diff options
author | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-11-05 15:29:46 +0100 |
---|---|---|
committer | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-11-05 15:29:46 +0100 |
commit | 6f29f345dc06c1a1033475eac1d1340781d1d603 (patch) | |
tree | 6fa4cdd7aefd7d54c9585c2c6274db61bb8b159a /rst_parser/arc_factored.cc | |
parent | b510da2e562c695c90d565eb295c749569c59be8 (diff) | |
parent | c615c37501fa8576584a510a9d2bfe2fdd5bace7 (diff) |
merge upstream/master
Diffstat (limited to 'rst_parser/arc_factored.cc')
-rw-r--r-- | rst_parser/arc_factored.cc | 151 |
1 files changed, 0 insertions, 151 deletions
diff --git a/rst_parser/arc_factored.cc b/rst_parser/arc_factored.cc deleted file mode 100644 index 74bf7516..00000000 --- a/rst_parser/arc_factored.cc +++ /dev/null @@ -1,151 +0,0 @@ -#include "arc_factored.h" - -#include <set> -#include <tr1/unordered_set> - -#include <boost/pending/disjoint_sets.hpp> -#include <boost/functional/hash.hpp> - -#include "arc_ff.h" - -using namespace std; -using namespace std::tr1; -using namespace boost; - -void EdgeSubset::ExtractFeatures(const TaggedSentence& sentence, - const ArcFeatureFunctions& ffs, - SparseVector<double>* features) const { - SparseVector<weight_t> efmap; - for (int j = 0; j < h_m_pairs.size(); ++j) { - efmap.clear(); - ffs.EdgeFeatures(sentence, h_m_pairs[j].first, - h_m_pairs[j].second, - &efmap); - (*features) += efmap; - } - for (int j = 0; j < roots.size(); ++j) { - efmap.clear(); - ffs.EdgeFeatures(sentence, -1, roots[j], &efmap); - (*features) += efmap; - } -} - -void ArcFactoredForest::ExtractFeatures(const TaggedSentence& sentence, - const ArcFeatureFunctions& ffs) { - for (int m = 0; m < num_words_; ++m) { - for (int h = 0; h < num_words_; ++h) { - ffs.EdgeFeatures(sentence, h, m, &edges_(h,m).features); - } - ffs.EdgeFeatures(sentence, -1, m, &root_edges_[m].features); - } -} - -void ArcFactoredForest::PickBestParentForEachWord(EdgeSubset* st) const { - for (int m = 0; m < num_words_; ++m) { - int best_head = -2; - prob_t best_score; - for (int h = -1; h < num_words_; ++h) { - const Edge& edge = (*this)(h,m); - if (best_head < -1 || edge.edge_prob > best_score) { - best_score = edge.edge_prob; - best_head = h; - } - } - assert(best_head >= -1); - if (best_head >= 0) - st->h_m_pairs.push_back(make_pair<short,short>(best_head, m)); - else - st->roots.push_back(m); - } -} - -struct WeightedEdge { - WeightedEdge() : h(), m(), weight() {} - WeightedEdge(short hh, short mm, float w) : h(hh), m(mm), weight(w) {} - short h, m; - float weight; - inline bool operator==(const WeightedEdge& o) const { - return h == o.h && m == o.m && weight == o.weight; - } - inline bool operator!=(const WeightedEdge& o) const { - return h != o.h || m != o.m || weight != o.weight; - } -}; -inline bool operator<(const WeightedEdge& l, const WeightedEdge& o) { return l.weight < o.weight; } -inline size_t hash_value(const WeightedEdge& e) { return reinterpret_cast<const size_t&>(e); } - - -struct PriorityQueue { - void push(const WeightedEdge& e) {} - const WeightedEdge& top() const { - static WeightedEdge w(1,2,3); - return w; - } - void pop() {} - void increment_all(float p) {} -}; - -// based on Trajan 1977 -void ArcFactoredForest::MaximumSpanningTree(EdgeSubset* st) const { - typedef disjoint_sets_with_storage<identity_property_map, identity_property_map, - find_with_full_path_compression> DisjointSet; - DisjointSet strongly(num_words_ + 1); - DisjointSet weakly(num_words_ + 1); - set<unsigned> roots, rset; - unordered_set<WeightedEdge, boost::hash<WeightedEdge> > h; - vector<PriorityQueue> qs(num_words_ + 1); - vector<WeightedEdge> enter(num_words_ + 1); - vector<unsigned> mins(num_words_ + 1); - const WeightedEdge kDUMMY(0,0,0.0f); - for (unsigned i = 0; i <= num_words_; ++i) { - if (i > 0) { - // I(i) incidence on i -- all incoming edges - for (unsigned j = 0; j <= num_words_; ++j) { - qs[i].push(WeightedEdge(j, i, Weight(j,i))); - } - } - strongly.make_set(i); - weakly.make_set(i); - roots.insert(i); - enter[i] = kDUMMY; - mins[i] = i; - } - while(!roots.empty()) { - set<unsigned>::iterator it = roots.begin(); - const unsigned k = *it; - roots.erase(it); - cerr << "k=" << k << endl; - WeightedEdge ij = qs[k].top(); // MAX(k) - qs[k].pop(); - if (ij.weight <= 0) { - rset.insert(k); - } else { - if (strongly.find_set(ij.h) == k) { - roots.insert(k); - } else { - h.insert(ij); - if (weakly.find_set(ij.h) != weakly.find_set(ij.m)) { - weakly.union_set(ij.h, ij.m); - enter[k] = ij; - } else { - unsigned vertex = 0; - float val = 99999999999; - WeightedEdge xy = ij; - while(xy != kDUMMY) { - if (xy.weight < val) { - val = xy.weight; - vertex = strongly.find_set(xy.m); - } - xy = enter[strongly.find_set(xy.h)]; - } - qs[k].increment_all(val - ij.weight); - mins[k] = mins[vertex]; - xy = enter[strongly.find_set(ij.h)]; - while (xy != kDUMMY) { - } - } - } - } - } -} - |