summaryrefslogtreecommitdiff
path: root/pro-train
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cs.cmu.edu>2011-07-11 20:39:45 -0400
committerChris Dyer <cdyer@cs.cmu.edu>2011-07-11 20:39:45 -0400
commitbde4a34bab96052570c248f7d9ccc299a9a3f097 (patch)
treeb74180cb2d36e373eafc1fd6a74968a969287ead /pro-train
parent95deb840699f9b6f8fe499b374bd726bce97365c (diff)
sort of working hopkins&may optimizer
Diffstat (limited to 'pro-train')
-rw-r--r--pro-train/Makefile.am4
-rwxr-xr-xpro-train/dist-pro.pl308
-rwxr-xr-xpro-train/mr_pro_generate_mapper_input.pl18
-rw-r--r--pro-train/mr_pro_map.cc118
-rw-r--r--pro-train/mr_pro_reduce.cc167
5 files changed, 349 insertions, 266 deletions
diff --git a/pro-train/Makefile.am b/pro-train/Makefile.am
index 945ed5c3..fdaf43e2 100644
--- a/pro-train/Makefile.am
+++ b/pro-train/Makefile.am
@@ -8,6 +8,6 @@ mr_pro_map_SOURCES = mr_pro_map.cc
mr_pro_map_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a -lz
mr_pro_reduce_SOURCES = mr_pro_reduce.cc
-mr_pro_reduce_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a -lz
+mr_pro_reduce_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/training/optimize.o $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a -lz
-AM_CPPFLAGS = -W -Wall -Wno-sign-compare $(GTEST_CPPFLAGS) -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval
+AM_CPPFLAGS = -W -Wall -Wno-sign-compare $(GTEST_CPPFLAGS) -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval -I$(top_srcdir)/training
diff --git a/pro-train/dist-pro.pl b/pro-train/dist-pro.pl
index 35bccea4..55d7f1fa 100755
--- a/pro-train/dist-pro.pl
+++ b/pro-train/dist-pro.pl
@@ -21,7 +21,7 @@ my $bin_dir = $SCRIPT_DIR;
die "Bin directory $bin_dir missing/inaccessible" unless -d $bin_dir;
my $FAST_SCORE="$bin_dir/../mteval/fast_score";
die "Can't execute $FAST_SCORE" unless -x $FAST_SCORE;
-my $MAPINPUT = "$bin_dir/mr_pro_generate_mapper_input";
+my $MAPINPUT = "$bin_dir/mr_pro_generate_mapper_input.pl";
my $MAPPER = "$bin_dir/mr_pro_map";
my $REDUCER = "$bin_dir/mr_pro_reduce";
my $parallelize = "$VEST_DIR/parallelize.pl";
@@ -37,8 +37,7 @@ die "Can't find decoder in $cdec" unless -x $cdec;
die "Can't find $parallelize" unless -x $parallelize;
die "Can't find $libcall" unless -e $libcall;
my $decoder = $cdec;
-my $lines_per_mapper = 400;
-my $rand_directions = 15;
+my $lines_per_mapper = 100;
my $iteration = 1;
my $run_local = 0;
my $best_weights;
@@ -58,7 +57,6 @@ my $metric = "ibm_bleu";
my $dir;
my $iniFile;
my $weights;
-my $initialWeights;
my $decoderOpt;
my $noprimary;
my $maxsim=0;
@@ -67,7 +65,6 @@ my $oracleb=20;
my $bleu_weight=1;
my $use_make; # use make to parallelize line search
my $dirargs='';
-my $density_prune;
my $usefork;
my $pass_suffix = '';
my $cpbin=1;
@@ -76,7 +73,6 @@ Getopt::Long::Configure("no_auto_abbrev");
if (GetOptions(
"decoder=s" => \$decoderOpt,
"decode-nodes=i" => \$decode_nodes,
- "density-prune=f" => \$density_prune,
"dont-clean" => \$disable_clean,
"pass-suffix=s" => \$pass_suffix,
"use-fork" => \$usefork,
@@ -91,8 +87,6 @@ if (GetOptions(
"normalize=s" => \$normalize,
"pmem=s" => \$pmem,
"cpbin!" => \$cpbin,
- "rand-directions=i" => \$rand_directions,
- "random_directions=i" => \$rand_directions,
"bleu_weight=s" => \$bleu_weight,
"no-primary!" => \$noprimary,
"max-similarity=s" => \$maxsim,
@@ -103,18 +97,12 @@ if (GetOptions(
"ref-files=s" => \$refFiles,
"metric=s" => \$metric,
"source-file=s" => \$srcFile,
- "weights=s" => \$initialWeights,
"workdir=s" => \$dir,
- "opt-iterations=i" => \$optimization_iters,
) == 0 || @ARGV!=1 || $help) {
print_help();
exit;
}
-if (defined $density_prune) {
- die "--density_prune n: n must be greater than 1.0\n" unless $density_prune > 1.0;
-}
-
if ($usefork) { $usefork = "--use-fork"; } else { $usefork = ''; }
if ($metric =~ /^(combi|ter)$/i) {
