diff options
author | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
---|---|---|
committer | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
commit | 3d8d656fa7911524e0e6885647173474524e0784 (patch) | |
tree | 81b1ee2fcb67980376d03f0aa48e42e53abff222 /training/crf/mpi_online_optimize.cc | |
parent | be7f57fdd484e063775d7abf083b9fa4c403b610 (diff) | |
parent | 96fedabebafe7a38a6d5928be8fff767e411d705 (diff) |
fixed conflicts
Diffstat (limited to 'training/crf/mpi_online_optimize.cc')
-rw-r--r-- | training/crf/mpi_online_optimize.cc | 384 |
1 files changed, 384 insertions, 0 deletions
diff --git a/training/crf/mpi_online_optimize.cc b/training/crf/mpi_online_optimize.cc new file mode 100644 index 00000000..9e1ae34c --- /dev/null +++ b/training/crf/mpi_online_optimize.cc @@ -0,0 +1,384 @@ +#include <sstream> +#include <iostream> +#include <fstream> +#include <vector> +#include <cassert> +#include <cmath> +#include <tr1/memory> +#include <ctime> + +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +#include "stringlib.h" +#include "verbose.h" +#include "hg.h" +#include "prob.h" +#include "inside_outside.h" +#include "ff_register.h" +#include "decoder.h" +#include "filelib.h" +#include "online_optimizer.h" +#include "fdict.h" +#include "weights.h" +#include "sparse_vector.h" +#include "sampler.h" + +#ifdef HAVE_MPI +#include <boost/mpi/timer.hpp> +#include <boost/mpi.hpp> +namespace mpi = boost::mpi; +#endif + +using namespace std; +namespace po = boost::program_options; + +bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("input_weights,w",po::value<string>(),"Input feature weights file") + ("frozen_features,z",po::value<string>(), "List of features not to optimize") + ("training_data,t",po::value<string>(),"Training data corpus") + ("training_agenda,a",po::value<string>(), "Text file listing a series of configuration files and the number of iterations to train using each configuration successively") + ("minibatch_size_per_proc,s", po::value<unsigned>()->default_value(5), "Number of training instances evaluated per processor in each minibatch") + ("optimization_method,m", po::value<string>()->default_value("sgd"), "Optimization method (sgd)") + ("max_walltime", po::value<unsigned>(), "Maximum walltime to run (in minutes)") + ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)") + ("eta_0,e", po::value<double>()->default_value(0.2), "Initial learning rate for SGD (eta_0)") + ("L1,1","Use L1 regularization") + ("regularization_strength,C", po::value<double>()->default_value(1.0), "Regularization strength (C)"); + po::options_description clo("Command line options"); + clo.add_options() + ("config", po::value<string>(), "Configuration file") + ("help,h", "Print this help message and exit"); + po::options_description dconfig_options, dcmdline_options; + dconfig_options.add(opts); + dcmdline_options.add(opts).add(clo); + + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + if (conf->count("config")) { + ifstream config((*conf)["config"].as<string>().c_str()); + po::store(po::parse_config_file(config, dconfig_options), *conf); + } + po::notify(*conf); + + if (conf->count("help") || !conf->count("training_data") || !conf->count("training_agenda")) { + cerr << dcmdline_options << endl; + return false; + } + return true; +} + +void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* order) { + ReadFile rf(fname); + istream& in = *rf.stream(); + string line; + int id = 0; + while(in) { + getline(in, line); + if (!in) break; + if (id % size == rank) { + c->push_back(line); + order->push_back(id); + } + ++id; + } +} + +static const double kMINUS_EPSILON = -1e-6; + +struct TrainingObserver : public DecoderObserver { + void Reset() { + acc_grad.clear(); + acc_obj = 0; + total_complete = 0; + } + + void SetLocalGradientAndObjective(vector<double>* g, double* o) const { + *o = acc_obj; + for (SparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it) + (*g)[it->first] = it->second.as_float(); + } + + virtual void NotifyDecodingStart(const SentenceMetadata& smeta) { + cur_model_exp.clear(); + cur_obj = 0; + state = 1; + } + + // compute model expectations, denominator