diff options
author | redpony <redpony@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-08-23 21:57:46 +0000 |
---|---|---|
committer | redpony <redpony@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-08-23 21:57:46 +0000 |
commit | 1090a065dc48211dd71f4980cf8ff34e47333ad0 (patch) | |
tree | 47459041aa8c7b7a2c54c9988ebf43c21fe12f65 /report/np_clustering.tex | |
parent | 697df987d5c20ef5237738a3270b3d8a1357ae2a (diff) |
correlation stuff
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@617 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'report/np_clustering.tex')
-rw-r--r-- | report/np_clustering.tex | 64 |
1 files changed, 44 insertions, 20 deletions
diff --git a/report/np_clustering.tex b/report/np_clustering.tex index 439bfdbe..da564508 100644 --- a/report/np_clustering.tex +++ b/report/np_clustering.tex @@ -64,8 +64,8 @@ The final sample drawn from the model was used to estimate $p(z|\textbf{c},\p)$, \begin{figure} \begin{center} -\includegraphics[scale=0.75]{pyp_clustering/llh.pdf} -\vspace{-0.3cm} +\includegraphics[scale=0.5]{pyp_clustering/llh.pdf} +\vspace{-0.7cm} \end{center} \caption{Log-likelihood versus number of samples with 10 categories (red circles) and 25 categories (blue diamonds) on the Urdu data, 1 target word on either side, hierarchical $\theta_0$, uniform $\phi_0$.} \label{fig:llh} @@ -99,7 +99,7 @@ Num. references & 16 & 4 \label{tab:corpbtecur} \end{table}% -\subsection{Features used} +\subsection{Translation system features} In addition to the language model and word penalty, we made use of the following features to score each rule $\textrm{Y} \rightarrow \langle \textbf{f},\textbf{e} \rangle$ used in a derivation. Some features are meaningful only in the context of multi-category grammars. @@ -116,11 +116,13 @@ In addition to the language model and word penalty, we made use of the following \noindent The above feature weights were tuned using the minimum error rate training algorithm (\textsc{mert}), to optimize the 1-best \textsc{bleu} on a held-out development set. -\subsection{Baseline and benchmark systems} +\subsection{Baseline and supervised benchmark systems} -We provide two baseline systems: a single-category system constructed using the procedure described by \cite{chiang:2007} and a system constructed by assigning categories to each phrasal occurrence in the training data. Additionally, we provide a benchmark system using supervised English (target) language parse trees \citep{samt}. Table~\ref{tab:npbaselines} summarizes these baseline conditions. +We provide a number of baselines to compare our unsupervised syntax systems against. The most important is a single-category system constructed using the procedure described by \cite{chiang:2007} The single-category baseline represents the current state-of-the-art for systems that do not utilize supervised syntax or syntax proxies (like POS tags or syntactic chunks). The random category baselines are provided to give an indication of how a poorly induced syntactic system (for a given $K$) would perform. -\begin{table}[h] +Additionally, we also provide two benchmark systems that use a more sensible set of nonterminal categories. The first uses supervised English (target) language parse trees to annotate the phrases in the grammar as proposed by \cite{samt}. The second (labeled Target POS-only) uses the target language part-of-speech tag for all rules that generate only a single terminal symbol in the target language, and the symbol X otherwise. + +\begin{table} \caption{Baseline systems} \begin{center} \begin{tabular}{r|c|c} @@ -133,16 +135,18 @@ Random ($K=25$) & 55.4 & 19.7 \\ Random ($K=50$) & 55.3 & 19.6 \\ \hline Supervised \citep{samt} & 57.8 & 24.5 \\ -POS-only & 56.2 & 22.3 \\ +Target POS-only ({\emph supervised}) & 56.2 & 22.2 \\ \end{tabular} \end{center} \label{tab:npbaselines} \end{table}% -Because the margin of improvement from the 1-category baseline to the supervised condition is much more substantial in the Urdu-English condition than in the BTEC condition, some experiments were only carried out on Urdu. - \subsection{Number of categories} +The number of categories, $K$, is a free parameter in our nonparametric clustering model. In this section, we report results exploring the effect of $K$ on translation quality on the BTEC and Urdu translation tasks. + +Preliminary experiments indicated that single word (to the left and right) target language contexts learned with with a uniform $\phi_0$ and a hierarchical $\theta_0$ produced useful clusters for translation, so we used this as the definition of the context for this experiment. Table~\ref{tab:npvaryk} summarizes the affect of varying $K$ using a single word of target language context, using a uniform $\phi_0$ and a hierarchical $\theta_0$. + \begin{table}[h] \caption{Effect of varying $K$, single word left and right target language context, uniform $\phi_0$, hierarchical $\theta_0$.} \begin{center} @@ -152,33 +156,53 @@ Because the margin of improvement from the 1-category baseline to the supervised Single category (baseline) & 57.0 & 21.1 \\ \hline $K=10$ & 56.4 & 21.2 \\ -$K=25$ & 57.5 & 22.0 \\ -$K=50$ & 56.2 & \\ +$K=25$ & \textbf{57.5} & \textbf{22.0} \\ +$K=50$ & 56.2 & 21.4 \\ \end{tabular} \end{center} -\label{tab:npbaselines} +\label{tab:npvaryk} \end{table}% \subsection{Context types} +Because the margin of improvement from the 1-category baseline to the supervised condition is much more substantial in the Urdu-English condition than in the BTEC condition, the experiments in this section were carried out only on Urdu. + + \begin{table}[h] -\caption{Effect of varying the context definition and/or smoothing, $K=25$, hierarchical $\theta_0$.} +\caption{Effect of varying the context definition and/or smoothing, $K=25$, hierarchical $\theta_0$; best results in bold. Baseline and benchmark systems also included for reference.} \begin{center} -\begin{tabular}{r|c|c} -& BTEC & Urdu \\ +\begin{tabular}{r|c|c|c|c} +Context Type & $|\textbf{c}|/2$ & $\phi_0$ & \textsc{bleu} & $H(S|Z)$ \\ \hline -Single category (baseline) & 57.0 & 21.1 \\ +Baseline ($K=1$) & -- & -- & 20.9 & 4.49 \\ +\hline +Source word & 1 & uniform & 21.7 & 3.25 \\ +Source word class & 1 & uniform & 20.4 & 3.03 \\ +Target word & 1 & uniform & 22.0 & 2.86 \\ +Target word class & 1 & uniform & \textbf{22.3} & \textbf{2.27} \\ +Source word & 2 & 1-word backoff & 21.3 & 3.41 \\ +Source word class & 2 & 1-class backoff & & 4.20 \\ +Target word & 2 & 1-word backoff & 20.8 & 3.16 \\ +Target word class & 2 & 1-class backoff & 20.1 & 4.06 \\ \hline -1-word target & & \\ -1-word source & & \\ -2-words target & & \\ -2-words source & & \\ +Supervised \citep{samt} & -- & -- & 24.6 & 0 \\ +Target POS-only ({\emph supervised}) & 1 & uniform & 22.2 & 1.85 \\ \end{tabular} \end{center} \label{tab:npbaselines} \end{table}% +\subsection{Correlating the intrinsic metric} + +\begin{figure} +\begin{center} +\includegraphics[scale=0.5]{pyp_clustering/correl.pdf} +\vspace{-0.3cm} +\end{center} +\caption{The intrinsic conditional entropy metric $H(S|Z)$ correlates approximately linearly with \textsc{bleu}.} +\label{fig:intr_correl} +\end{figure} \section{Discussion} |