summaryrefslogtreecommitdiff
path: root/training/crf/mpi_online_optimize.cc
diff options
context:
space:
mode:
authorChris Dyer <cdyer@allegro.clab.cs.cmu.edu>2012-11-18 13:35:42 -0500
committerChris Dyer <cdyer@allegro.clab.cs.cmu.edu>2012-11-18 13:35:42 -0500
commit1b8181bf0d6e9137e6b9ccdbe414aec37377a1a9 (patch)
tree33e5f3aa5abff1f41314cf8f6afbd2c2c40e4bfd /training/crf/mpi_online_optimize.cc
parent7c4665949fb93fb3de402e4ce1d19bef67850d05 (diff)
major restructure of the training code
Diffstat (limited to 'training/crf/mpi_online_optimize.cc')
-rw-r--r--training/crf/mpi_online_optimize.cc374
1 files changed, 374 insertions, 0 deletions
diff --git a/training/crf/mpi_online_optimize.cc b/training/crf/mpi_online_optimize.cc
new file mode 100644
index 00000000..d6968848
--- /dev/null
+++ b/training/crf/mpi_online_optimize.cc
@@ -0,0 +1,374 @@
+#include <sstream>
+#include <iostream>
+#include <fstream>
+#include <vector>
+#include <cassert>
+#include <cmath>
+#include <tr1/memory>
+
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "stringlib.h"
+#include "verbose.h"
+#include "hg.h"
+#include "prob.h"
+#include "inside_outside.h"
+#include "ff_register.h"
+#include "decoder.h"
+#include "filelib.h"
+#include "online_optimizer.h"
+#include "fdict.h"
+#include "weights.h"
+#include "sparse_vector.h"
+#include "sampler.h"
+
+#ifdef HAVE_MPI
+#include <boost/mpi/timer.hpp>
+#include <boost/mpi.hpp>
+namespace mpi = boost::mpi;
+#endif
+
+using namespace std;
+namespace po = boost::program_options;
+
+bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("input_weights,w",po::value<string>(),"Input feature weights file")
+ ("frozen_features,z",po::value<string>(), "List of features not to optimize")
+ ("training_data,t",po::value<string>(),"Training data corpus")
+ ("training_agenda,a",po::value<string>(), "Text file listing a series of configuration files and the number of iterations to train using each configuration successively")
+ ("minibatch_size_per_proc,s", po::value<unsigned>()->default_value(5), "Number of training instances evaluated per processor in each minibatch")
+ ("optimization_method,m", po::value<string>()->default_value("sgd"), "Optimization method (sgd)")
+ ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
+ ("eta_0,e", po::value<double>()->default_value(0.2), "Initial learning rate for SGD (eta_0)")
+ ("L1,1","Use L1 regularization")
+ ("regularization_strength,C", po::value<double>()->default_value(1.0), "Regularization strength (C)");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || !conf->count("training_data") || !conf->count("training_agenda")) {
+ cerr << dcmdline_options << endl;
+ return false;
+ }
+ return true;
+}
+
+void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* order) {
+ ReadFile rf(fname);
+ istream& in = *rf.stream();
+ string line;
+ int id = 0;
+ while(in) {
+ getline(in, line);
+ if (!in) break;
+ if (id % size == rank) {
+ c->push_back(line);
+ order->push_back(id);
+ }
+ ++id;
+ }
+}
+
+static const double kMINUS_EPSILON = -1e-6;
+
+struct TrainingObserver : public DecoderObserver {
+ void Reset() {
+ acc_grad.clear();
+ acc_obj = 0;
+ total_complete = 0;
+ }
+
+ void SetLocalGradientAndObjective(vector<double>* g, double* o) const {
+ *o = acc_obj;
+ for (SparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it)
+ (*g)[it->first] = it->second.as_float();
+ }
+
+ virtual void NotifyDecodingStart(const SentenceMetadata& smeta) {
+ cur_model_exp.clear();
+ cur_obj = 0;
+ state = 1;
+ }
+
+ // compute model expectations, denominator of objective
+ virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
+ assert(state == 1);
+ state = 2;
+ const prob_t z = InsideOutside<prob_t,
+ EdgeProb,
+ SparseVector<prob_t>,
+ EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp);
+ cur_obj = log(z);