of objective + virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) { + assert(state == 1); + state = 2; + const prob_t z = InsideOutside<prob_t, + EdgeProb, + SparseVector<prob_t>, + EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp); + cur_obj = log(z); + cur_model_exp /= z; + } + + // compute "empirical" expectations, numerator of objective + virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) { + assert(state == 2); + state = 3; + SparseVector<prob_t> ref_exp; + const prob_t ref_z = InsideOutside<prob_t, + EdgeProb, + SparseVector<prob_t>, + EdgeFeaturesAndProbWeightFunction>(*hg, &ref_exp); + ref_exp /= ref_z; + + double log_ref_z; +#if 0 + if (crf_uniform_empirical) { + log_ref_z = ref_exp.dot(feature_weights); + } else { + log_ref_z = log(ref_z); + } +#else + log_ref_z = log(ref_z); +#endif + + // rounding errors means that <0 is too strict + if ((cur_obj - log_ref_z) < kMINUS_EPSILON) { + cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl; + exit(1); + } + assert(!std::isnan(log_ref_z)); + ref_exp -= cur_model_exp; + acc_grad += ref_exp; + acc_obj += (cur_obj - log_ref_z); + } + + virtual void NotifyDecodingComplete(const SentenceMetadata& smeta) { + if (state == 3) { + ++total_complete; + } else { + } + } + + void GetGradient(SparseVector<double>* g) const { + g->clear(); + for (SparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it) + g->set_value(it->first, it->second.as_float()); + } + + int total_complete; + SparseVector<prob_t> cur_model_exp; + SparseVector<prob_t> acc_grad; + double acc_obj; + double cur_obj; + int state; +}; + +#ifdef HAVE_MPI +namespace boost { namespace mpi { + template<> + struct is_commutative<std::plus<SparseVector<double> >, SparseVector<double> > + : mpl::true_ { }; +} } // end namespace boost::mpi +#endif + +bool LoadAgenda(const string& file, vector<pair<string, int> >* a) { + ReadFile rf(file); + istream& in = *rf.stream(); + string line; + while(in) { + getline(in, line); + if (!in) break; + if (line.empty()) continue; + if (line[0] == '#') continue; + int sc = 0; + if (line.size() < 3) return false; + for (int i = 0; i < line.size(); ++i) { if (line[i] == ' ') ++sc; } + if (sc != 1) { cerr << "Too many spaces in line: " << line << endl; return false; } + size_t d = line.find(" "); + pair<string, int> x; + x.first = line.substr(0,d); + x.second = atoi(line.substr(d+1).c_str()); + a->push_back(x); + if (!FileExists(x.first)) { + cerr << "Can't find file " << x.first << endl; + return false; + } + } + return true; +} + +int main(int argc, char** argv) { + cerr << "THIS SOFTWARE IS DEPRECATED YOU SHOULD USE mpi_flex_optimize\n"; +#ifdef HAVE_MPI + mpi::environment env(argc, argv); + mpi::communicator world; + const int size = world.size(); + const int rank = world.rank(); +#else + const int size = 1; + const int rank = 0; +#endif + if (size > 1) SetSilent(true); // turn off verbose decoder output + register_feature_functions(); + std::tr1::shared_ptr<MT19937> rng; + + po::variables_map conf; + if (!InitCommandLine(argc, argv, &conf)) + return 1; + + vector<pair<string, int> > agenda; + if (!LoadAgenda(conf["training_agenda"].as<string>(), &agenda)) + return 1; + if (rank == 0) + cerr << "Loaded agenda defining " << agenda.size() << " training epochs\n"; + + assert(agenda.size() > 0); + + if (1) { // hack to load the feature hash functions -- TODO this should not be in cdec.ini + const string& cur_config = agenda[0].first; + const unsigned max_iteration = agenda[0].second; + ReadFile ini_rf(cur_config); + Decoder decoder(ini_rf.stream()); + } + + // load initial weights + vector<weight_t> init_weights; + if (conf.count("input_weights")) + Weights::InitFromFile(conf["input_weights"].as<string>(), &init_weights); + + vector<int> frozen_fids; + if (conf.count("frozen_features")) { + ReadFile rf(conf["frozen_features"].as<string>()); + istream& in = *rf.stream(); + string line; + while(in) { + getline(in, line); + if (line.empty()) continue; + if (line[0] == ' ' || line[line.size() - 1] == ' ') { line = Trim(line); } + frozen_fids.push_back(FD::Convert(line)); + } + if (rank == 0) cerr << "Freezing " << frozen_fids.size() << " features.