@@ -146,7 +134,7 @@ if ($metric =~ /^ter$|^aer$/i) {
my $refs_comma_sep = get_comma_sep_refs('r',$refFiles);
unless ($dir){
- $dir = "vest";
+ $dir = "protrain";
}
unless ($dir =~ /^\//){ # convert relative path to absolute path
my $basedir = check_output("pwd");
@@ -203,18 +191,19 @@ sub dirsize {
opendir ISEMPTY,$_[0];
return scalar(readdir(ISEMPTY))-1;
}
+my @allweights;
if ($dryrun){
write_config(*STDERR);
exit 0;
} else {
- if (-e $dir && dirsize($dir)>1 && -e "$dir/hgs" ){ # allow preexisting logfile, binaries, but not dist-vest.pl outputs
+ if (-e $dir && dirsize($dir)>1 && -e "$dir/hgs" ){ # allow preexisting logfile, binaries, but not dist-pro.pl outputs
die "ERROR: working dir $dir already exists\n\n";
} else {
-e $dir || mkdir $dir;
mkdir "$dir/hgs";
modbin("$dir/bin",\$LocalConfig,\$cdec,\$SCORER,\$MAPINPUT,\$MAPPER,\$REDUCER,\$parallelize,\$sentserver,\$sentclient,\$libcall) if $cpbin;
mkdir "$dir/scripts";
- my $cmdfile="$dir/rerun-vest.sh";
+ my $cmdfile="$dir/rerun-pro.sh";
open CMD,'>',$cmdfile;
print CMD "cd ",&getcwd,"\n";
# print CMD &escaped_cmdline,"\n"; #buggy - last arg is quoted.
@@ -223,13 +212,8 @@ if ($dryrun){
close CMD;
print STDERR $cline;
chmod(0755,$cmdfile);
- unless (-e $initialWeights) {
- print STDERR "Please specify an initial weights file with --initial-weights\n";
- print_help();
- exit;
- }
- check_call("cp $initialWeights $dir/weights.0");
- die "Can't find weights.0" unless (-e "$dir/weights.0");
+ check_call("touch $dir/weights.0");
+ die "Can't find weights.0" unless (-e "$dir/weights.0");
}
write_config(*STDERR);
}
@@ -255,6 +239,7 @@ my $random_seed = int(time / 1000);
my $lastWeightsFile;
my $lastPScore = 0;
# main optimization loop
+my @mapoutputs = (); # aggregate map outputs over all iters
while (1){
print STDERR "\n\nITERATION $iteration\n==========\n";
@@ -276,10 +261,8 @@ while (1){
print STDERR unchecked_output("date");
my $im1 = $iteration - 1;
my $weightsFile="$dir/weights.$im1";
+ push @allweights, "-w $dir/weights.$im1";
my $decoder_cmd = "$decoder -c $iniFile --weights$pass_suffix $weightsFile -O $dir/hgs";
- if ($density_prune) {
- $decoder_cmd .= " --density_prune $density_prune";
- }
my $pcmd;
if ($run_local) {
$pcmd = "cat $srcFile |";
@@ -320,163 +303,111 @@ while (1){
# run optimizer
print STDERR "RUNNING OPTIMIZER AT ";
print STDERR unchecked_output("date");
+ print STDERR " - GENERATE TRAINING EXEMPLARS\n";
my $mergeLog="$logdir/prune-merge.log.$iteration";
my $score = 0;
my $icc = 0;
my $inweights="$dir/weights.$im1";
- for (my $opt_iter=1; $opt_iter<$optimization_iters; $opt_iter++) {
- print STDERR "\nGENERATE OPTIMIZATION STRATEGY (OPT-ITERATION $opt_iter/$optimization_iters)\n";
- print STDERR unchecked_output("date");
- $icc++;
- my $nop=$noprimary?"--no_primary":"";
- my $targs=$oraclen ? "--decoder_translations='$runFile.gz' ".get_comma_sep_refs('-references',$refFiles):"";
- my $bwargs=$bleu_weight!=1 ? "--bleu_weight=$bleu_weight":"";
- $cmd="$MAPINPUT -w $inweights -r $dir/hgs $bwargs -s $devSize -d $rand_directions --max_similarity=$maxsim --oracle_directions=$oraclen --oracle_batch=$oracleb $targs $dirargs > $dir/agenda.$im1-$opt_iter";
- print STDERR "COMMAND:\n$cmd\n";
- check_call($cmd);
- check_call("mkdir -p $dir/splag.$im1");
- $cmd="split -a 3 -l $lines_per_mapper $dir/agenda.$im1-$opt_iter $dir/splag.$im1/mapinput.";
- print STDERR "COMMAND:\n$cmd\n";
- check_call($cmd);
- opendir(DIR, "$dir/splag.$im1") or die "Can't open directory: $!";
- my @shards = grep { /^mapinput\./ } readdir(DIR);
- closedir DIR;
- die "No shards!" unless scalar @shards > 0;
- my $joblist = "";
- my $nmappers = 0;
- my @mapoutputs = ();
- @cleanupcmds = ();
- my %o2i = ();
- my $first_shard = 1;
- my $mkfile; # only used with makefiles
- my $mkfilename;
- if ($use_make) {
- $mkfilename = "$dir/splag.$im1/domap.mk";
