summaryrefslogtreecommitdiff
path: root/rampion/rampion_cccp.cc
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cs.cmu.edu>2012-04-26 00:06:09 -0400
committerChris Dyer <cdyer@cs.cmu.edu>2012-04-26 00:06:09 -0400
commite8835df9d34b87c31d769913dcf0340d66ab7a1c (patch)
treef460b6898ec5f90008530ee9f6f0d6bac818dfdc /rampion/rampion_cccp.cc
parent06718177056fe5262262e00d98dc89f67cefb193 (diff)
mostly implemented rampion optimizer
Diffstat (limited to 'rampion/rampion_cccp.cc')
-rw-r--r--rampion/rampion_cccp.cc157
1 files changed, 157 insertions, 0 deletions
diff --git a/rampion/rampion_cccp.cc b/rampion/rampion_cccp.cc
new file mode 100644
index 00000000..6eb3ccf3
--- /dev/null
+++ b/rampion/rampion_cccp.cc
@@ -0,0 +1,157 @@
+#include <sstream>
+#include <iostream>
+#include <vector>
+#include <limits>
+
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "filelib.h"
+#include "stringlib.h"
+#include "weights.h"
+#include "hg_io.h"
+#include "kbest.h"
+#include "viterbi.h"
+#include "ns.h"
+#include "ns_docscorer.h"
+
+using namespace std;
+namespace po = boost::program_options;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)")
+ ("weights,w",po::value<string>(), "[REQD] Weights files from current iterations")
+ ("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
+ ("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)")
+ ("kbest_size,k",po::value<unsigned>()->default_value(500u), "Top k-hypotheses to extract")
+ ("cccp_iterations,I", po::value<unsigned>()->default_value(10u), "CCCP iterations (T')")
+ ("ssd_iterations,J", po::value<unsigned>()->default_value(5u), "Stochastic subgradient iterations (T'')")
+ ("eta", po::value<double>()->default_value(1e-4), "Step size")
+ ("regularization_strength,C", po::value<double>()->default_value(1.0), "L2 regularization strength")
+ ("alpha,a", po::value<double>()->default_value(10.0), "Cost scale (alpha); alpha * [1-metric(y,y')]")
+ ("help,h", "Help");
+ po::options_description dcmdline_options;
+ dcmdline_options.add(opts);
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ bool flag = false;
+ if (!conf->count("reference")) {
+ cerr << "Please specify one or more references using -r <REF.TXT>\n";
+ flag = true;
+ }
+ if (!conf->count("weights")) {
+ cerr << "Please specify weights using -w <WEIGHTS.TXT>\n";
+ flag = true;
+ }
+ if (flag || conf->count("help")) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+struct HypInfo {
+ HypInfo() : g(-100.0f) {}
+ HypInfo(const vector<WordID>& h,
+ const SparseVector<weight_t>& feats,
+ const SegmentEvaluator& scorer, const EvaluationMetric* metric) : hyp(h), x(feats) {
+ SufficientStats ss;
+ scorer.Evaluate(hyp, &ss);
+ g = metric->ComputeScore(ss);
+ }
+
+ vector<WordID> hyp;
+ float g;
+ SparseVector<weight_t> x;
+};
+
+void CostAugmentedSearch(const vector<HypInfo>& kbest,
+ const SparseVector<double>& w,
+ double alpha,
+ SparseVector<double>* fmap) {
+ unsigned best_i = 0;
+ double best = -numeric_limits<double>::infinity();
+ for (unsigned i = 0; i < kbest.size(); ++i) {
+ double s = kbest[i].x.dot(w) + alpha * kbest[i].g;
+ if (s > best) {
+ best = s;
+ best_i = i;
+ }
+ }
+ *fmap = kbest[best_i].x;
+}
+
+// runs lines 4--15 of rampion algorithm
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ const string evaluation_metric = conf["evaluation_metric"].as<string>();
+
+ EvaluationMetric* metric = EvaluationMetric::Instance(evaluation_metric);
+ DocumentScorer ds(metric, conf["reference"].as<vector<string> >());
+ cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl;
+ double goodsign = 1;
+ if (metric->IsErrorMetric()) goodsign = -goodsign;
+ double badsign = -goodsign;
+
+ Hypergraph hg;
+ string last_file;
+ ReadFile in_read(conf["input"].as<string>());
+ istream &in=*in_read.stream();
+ const unsigned kbest_size = conf["kbest_size"].as<unsigned>();
+ const unsigned tp = conf["cccp_iterations"].as<unsigned>();
+ const unsigned tpp = conf["ssd_iterations"].as<unsigned>();
+ const double eta = conf["eta"].as<double>();
+ const double reg = conf["regularization_strength"].as<double>();
+ const double alpha = conf["alpha"].as<double>();
+ SparseVector<weight_t> weights;
+ {
+ vector<weight_t> vweights;
+ const string weightsf = conf["weights"].as<string>();
+ Weights::InitFromFile(weightsf, &vweights);
+ Weights::InitSparseVector(vweights, &weights);
+ }
+ string line, file;
+ vector<vector<HypInfo> > kis;
+ cerr << "Loading hypergraphs...\n";
+ while(getline(in, line)) {
+ istringstream is(line);
+ int sent_id;
+ kis.resize(kis.size() + 1);
+ vector<HypInfo>& curkbest = kis.back();
+ is >> file >> sent_id;
+ ReadFile rf(file);
+ HypergraphIO::ReadFromJSON(rf.stream(), &hg);
+ hg.Reweight(weights);
+ KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, kbest_size);
+
+ for (int i = 0; i < kbest_size; ++i) {
+ const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
+ kbest.LazyKthBest(hg.nodes_.size() - 1, i);
+ if (!d) break;
+ curkbest.push_back(HypInfo(d->yield, d->feature_values, *ds[sent_id], metric));
+ }
+ }
+
+ cerr << "Hypergraphs loaded.\n";
+ vector<SparseVector<weight_t> > goals(kis.size()); // f(x_i,y+,h+)
+ SparseVector<weight_t> fear; // f(x,y-,h-)
+ for (unsigned iterp = 1; iterp <= tp; ++iterp) {
+ cerr << "CCCP Iteration " << iterp << endl;
+ for (int i = 0; i < goals.size(); ++i)
+ CostAugmentedSearch(kis[i], weights, goodsign * alpha, &goals[i]);
+ for (unsigned iterpp = 1; iterpp <= tpp; ++iterpp) {
+ cerr << " SSD Iteration " << iterpp << endl;
+ for (int i = 0; i < goals.size(); ++i) {
+ CostAugmentedSearch(kis[i], weights, badsign * alpha, &fear);
+ weights -= weights * (eta * reg / goals.size());
+ weights += (goals[i] - fear) * eta;
+ }
+ }
+ }
+ vector<weight_t> w;
+ weights.init_vector(&w);
+ Weights::WriteToFile("-", w);
+ return 0;
+}
+