\n"; + } + + vector<string> corpus; + vector<int> ids; + ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids); + assert(corpus.size() > 0); + + std::tr1::shared_ptr<OnlineOptimizer> o; + std::tr1::shared_ptr<LearningRateSchedule> lr; + + const unsigned size_per_proc = conf["minibatch_size_per_proc"].as<unsigned>(); + if (size_per_proc > corpus.size()) { + cerr << "Minibatch size must be smaller than corpus size!\n"; + return 1; + } + + size_t total_corpus_size = 0; +#ifdef HAVE_MPI + reduce(world, corpus.size(), total_corpus_size, std::plus<size_t>(), 0); +#else + total_corpus_size = corpus.size(); +#endif + + if (rank == 0) { + cerr << "Total corpus size: " << total_corpus_size << endl; + const unsigned batch_size = size_per_proc * size; + // TODO config + lr.reset(new ExponentialDecayLearningRate(batch_size, conf["eta_0"].as<double>())); + + const string omethod = conf["optimization_method"].as<string>(); + if (omethod == "sgd") { + const double C = conf["regularization_strength"].as<double>(); + o.reset(new CumulativeL1OnlineOptimizer(lr, total_corpus_size, C, frozen_fids)); + } else { + assert(!"fail"); + } + } + if (conf.count("random_seed")) + rng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); + else + rng.reset(new MT19937); + + SparseVector<double> x; + Weights::InitSparseVector(init_weights, &x); + TrainingObserver observer; + + int write_weights_every_ith = 100; // TODO configure + int titer = -1; + + unsigned timeout = 0; + if (conf.count("max_walltime")) timeout = 60 * conf["max_walltime"].as<unsigned>(); + const time_t start_time = time(NULL); + for (int ai = 0; ai < agenda.size(); ++ai) { + const string& cur_config = agenda[ai].first; + const unsigned max_iteration = agenda[ai].second; + if (rank == 0) + cerr << "STARTING TRAINING EPOCH " << (ai+1) << ". CONFIG=" << cur_config << endl; + // load cdec.ini and set up decoder + ReadFile ini_rf(cur_config); + Decoder decoder(ini_rf.stream()); + vector<weight_t>& lambdas = decoder.CurrentWeightVector(); + if (ai == 0) { lambdas.swap(init_weights); init_weights.clear(); } + + if (rank == 0) + o->ResetEpoch(); // resets the learning rate-- TODO is this good? + + int iter = -1; + bool converged = false; + while (!converged) { +#ifdef HAVE_MPI + mpi::timer timer; +#endif + x.init_vector(&lambdas); + ++iter; ++titer; + observer.Reset(); + if (rank == 0) { + converged = (iter == max_iteration); + Weights::SanityCheck(lambdas); + static int cc = 0; ++cc; if (cc > 1) { Weights::ShowLargestFeatures(lambdas); } + string fname = "weights.cur.gz"; + if (iter % write_weights_every_ith == 0) { + ostringstream o; o << "weights.epoch_" << (ai+1) << '.' << iter << ".gz"; + fname = o.str(); + } + const time_t cur_time = time(NULL); + if (timeout) { + if ((cur_time - start_time) > timeout) converged = true; + } + if (converged && ((ai+1)==agenda.size())) { fname = "weights.final.gz"; } + ostringstream vv; + double minutes = (cur_time - start_time) / 60.0; + vv << "total walltime=" << minutes << "min iter=" << titer << " (of current config iter=" << iter << ") minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << x.size() << '/' << FD::NumFeats() << " passes_thru_data=" << (titer * size_per_proc / static_cast<double>(corpus.size())) << " eta=" << lr->eta(titer); + const string svv = vv.str(); + cerr << svv << endl; + Weights::WriteToFile(fname, lambdas, true, &svv); + } + + for (int i = 0; i < size_per_proc; ++i) { + int ei = corpus.size() * rng->next(); + int id = ids[ei]; + decoder.SetId(id); + decoder.Decode(corpus[ei], &observer); + } + SparseVector<double> local_grad, g; + observer.GetGradient(&local_grad); +#ifdef HAVE_MPI + reduce(world, local_grad, g, std::plus<SparseVector<double> >(), 0); +#else + g.swap(local_grad); +#endif + local_grad.clear(); + if (rank == 0) { + g /= (size_per_proc * size); + o->UpdateWeights(g, FD::NumFeats(), &x); + } +#ifdef HAVE_MPI + broadcast(world, x, 0); + broadcast(world, converged, 0); + world.barrier(); + if (rank == 0) { cerr << " ELAPSED TIME THIS ITERATION=" << timer.elapsed() << endl; } +#endif + } + } + return 0; +} |