- open $mkfile, ">$mkfilename" or die "Couldn't write $mkfilename: $!";
- print $mkfile "all: $dir/splag.$im1/map.done\n\n";
- }
- my @mkouts = (); # only used with makefiles
- for my $shard (@shards) {
- my $mapoutput = $shard;
- my $client_name = $shard;
- $client_name =~ s/mapinput.//;
- $client_name = "vest.$client_name";
- $mapoutput =~ s/mapinput/mapoutput/;
- push @mapoutputs, "$dir/splag.$im1/$mapoutput";
- $o2i{"$dir/splag.$im1/$mapoutput"} = "$dir/splag.$im1/$shard";
- my $script = "$MAPPER -s $srcFile -l $metric $refs_comma_sep < $dir/splag.$im1/$shard | sort -t \$'\\t' -k 1 > $dir/splag.$im1/$mapoutput";
- if ($run_local) {
- print STDERR "COMMAND:\n$script\n";
- check_bash_call($script);
- } elsif ($use_make) {
- my $script_file = "$dir/scripts/map.$shard";
- open F, ">$script_file" or die "Can't write $script_file: $!";
- print F "#!/bin/bash\n";
- print F "$script\n";
- close F;
- my $output = "$dir/splag.$im1/$mapoutput";
- push @mkouts, $output;
- chmod(0755, $script_file) or die "Can't chmod $script_file: $!";
- if ($first_shard) { print STDERR "$script\n"; $first_shard=0; }
- print $mkfile "$output: $dir/splag.$im1/$shard\n\t$script_file\n\n";
- } else {
- my $script_file = "$dir/scripts/map.$shard";
- open F, ">$script_file" or die "Can't write $script_file: $!";
- print F "$script\n";
- close F;
- if ($first_shard) { print STDERR "$script\n"; $first_shard=0; }
-
- $nmappers++;
- my $qcmd = "$QSUB_CMD -N $client_name -o /dev/null -e $logdir/$client_name.ER $script_file";
- my $jobid = check_output("$qcmd");
- chomp $jobid;
- $jobid =~ s/^(\d+)(.*?)$/\1/g;
- $jobid =~ s/^Your job (\d+) .*$/\1/;
- push(@cleanupcmds, "qdel $jobid 2> /dev/null");
- print STDERR " $jobid";
- if ($joblist == "") { $joblist = $jobid; }
- else {$joblist = $joblist . "\|" . $jobid; }
- }
- }
+ $cmd="$MAPINPUT $dir/hgs > $dir/agenda.$im1";
+ print STDERR "COMMAND:\n$cmd\n";
+ check_call($cmd);
+ check_call("mkdir -p $dir/splag.$im1");
+ $cmd="split -a 3 -l $lines_per_mapper $dir/agenda.$im1 $dir/splag.$im1/mapinput.";
+ print STDERR "COMMAND:\n$cmd\n";
+ check_call($cmd);
+ opendir(DIR, "$dir/splag.$im1") or die "Can't open directory: $!";
+ my @shards = grep { /^mapinput\./ } readdir(DIR);
+ closedir DIR;
+ die "No shards!" unless scalar @shards > 0;
+ my $joblist = "";
+ my $nmappers = 0;
+ @cleanupcmds = ();
+ my %o2i = ();
+ my $first_shard = 1;
+ my $mkfile; # only used with makefiles
+ my $mkfilename;
+ if ($use_make) {
+ $mkfilename = "$dir/splag.$im1/domap.mk";
+ open $mkfile, ">$mkfilename" or die "Couldn't write $mkfilename: $!";
+ print $mkfile "all: $dir/splag.$im1/map.done\n\n";
+ }
+ my @mkouts = (); # only used with makefiles
+ for my $shard (@shards) {
+ my $mapoutput = $shard;
+ my $client_name = $shard;
+ $client_name =~ s/mapinput.//;
+ $client_name = "pro.$client_name";
+ $mapoutput =~ s/mapinput/mapoutput/;
+ push @mapoutputs, "$dir/splag.$im1/$mapoutput";
+ $o2i{"$dir/splag.$im1/$mapoutput"} = "$dir/splag.$im1/$shard";
+ my $script = "$MAPPER -s $srcFile -l $metric $refs_comma_sep @allweights < $dir/splag.$im1/$shard > $dir/splag.$im1/$mapoutput";
if ($run_local) {
- print STDERR "\nProcessing line search complete.\n";
+ print STDERR "COMMAND:\n$script\n";
+ check_bash_call($script);
} elsif ($use_make) {
- print $mkfile "$dir/splag.$im1/map.done: @mkouts\n\ttouch $dir/splag.$im1/map.done\n\n";
- close $mkfile;
- my $mcmd = "make -j $use_make -f $mkfilename";
- print STDERR "\nExecuting: $mcmd\n";
- check_call($mcmd);
+ my $script_file = "$dir/scripts/map.$shard";
+ open F, ">$script_file" or die "Can't write $script_file: $!";
+ print F "#!/bin/bash\n";
+ print F "$script\n";
+ close F;
+ my $output = "$dir/splag.$im1/$mapoutput";
+ push @mkouts, $output;
+ chmod(0755, $script_file) or die "Can't chmod $script_file: $!";