+ cur_model_exp /= z;
+ }
+
+ // compute "empirical" expectations, numerator of objective
+ virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) {
+ assert(state == 2);
+ state = 3;
+ SparseVector<prob_t> ref_exp;
+ const prob_t ref_z = InsideOutside<prob_t,
+ EdgeProb,
+ SparseVector<prob_t>,
+ EdgeFeaturesAndProbWeightFunction>(*hg, &ref_exp);
+ ref_exp /= ref_z;
+
+ double log_ref_z;
+#if 0
+ if (crf_uniform_empirical) {
+ log_ref_z = ref_exp.dot(feature_weights);
+ } else {
+ log_ref_z = log(ref_z);
+ }
+#else
+ log_ref_z = log(ref_z);
+#endif
+
+ // rounding errors means that <0 is too strict
+ if ((cur_obj - log_ref_z) < kMINUS_EPSILON) {
+ cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl;
+ exit(1);
+ }
+ assert(!std::isnan(log_ref_z));
+ ref_exp -= cur_model_exp;
+ acc_grad += ref_exp;
+ acc_obj += (cur_obj - log_ref_z);
+ }
+
+ virtual void NotifyDecodingComplete(const SentenceMetadata& smeta) {
+ if (state == 3) {
+ ++total_complete;
+ } else {
+ }
+ }
+
+ void GetGradient(SparseVector<double>* g) const {
+ g->clear();
+ for (SparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it)
+ g->set_value(it->first, it->second.as_float());
+ }
+
+ int total_complete;
+ SparseVector<prob_t> cur_model_exp;
+ SparseVector<prob_t> acc_grad;
+ double acc_obj;
+ double cur_obj;
+ int state;
+};
+
+#ifdef HAVE_MPI
+namespace boost { namespace mpi {
+ template<>
+ struct is_commutative<std::plus<SparseVector<double> >, SparseVector<double> >
+ : mpl::true_ { };
+} } // end namespace boost::mpi
+#endif
+
+bool LoadAgenda(const string& file, vector<pair<string, int> >* a) {
+ ReadFile rf(file);
+ istream& in = *rf.stream();
+ string line;
+ while(in) {
+ getline(in, line);
+ if (!in) break;
+ if (line.empty()) continue;
+ if (line[0] == '#') continue;
+ int sc = 0;
+ if (line.size() < 3) return false;
+ for (int i = 0; i < line.size(); ++i) { if (line[i] == ' ') ++sc; }
+ if (sc != 1) { cerr << "Too many spaces in line: " << line << endl; return false; }
+ size_t d = line.find(" ");
+ pair<string, int> x;
+ x.first = line.substr(0,d);
+ x.second = atoi(line.substr(d+1).c_str());
+ a->push_back(x);
+ if (!FileExists(x.first)) {
+ cerr << "Can't find file " << x.first << endl;
+ return false;
+ }
+ }
+ return true;
+}
+
+int main(int argc, char** argv) {
+ cerr << "THIS SOFTWARE IS DEPRECATED YOU SHOULD USE mpi_flex_optimize\n";
+#ifdef HAVE_MPI
+ mpi::environment env(argc, argv);
+ mpi::communicator world;
+ const int size = world.size();
+ const int rank = world.rank();
+#else
+ const int size = 1;
+ const int rank = 0;
+#endif
+ if (size > 1) SetSilent(true); // turn off verbose decoder output
+ register_feature_functions();
+ std::tr1::shared_ptr<MT19937> rng;
+
+ po::variables_map conf;
+ if (!InitCommandLine(argc, argv, &conf))
+ return 1;
+
+ vector<pair<string, int> > agenda;
+ if (!LoadAgenda(conf["training_agenda"].as<string>(), &agenda))
+ return 1;
+ if (rank == 0)
+ cerr << "Loaded agenda defining " << agenda.size() << " training epochs\n";
+
+ assert(agenda.size() > 0);
+
+ if (1) { // hack to load the feature hash functions -- TODO this should not be in cdec.ini
+ const string& cur_config = agenda[0].first;
+ const unsigned max_iteration = agenda[0].second;
+ ReadFile ini_rf(cur_config);
+ Decoder decoder(ini_rf.stream());
+ }
+
+ // load initial weights
+ vector<weight_t> init_weights;
+ if (conf.count("input_weights"))
+ Weights::InitFromFile(conf["input_weights"].as<string>(), &init_weights);
+
+ vector<int> frozen_fids;
+ if (conf.count("frozen_features")) {
+ ReadFile rf(conf["frozen_features"].as<string>());
+ istream& in = *rf.stream();
+ string line;
+ while(in) {
+ getline(in, line);
+ if (line.empty()) continue;
+ if (line[0] == ' ' || line[line.size() - 1] == ' ') { line = Trim(line); }
+ frozen_fids.push_back(FD::Convert(line));
