diff options
author | redpony <redpony@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-10-01 20:13:48 +0000 |
---|---|---|
committer | redpony <redpony@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-10-01 20:13:48 +0000 |
commit | de3b20fd379a62f8f381990f4d819a732b57a814 (patch) | |
tree | f4ee81303ad8d595224087ff6b753680b354ce88 /training/compute_cllh.cc | |
parent | 597db20b3b38fd0cbb3e3d9a7105b0c3c5c37e84 (diff) |
compute obj, fixes for grammar filter
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@668 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'training/compute_cllh.cc')
-rw-r--r-- | training/compute_cllh.cc | 185 |
1 files changed, 185 insertions, 0 deletions
diff --git a/training/compute_cllh.cc b/training/compute_cllh.cc new file mode 100644 index 00000000..f25e17c3 --- /dev/null +++ b/training/compute_cllh.cc @@ -0,0 +1,185 @@ +#include <sstream> +#include <iostream> +#include <fstream> +#include <vector> +#include <cassert> +#include <cmath> + +#include <mpi.h> +#include <boost/mpi.hpp> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +#include "verbose.h" +#include "hg.h" +#include "prob.h" +#include "inside_outside.h" +#include "ff_register.h" +#include "decoder.h" +#include "filelib.h" +#include "weights.h" + +using namespace std; +namespace po = boost::program_options; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("weights,w",po::value<string>(),"Input feature weights file") + ("training_data,t",po::value<string>(),"Training data corpus") + ("decoder_config,c",po::value<string>(),"Decoder configuration file"); + po::options_description clo("Command line options"); + clo.add_options() + ("config", po::value<string>(), "Configuration file") + ("help,h", "Print this help message and exit"); + po::options_description dconfig_options, dcmdline_options; + dconfig_options.add(opts); + dcmdline_options.add(opts).add(clo); + + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + if (conf->count("config")) { + ifstream config((*conf)["config"].as<string>().c_str()); + po::store(po::parse_config_file(config, dconfig_options), *conf); + } + po::notify(*conf); + + if (conf->count("help") || !conf->count("training_data") || !conf->count("decoder_config")) { + cerr << dcmdline_options << endl; + MPI::Finalize(); + exit(1); + } +} + +void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c, vector<int>* ids) { + ReadFile rf(fname); + istream& in = *rf.stream(); + string line; + int lc = 0; + while(in) { + getline(in, line); + if (!in) break; + if (lc % size == rank) { + c->push_back(line); + ids->push_back(lc); + } + ++lc; + } +} + +static const double kMINUS_EPSILON = -1e-6; + +struct TrainingObserver : public DecoderObserver { + void Reset() { + acc_obj = 0; + } + + virtual void NotifyDecodingStart(const SentenceMetadata&) { + cur_obj = 0; + state = 1; + } + + // compute model expectations, denominator of objective + virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) { + assert(state == 1); + state = 2; + SparseVector<prob_t> cur_model_exp; + const prob_t z = InsideOutside<prob_t, + EdgeProb, + SparseVector<prob_t>, + EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp); + cur_obj = log(z); + } + + // compute "empirical" expectations, numerator of objective + virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) { + assert(state == 2); + state = 3; + SparseVector<prob_t> ref_exp; + const prob_t ref_z = InsideOutside<prob_t, + EdgeProb, + SparseVector<prob_t>, + EdgeFeaturesAndProbWeightFunction>(*hg, &ref_exp); + + double log_ref_z; +#if 0 + if (crf_uniform_empirical) { + log_ref_z = ref_exp.dot(feature_weights); + } else { + log_ref_z = log(ref_z); + } +#else + log_ref_z = log(ref_z); +#endif + + // rounding errors means that <0 is too strict + if ((cur_obj - log_ref_z) < kMINUS_EPSILON) { + cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl; + exit(1); + } + assert(!isnan(log_ref_z)); + acc_obj += (cur_obj - log_ref_z); + } + + double acc_obj; + double cur_obj; + int state; +}; + +namespace mpi = boost::mpi; + +int main(int argc, char** argv) { + mpi::environment env(argc, argv); + mpi::communicator world; + const int size = world.size(); + const int rank = world.rank(); + if (size > 1) SetSilent(true); // turn off verbose decoder output + register_feature_functions(); + + po::variables_map conf; + InitCommandLine(argc, argv, &conf); + + // load initial weights + Weights weights; + if (conf.count("weights")) + weights.InitFromFile(conf["weights"].as<string>()); + + // freeze feature set + //const bool freeze_feature_set = conf.count("freeze_feature_set"); + //if (freeze_feature_set) FD::Freeze(); + + // load cdec.ini and set up decoder + ReadFile ini_rf(conf["decoder_config"].as<string>()); + Decoder decoder(ini_rf.stream()); + if (decoder.GetConf()["input"].as<string>() != "-") { + cerr << "cdec.ini must not set an input file\n"; + abort(); + } + + vector<string> corpus; vector<int> ids; + ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids); + assert(corpus.size() > 0); + assert(corpus.size() == ids.size()); + + vector<double> wv; + weights.InitVector(&wv); + decoder.SetWeights(wv); + TrainingObserver observer; + double objective = 0; + bool converged = false; + + observer.Reset(); + if (rank == 0) + cerr << "Each processor is decoding " << corpus.size() << " training examples...\n"; + + for (int i = 0; i < corpus.size(); ++i) { + decoder.SetId(ids[i]); + decoder.Decode(corpus[i], &observer); + } + + reduce(world, observer.acc_obj, objective, std::plus<double>(), 0); + + if (rank == 0) + cout << "OBJECTIVE: " << objective << endl; + + return 0; +} |