+ if ($first_shard) { print STDERR "$script\n"; $first_shard=0; }
+ print $mkfile "$output: $dir/splag.$im1/$shard\n\t$script_file\n\n";
} else {
- print STDERR "\nLaunched $nmappers mappers.\n";
- sleep 8;
- print STDERR "Waiting for mappers to complete...\n";
- while ($nmappers > 0) {
- sleep 5;
- my @livejobs = grep(/$joblist/, split(/\n/, unchecked_output("qstat | grep -v ' C '")));
- $nmappers = scalar @livejobs;
- }
- print STDERR "All mappers complete.\n";
+ my $script_file = "$dir/scripts/map.$shard";
+ open F, ">$script_file" or die "Can't write $script_file: $!";
+ print F "$script\n";
+ close F;
+ if ($first_shard) { print STDERR "$script\n"; $first_shard=0; }
+
+ $nmappers++;
+ my $qcmd = "$QSUB_CMD -N $client_name -o /dev/null -e $logdir/$client_name.ER $script_file";
+ my $jobid = check_output("$qcmd");
+ chomp $jobid;
+ $jobid =~ s/^(\d+)(.*?)$/\1/g;
+ $jobid =~ s/^Your job (\d+) .*$/\1/;
+ push(@cleanupcmds, "qdel $jobid 2> /dev/null");
+ print STDERR " $jobid";
+ if ($joblist == "") { $joblist = $jobid; }
+ else {$joblist = $joblist . "\|" . $jobid; }
}
- my $tol = 0;
- my $til = 0;
- for my $mo (@mapoutputs) {
- my $olines = get_lines($mo);
- my $ilines = get_lines($o2i{$mo});
- $tol += $olines;
- $til += $ilines;
- die "$mo: output lines ($olines) doesn't match input lines ($ilines)" unless $olines==$ilines;
- }
- print STDERR "Results for $tol/$til lines\n";
- print STDERR "\nSORTING AND RUNNING VEST REDUCER\n";
- print STDERR unchecked_output("date");
- $cmd="sort -t \$'\\t' -k 1 @mapoutputs | $REDUCER -l $metric > $dir/redoutput.$im1";
- print STDERR "COMMAND:\n$cmd\n";
- check_bash_call($cmd);
- $cmd="sort -nk3 $DIR_FLAG '-t|' $dir/redoutput.$im1 | head -1";
- # sort returns failure even when it doesn't fail for some reason
- my $best=unchecked_output("$cmd"); chomp $best;
- print STDERR "$best\n";
- my ($oa, $x, $xscore) = split /\|/, $best;
- $score = $xscore;
- print STDERR "PROJECTED SCORE: $score\n";
- if (abs($x) < $epsilon) {
- print STDERR "\nOPTIMIZER: no score improvement: abs($x) < $epsilon\n";
- last;
- }
- my $psd = $score - $last_score;
- $last_score = $score;
- if (abs($psd) < $epsilon) {
- print STDERR "\nOPTIMIZER: no score improvement: abs($psd) < $epsilon\n";
- last;
- }
- my ($origin, $axis) = split /\s+/, $oa;
-
- my %ori = convert($origin);
- my %axi = convert($axis);
-
- my $finalFile="$dir/weights.$im1-$opt_iter";
- open W, ">$finalFile" or die "Can't write: $finalFile: $!";
- my $norm = 0;
- for my $k (sort keys %ori) {
- my $dd = $ori{$k} + $axi{$k} * $x;
- $norm += $dd * $dd;
- }
- $norm = sqrt($norm);
- $norm = 1;
- for my $k (sort keys %ori) {
- my $v = ($ori{$k} + $axi{$k} * $x) / $norm;
- print W "$k $v\n";
+ }
+ if ($run_local) {
+ print STDERR "\nCompleted extraction of training exemplars.\n";
+ } elsif ($use_make) {
+ print $mkfile "$dir/splag.$im1/map.done: @mkouts\n\ttouch $dir/splag.$im1/map.done\n\n";
+ close $mkfile;
+ my $mcmd = "make -j $use_make -f $mkfilename";
+ print STDERR "\nExecuting: $mcmd\n";
+ check_call($mcmd);
+ } else {
+ print STDERR "\nLaunched $nmappers mappers.\n";
+ sleep 8;
+ print STDERR "Waiting for mappers to complete...\n";
+ while ($nmappers > 0) {
+ sleep 5;
+ my @livejobs = grep(/$joblist/, split(/\n/, unchecked_output("qstat | grep -v ' C '")));
+ $nmappers = scalar @livejobs;
}
- check_call("rm $dir/splag.$im1/*");
- $inweights = $finalFile;
+ print STDERR "All mappers complete.\n";
}
- $lastWeightsFile = "$dir/weights.$iteration";
- check_call("cp $inweights $lastWeightsFile");
- if ($icc < 2) {
- print STDERR "\nREACHED STOPPING CRITERION: score change too little\n";
- last;
+ my $tol = 0;
+ my $til = 0;
+ print STDERR "MO: @mapoutputs\n";
+ for my $mo (@mapoutputs) {
+ #my $olines = get_lines($mo);
+ #my $ilines = get_lines($o2i{$mo});
+ #die "$mo: no training instances generated!" if $olines == 0;