+ }
+ if (rank == 0) cerr << "Freezing " << frozen_fids.size() << " features.\n";
+ }
+
+ vector<string> corpus;
+ vector<int> ids;
+ ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids);
+ assert(corpus.size() > 0);
+
+ std::tr1::shared_ptr<OnlineOptimizer> o;
+ std::tr1::shared_ptr<LearningRateSchedule> lr;
+
+ const unsigned size_per_proc = conf["minibatch_size_per_proc"].as<unsigned>();
+ if (size_per_proc > corpus.size()) {
+ cerr << "Minibatch size must be smaller than corpus size!\n";
+ return 1;
+ }
+
+ size_t total_corpus_size = 0;
+#ifdef HAVE_MPI
+ reduce(world, corpus.size(), total_corpus_size, std::plus<size_t>(), 0);
+#else
+ total_corpus_size = corpus.size();
+#endif
+
+ if (rank == 0) {
+ cerr << "Total corpus size: " << total_corpus_size << endl;
+ const unsigned batch_size = size_per_proc * size;
+ // TODO config
+ lr.reset(new ExponentialDecayLearningRate(batch_size, conf["eta_0"].as<double>()));
+
+ const string omethod = conf["optimization_method"].as<string>();
+ if (omethod == "sgd") {
+ const double C = conf["regularization_strength"].as<double>();
+ o.reset(new CumulativeL1OnlineOptimizer(lr, total_corpus_size, C, frozen_fids));
+ } else {
+ assert(!"fail");
+ }
+ }
+ if (conf.count("random_seed"))
+ rng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ rng.reset(new MT19937);
+
+ SparseVector<double> x;
+ Weights::InitSparseVector(init_weights, &x);
+ TrainingObserver observer;
+
+ int write_weights_every_ith = 100; // TODO configure
+ int titer = -1;
+
+ for (int ai = 0; ai < agenda.size(); ++ai) {
+ const string& cur_config = agenda[ai].first;
+ const unsigned max_iteration = agenda[ai].second;
+ if (rank == 0)
+ cerr << "STARTING TRAINING EPOCH " << (ai+1) << ". CONFIG=" << cur_config << endl;
+ // load cdec.ini and set up decoder
+ ReadFile ini_rf(cur_config);
+ Decoder decoder(ini_rf.stream());
+ vector<weight_t>& lambdas = decoder.CurrentWeightVector();
+ if (ai == 0) { lambdas.swap(init_weights); init_weights.clear(); }
+
+ if (rank == 0)
+ o->ResetEpoch(); // resets the learning rate-- TODO is this good?
+
+ int iter = -1;
+ bool converged = false;
+ while (!converged) {
+#ifdef HAVE_MPI
+ mpi::timer timer;
+#endif
+ x.init_vector(&lambdas);
+ ++iter; ++titer;
+ observer.Reset();
+ if (rank == 0) {
+ converged = (iter == max_iteration);
+ Weights::SanityCheck(lambdas);
+ static int cc = 0; ++cc; if (cc > 1) { Weights::ShowLargestFeatures(lambdas); }
+ string fname = "weights.cur.gz";
+ if (iter % write_weights_every_ith == 0) {
+ ostringstream o; o << "weights.epoch_" << (ai+1) << '.' << iter << ".gz";
+ fname = o.str();
+ }
+ if (converged && ((ai+1)==agenda.size())) { fname = "weights.final.gz"; }
+ ostringstream vv;
+ vv << "total iter=" << titer << " (of current config iter=" << iter << ") minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << x.size() << '/' << FD::NumFeats() << " passes_thru_data=" << (titer * size_per_proc / static_cast<double>(corpus.size())) << " eta=" << lr->eta(titer);
+ const string svv = vv.str();
+ cerr << svv << endl;
+ Weights::WriteToFile(fname, lambdas, true, &svv);
+ }
+
+ for (int i = 0; i < size_per_proc; ++i) {
+ int ei = corpus.size() * rng->next();
+ int id = ids[ei];
+ decoder.SetId(id);
+ decoder.Decode(corpus[ei], &observer);
+ }
+ SparseVector<double> local_grad, g;
+ observer.GetGradient(&local_grad);
+#ifdef HAVE_MPI
+ reduce(world, local_grad, g, std::plus<SparseVector<double> >(), 0);
+#else
+ g.swap(local_grad);
+#endif
+ local_grad.clear();
+ if (rank == 0) {
+ g /= (size_per_proc * size);
+ o->UpdateWeights(g, FD::NumFeats(), &x);
+ }
+#ifdef HAVE_MPI
+ broadcast(world, x, 0);
+ broadcast(world, converged, 0);
+ world.barrier();
+ if (rank == 0) { cerr << " ELAPSED TIME THIS ITERATION=" << timer.elapsed() << endl; }
+#endif
+ }
+ }
+ return 0;
+}