 times
+k=100 # use 100best lists
+N=4 # optimize (approx) BLEU4
+scorer=fixed_stupid_bleu # use 'stupid' BLEU+1
+learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron)
+gamma=0 # use SVM reg
+sample_from=kbest # use kbest lists (as opposed to forest)
+filter=uniq # only unique entries in kbest (surface form)
+pair_sampling=XYX #
+hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here
+pair_threshold=0 # minimum distance in BLEU (here: > 0)
+loss_margin=0 # update if correctly ranked, but within this margin