}
+ print STDERR "\nRUNNING CLASSIFIER (REDUCER)\n";
+ print STDERR unchecked_output("date");
+ $cmd="cat @mapoutputs | $REDUCER -w $dir/weights.$im1 > $dir/weights.$iteration";
+ print STDERR "COMMAND:\n$cmd\n";
+ check_bash_call($cmd);
+ $lastWeightsFile = "$dir/weights.$iteration";
$lastPScore = $score;
$iteration++;
print STDERR "\n==========\n";
@@ -488,24 +419,6 @@ print STDOUT "$lastWeightsFile\n";
exit 0;
-sub normalize_weights {
- my ($rfn, $rpts, $feat) = @_;
- my @feat_names = @$rfn;
- my @pts = @$rpts;
- my $z = 1.0;
- for (my $i=0; $i < scalar @feat_names; $i++) {
- if ($feat_names[$i] eq $feat) {
- $z = $pts[$i];
- last;
- }
- }
- for (my $i=0; $i < scalar @feat_names; $i++) {
- $pts[$i] /= $z;
- }
- print STDERR " NORM WEIGHTS: @pts\n";
- return @pts;
-}
-
sub get_lines {
my $fn = shift @_;
open FL, "<$fn" or die "Couldn't read $fn: $!";
@@ -563,7 +476,6 @@ sub write_config {
print $fh "HEAD NODE: $host\n";
print $fh "PMEM (DECODING): $pmem\n";
print $fh "CLEANUP: $cleanup\n";
- print $fh "INITIAL WEIGHTS: $initialWeights\n";
}
sub update_weights_file {
@@ -603,6 +515,7 @@ sub enseg {
}
close SRC;
close NEWSRC;
+ die "Empty dev set!" if ($i == 0);
}
sub print_help {
@@ -634,10 +547,6 @@ Options:
--decoder <decoder path>
Decoder binary to use.
- --density-prune <N>
- Limit the density of the hypergraph on each iteration to N times
- the number of edges on the Viterbi path.
-
--help
Print this message and exit.
@@ -668,18 +577,9 @@ Options:
After each iteration, rescale all feature weights such that feature-
name has a weight of 1.0.
- --rand-directions <num>
- MERT will attempt to optimize along all of the principle directions,
- set this parameter to explore other directions. Defaults to 5.
-
--source-file <file>
Dev set source file.
- --weights <file>
- A file specifying initial feature weights. The format is
- FeatureName_1 value1
- FeatureName_2 value2
-
--workdir <dir>
Directory for intermediate and output files. If not specified, the
name is derived from the ini filename. Assuming that the ini
diff --git a/pro-train/mr_pro_generate_mapper_input.pl b/pro-train/mr_pro_generate_mapper_input.pl
new file mode 100755
index 00000000..b30fc4fd
--- /dev/null
+++ b/pro-train/mr_pro_generate_mapper_input.pl
@@ -0,0 +1,18 @@
+#!/usr/bin/perl -w
+use strict;
+
+die "Usage: $0 HG_DIR\n" unless scalar @ARGV == 1;
+my $d = shift @ARGV;
+die "Can't find directory $d" unless -d $d;
+
+opendir(DIR, $d) or die "Can't read $d: $!";
+my @hgs = grep { /\.gz$/ } readdir(DIR);
+closedir DIR;
+
+for my $hg (@hgs) {
+ my $file = $hg;
+ my $id = $hg;
+ $id =~ s/(\.json)?\.gz//;
+ print "$d/$file $id\n";
+}
+
diff --git a/pro-train/mr_pro_map.cc b/pro-train/mr_pro_map.cc
index b046cdea..128d93ce 100644
--- a/pro-train/mr_pro_map.cc
+++ b/pro-train/mr_pro_map.cc
@@ -10,6 +10,7 @@
#include "sampler.h"
#include "filelib.h"
#include "stringlib.h"
+#include "weights.h"
#include "scorer.h"
#include "inside_outside.h"
#include "hg_io.h"
@@ -27,10 +28,10 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)")
- ("source,s",po::value<string>(), "Source file (ignored, except for AER)")
+ ("source,s",po::value<string>()->default_value(""), "Source file (ignored, except for AER)")
("loss_function,l",po::value<string>()->default_value("ibm_bleu"), "Loss function being optimized")
("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
- ("weights,w",po::value<string>(), "[REQD] Current weights file")
+ ("weights,w",po::value<vector<string> >(), "[REQD] Weights files from previous and current iterations")
("kbest_size,k",po::value<unsigned>()->default_value(1500u), "Top k-hypotheses to extract")
("candidate_pairs,G", po::value<unsigned>()->default_value(5000u), "Number of pairs to sample per hypothesis (Gamma)")
("best_pairs,X", po::value<unsigned>()->default_value(50u), "Number of pairs, ranked by magnitude of objective delta, to retain (Xi)")
@@ -44,6 +45,10 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
cerr << "Please specify one or more references using -r <REF.TXT>\n";
flag = true;
}
+ if (!conf->count("weights")) {
+ cerr << "Please specify one or more weights using -w <WEIGHTS.TXT>\n";
+ flag = true;
+ }
if (flag || conf->count("help")) {
cerr << dcmdline_options << endl;
exit(1);
@@ -51,18 +56,78 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
}
struct HypInfo {
- HypInfo(const vector<WordID>& h, const SparseVector<double>& feats) : hyp(h), g_(-1), x(feats) {}
- double g() {
+ HypInfo(const vector<WordID>& h, const SparseVector<double>& feats) : hyp(h), g_(-100.0), x(feats) {}
+
+ // lazy evaluation
+ double g(const SentenceScorer& scorer) const {
+ if (g_ == -100.0)
+ g_ = scorer.ScoreCandidate(hyp)->ComputeScore();
return g_;
}
- private:
- int sent_id;
vector<WordID> hyp;
- double g_;
+ mutable double g_;
public:
SparseVector<double> x;
};
+struct ThresholdAlpha {
+ explicit ThresholdAlpha(double t = 0.05) : threshold(t) {}
+ double operator()(double mag) const {
+ if (mag < threshold) return 0.0; else return 1.0;
+ }
+ const double threshold;
+};
+
+struct TrainingInstance {
+ TrainingInstance(const SparseVector<double>& feats, bool positive, double diff) : x(feats), y(positive), gdiff(diff) {}
+ SparseVector<double> x;
+#ifdef DEBUGGING_PRO
+ vector<WordID> a;
+ vector<WordID> b;
+#endif
+ bool y;
+ double gdiff;
+};
+
+struct DiffOrder {
+ bool operator()(const TrainingInstance& a, const TrainingInstance& b) const {
+ return a.gdiff > b.gdiff;
+ }
+};
+
+template<typename Alpha>
+void Sample(const unsigned gamma, const unsigned xi, const vector<HypInfo>& J_i, const SentenceScorer& scorer, const Alpha& alpha_i, bool invert_score, vector<TrainingInstance>* pv) {
+ vector<TrainingInstance> v;
+ for (unsigned i = 0; i < gamma; ++i) {
+ size_t a = rng->inclusive(0, J_i.size() - 1)();
+ size_t b = rng->inclusive(0, J_i.size() - 1)();
+ if (a == b) continue;
+ double ga = J_i[a].g(scorer);
+ double gb = J_i[b].g(scorer);
+ bool positive = ga < gb;
+ if (invert_score) positive = !positive;
+ double gdiff = fabs(ga - gb);
+ if (!gdiff) continue;
+ if (rng->next() < alpha_i(gdiff)) {
+ v.push_back(TrainingInstance((J_i[a].x - J_i[b].x).erase_zeros(), positive, gdiff));
+#ifdef DEBUGGING_PRO
+ v.back().a = J_i[a].hyp;
+ v.back().b = J_i[b].hyp;
+#endif
+ }
+ }
+ vector<TrainingInstance>::iterator mid = v.begin() + xi;
+ if (xi > v.size()) mid = v.end();
+ partial_sort(v.begin(), mid, v.end(), DiffOrder());
+ copy(v.begin(), mid, back_inserter(*pv));
+#ifdef DEBUGGING_PRO
+ if (v.size() >= 5)
+ for (int i =0; i < 5; ++i) {
+ cerr << v[i].gdiff << " y=" << v[i].y << "\tA:" << TD::GetString(v[i].a) << "\n\tB: " << TD::GetString(v[i].b) << endl;
+ }
+#endif
+}
+
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
@@ -81,7 +146,15 @@ int main(int argc, char** argv) {
const unsigned kbest_size = conf["kbest_size"].as<unsigned>();
const unsigned gamma = conf["candidate_pairs"].as<unsigned>();
const unsigned xi = conf["best_pairs"].as<unsigned>();
+ vector<string> weights_files = conf["weights"].as<vector<string> >();
+ vector<vector<double> > weights(weights_files.size());
+ for (int i = 0; i < weights.size(); ++i) {
+ Weights w;
+ w.InitFromFile(weights_files[i]);
+ w.InitVector(&weights[i]);
+ }
while(in) {
+ vector<TrainingInstance> v;
string line;
getline(in, line);
if (line.empty()) continue;
@@ -92,18 +165,27 @@ int main(int argc, char** argv) {
is >> file >> sent_id;
ReadFile rf(file);
HypergraphIO::ReadFromJSON(rf.stream(), &hg);
- KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, kbest_size);
-
vector<HypInfo> J_i;
- for (int i = 0; i < kbest_size; ++i) {
- const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
- kbest.LazyKthBest(hg.nodes_.size() - 1, i);
- if (!d) break;
- float sentscore = ds[sent_id]->ScoreCandidate(d->yield)->ComputeScore();
- // if (invert_score) sentscore *= -1.0;
- // cerr << TD::GetString(d->yield) << " ||| " << d->score << " ||| " << sentscore << endl;
- d->feature_values;
- sentscore;
+ int start = weights.size();
+ start -= 4;
+ if (start < 0) start = 0;
+ for (int i = start; i < weights.size(); ++i) {
+ hg.Reweight(weights[i]);
+ KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, kbest_size);
+
+ for (int i = 0; i < kbest_size; ++i) {
+ const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
+ kbest.LazyKthBest(hg.nodes_.size() - 1, i);
+ if (!d) break;
+ J_i.push_back(HypInfo(d->yield, d->feature_values));
+ }
+ }
+
+ Sample(gamma, xi, J_i, *ds[sent_id], ThresholdAlpha(0.05), (type == TER), &v);
+ for (unsigned i = 0; i < v.size(); ++i) {
+ const TrainingInstance& vi = v[i];
+ cout << vi.y << "\t" << vi.x << endl;
+ cout << (!vi.y) << "\t" << (vi.x * -1.0) << endl;
}
}
return 0;
diff --git a/pro-train/mr_pro_reduce.cc b/pro-train/mr_pro_reduce.cc
index 3df52020..2b9c5ce7 100644
--- a/pro-train/mr_pro_reduce.cc
+++ b/pro-train/mr_pro_reduce.cc
@@ -1,3 +1,4 @@
+#include <cstdlib>
#include <sstream>
#include <iostream>
#include <fstream>
@@ -6,24 +7,29 @@
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
+#include "weights.h"
#include "sparse_vector.h"
-#include "error_surface.h"
-#include "line_optimizer.h"
-#include "b64tools.h"
+#include "optimize.h"
using namespace std;
namespace po = boost::program_options;
+// since this is a ranking model, there should be equal numbers of
+// positive and negative examples so the bias should be 0
+static const double MAX_BIAS = 1e-10;
+
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
- ("loss_function,l",po::value<string>(), "Loss function being optimized")
+ ("weights,w", po::value<string>(), "Weights from previous iteration (used as initialization and interpolation")
+ ("interpolation,p",po::value<double>()->default_value(0.9), "Output weights are p*w + (1-p)*w_prev")
+ ("memory_buffers,m",po::value<unsigned>()->default_value(200), "Number of memory buffers (LBFGS)")
+ ("sigma_squared,s",po::value<double>()->default_value(0.5), "Sigma squared for Gaussian prior")
("help,h", "Help");
po::options_description dcmdline_options;
dcmdline_options.add(opts);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
- bool flag = conf->count("loss_function") == 0;
- if (flag || conf->count("help")) {
+ if (conf->count("help")) {
cerr << dcmdline_options << endl;
exit(1);
}
@@ -32,50 +38,127 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
- const string loss_function = conf["loss_function"].as<string>();
- ScoreType type = ScoreTypeFromString(loss_function);
- LineOptimizer::ScoreType opt_type = LineOptimizer::MAXIMIZE_SCORE;
- if (type == TER || type == AER) {
- opt_type = LineOptimizer::MINIMIZE_SCORE;
+ string line;
+ vector<pair<bool, SparseVector<double> > > training;
+ int lc = 0;
+ bool flag = false;
+ SparseVector<double> old_weights;
+ const double psi = conf["interpolation"].as<double>();
+ if (psi < 0.0 || psi > 1.0) { cerr << "Invalid interpolation weight: " << psi << endl; }
+ if (conf.count("weights")) {
+ Weights w;
+ w.InitFromFile(conf["weights"].as<string>());
+ w.InitSparseVector(&old_weights);
}
- string last_key;
- vector<ErrorSurface> esv;
- while(cin) {
- string line;
- getline(cin, line);
+ while(getline(cin, line)) {
+ ++lc;
+ if (lc % 1000 == 0) { cerr << '.'; flag = true; }
+ if (lc % 40000 == 0) { cerr << " [" << lc << "]\n"; flag = false; }
if (line.empty()) continue;
- size_t ks = line.find("\t");
+ const size_t ks = line.find("\t");
assert(string::npos != ks);
- assert(ks > 2);
- string key = line.substr(2, ks - 2);
- string val = line.substr(ks + 1);
- if (key != last_key) {
- if (!last_key.empty()) {
- float score;
- double x = LineOptimizer::LineOptimize(esv, opt_type, &score);
- cout << last_key << "|" << x << "|" << score << endl;
+ assert(ks == 1);
+ const bool y = line[0] == '1';
+ SparseVector<double> x;
+ size_t last_start = ks + 1;
+ size_t last_comma = string::npos;
+ size_t cur = last_start;
+ while(cur <= line.size()) {
+ if (line[cur] == ' ' || cur == line.size()) {
+ if (!(cur > last_start && last_comma != string::npos && cur > last_comma)) {
+ cerr << "[ERROR] " << line << endl << " position = " << cur << endl;
+ exit(1);
+ }
+ const int fid = FD::Convert(line.substr(last_start, last_comma - last_start));
+ if (cur < line.size()) line[cur] = 0;
+ const double val = strtod(&line[last_comma + 1], NULL);
+ x.set_value(fid, val);
+
+ last_comma = string::npos;
+ last_start = cur+1;
+ } else {
+ if (line[cur] == '=')
+ last_comma = cur;
+ }
+ ++cur;
+ }
+ training.push_back(make_pair(y, x));
+ }
+ if (flag) cerr << endl;
+
+ cerr << "Number of features: " << FD::NumFeats() << endl;
+ vector<double> x(FD::NumFeats(), 0.0); // x[0] is bias
+ for (SparseVector<double>::const_iterator it = old_weights.begin();
+ it != old_weights.end(); ++it)
+ x[it->first] = it->second;
+ vector<double> vg(FD::NumFeats(), 0.0);
+ SparseVector<double> g;
+ bool converged = false;
+ LBFGSOptimizer opt(FD::NumFeats(), conf["memory_buffers"].as<unsigned>());
+ while(!converged) {
+ double cll = 0;
+ double dbias = 0;
+ g.clear();
+ for (int i = 0; i < training.size(); ++i) {
+ const double dotprod = training[i].second.dot(x) + x[0]; // x[0] is bias
+ double lp_false = dotprod;
+ double lp_true = -dotprod;
+ if (0 < lp_true) {
+ lp_true += log1p(exp(-lp_true));
+ lp_false = log1p(exp(lp_false));
+ } else {
+ lp_true = log1p(exp(lp_true));
+ lp_false += log1p(exp(-lp_false));
+ }
+ lp_true*=-1;
+ lp_false*=-1;
+ if (training[i].first) { // true label
+ cll -= lp_true;
+ g -= training[i].second * exp(lp_false);
+ dbias -= exp(lp_false);
+ } else { // false label
+ cll -= lp_false;
+ g += training[i].second * exp(lp_true);
+ dbias += exp(lp_true);
}
- last_key = key;
- esv.clear();
}
- if (val.size() % 4 != 0) {
- cerr << "B64 encoding error 1! Skipping.\n";
- continue;
+ vg.clear();
+ g.init_vector(&vg);
+ vg[0] = dbias;
+#if 1
+ const double sigsq = conf["sigma_squared"].as<double>();
+ double norm = 0;
+ for (int i = 1; i < x.size(); ++i) {
+ const double mean_i = 0.0;
+ const double param = (x[i] - mean_i);
+ norm += param * param;
+ vg[i] += param / sigsq;
+ }
+ const double reg = norm / (2.0 * sigsq);
+#else
+ double reg = 0;
+#endif
+ cll += reg;
+ cerr << cll << " (REG=" << reg << ")\t";
+ bool failed = false;
+ try {
+ opt.Optimize(cll, vg, &x);
+ } catch (...) {
+ cerr << "Exception caught, assuming convergence is close enough...\n";
+ failed = true;
}
- string encoded(val.size() / 4 * 3, '\0');
- if (!B64::b64decode(reinterpret_cast<const unsigned char*>(&val[0]), val.size(), &encoded[0], encoded.size())) {
- cerr << "B64 encoding error 2! Skipping.\n";
- continue;
+ if (fabs(x[0]) > MAX_BIAS) {
+ cerr << "Biased model learned. Are your training instances wrong?\n";
+ cerr << " BIAS: " << x[0] << endl;
}
- esv.push_back(ErrorSurface());
- esv.back().Deserialize(type, encoded);
+ converged = failed || opt.HasConverged();
}
- if (!esv.empty()) {
- // cerr << "ESV=" << esv.size() << endl;
- // for (int i = 0; i < esv.size(); ++i) { cerr << esv[i].size() << endl; }
- float score;
- double x = LineOptimizer::LineOptimize(esv, opt_type, &score);
- cout << last_key << "|" << x << "|" << score << endl;
+ Weights w;
+ if (conf.count("weights")) {
+ for (int i = 1; i < x.size(); ++i)
+ x[i] = (x[i] * psi) + old_weights.get(i) * (1.0 - psi);
}
+ w.InitFromVector(x);
+ w.WriteToFile("-");
return 0;
}