diff options
author | Chris Dyer <cdyer@cs.cmu.edu> | 2012-11-18 11:31:21 -0500 |
---|---|---|
committer | Chris Dyer <cdyer@cs.cmu.edu> | 2012-11-18 11:31:21 -0500 |
commit | 7640d85b92f61016e0712825920c6a259329d79b (patch) | |
tree | 185ec46bc0f4836082cca585dc8e67c80a7ebe99 /pro-train/mr_pro_map.cc | |
parent | 2de96e4b06fd0ff6131f3ec9630e9df330cf9b14 (diff) |
more consistent naming, interface, fix compile error
Diffstat (limited to 'pro-train/mr_pro_map.cc')
-rw-r--r-- | pro-train/mr_pro_map.cc | 201 |
1 files changed, 0 insertions, 201 deletions
diff --git a/pro-train/mr_pro_map.cc b/pro-train/mr_pro_map.cc deleted file mode 100644 index eef40b8a..00000000 --- a/pro-train/mr_pro_map.cc +++ /dev/null @@ -1,201 +0,0 @@ -#include <sstream> -#include <iostream> -#include <fstream> -#include <vector> -#include <tr1/unordered_map> - -#include <boost/functional/hash.hpp> -#include <boost/shared_ptr.hpp> -#include <boost/program_options.hpp> -#include <boost/program_options/variables_map.hpp> - -#include "candidate_set.h" -#include "sampler.h" -#include "filelib.h" -#include "stringlib.h" -#include "weights.h" -#include "inside_outside.h" -#include "hg_io.h" -#include "ns.h" -#include "ns_docscorer.h" - -// This is Figure 4 (Algorithm Sampler) from Hopkins&May (2011) - -using namespace std; -namespace po = boost::program_options; - -boost::shared_ptr<MT19937> rng; - -void InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)") - ("weights,w",po::value<string>(), "[REQD] Weights files from current iterations") - ("kbest_repository,K",po::value<string>()->default_value("./kbest"),"K-best list repository (directory)") - ("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)") - ("source,s",po::value<string>()->default_value(""), "Source file (ignored, except for AER)") - ("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)") - ("kbest_size,k",po::value<unsigned>()->default_value(1500u), "Top k-hypotheses to extract") - ("candidate_pairs,G", po::value<unsigned>()->default_value(5000u), "Number of pairs to sample per hypothesis (Gamma)") - ("best_pairs,X", po::value<unsigned>()->default_value(50u), "Number of pairs, ranked by magnitude of objective delta, to retain (Xi)") - ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)") - ("help,h", "Help"); - po::options_description dcmdline_options; - dcmdline_options.add(opts); - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - bool flag = false; - if (!conf->count("reference")) { - cerr << "Please specify one or more references using -r <REF.TXT>\n"; - flag = true; - } - if (!conf->count("weights")) { - cerr << "Please specify weights using -w <WEIGHTS.TXT>\n"; - flag = true; - } - if (flag || conf->count("help")) { - cerr << dcmdline_options << endl; - exit(1); - } -} - -struct ThresholdAlpha { - explicit ThresholdAlpha(double t = 0.05) : threshold(t) {} - double operator()(double mag) const { - if (mag < threshold) return 0.0; else return 1.0; - } - const double threshold; -}; - -struct TrainingInstance { - TrainingInstance(const SparseVector<weight_t>& feats, bool positive, float diff) : x(feats), y(positive), gdiff(diff) {} - SparseVector<weight_t> x; -#undef DEBUGGING_PRO -#ifdef DEBUGGING_PRO - vector<WordID> a; - vector<WordID> b; -#endif - bool y; - float gdiff; -}; -#ifdef DEBUGGING_PRO -ostream& operator<<(ostream& os, const TrainingInstance& d) { - return os << d.gdiff << " y=" << d.y << "\tA:" << TD::GetString(d.a) << "\n\tB: " << TD::GetString(d.b) << "\n\tX: " << d.x; -} -#endif - -struct DiffOrder { - bool operator()(const TrainingInstance& a, const TrainingInstance& b) const { - return a.gdiff > b.gdiff; - } -}; - -void Sample(const unsigned gamma, - const unsigned xi, - const training::CandidateSet& J_i, - const EvaluationMetric* metric, - vector<TrainingInstance>* pv) { - const bool invert_score = metric->IsErrorMetric(); - vector<TrainingInstance> v1, v2; - float avg_diff = 0; - for (unsigned i = 0; i < gamma; ++i) { - const size_t a = rng->inclusive(0, J_i.size() - 1)(); - const size_t b = rng->inclusive(0, J_i.size() - 1)(); - if (a == b) continue; - float ga = metric->ComputeScore(J_i[a].eval_feats); - float gb = metric->ComputeScore(J_i[b].eval_feats); - bool positive = gb < ga; - if (invert_score) positive = !positive; - const float gdiff = fabs(ga - gb); - if (!gdiff) continue; - avg_diff += gdiff; - SparseVector<weight_t> xdiff = (J_i[a].fmap - J_i[b].fmap).erase_zeros(); - if (xdiff.empty()) { - cerr << "Empty diff:\n " << TD::GetString(J_i[a].ewords) << endl << "x=" << J_i[a].fmap << endl; - cerr << " " << TD::GetString(J_i[b].ewords) << endl << "x=" << J_i[b].fmap << endl; - continue; - } - v1.push_back(TrainingInstance(xdiff, positive, gdiff)); -#ifdef DEBUGGING_PRO - v1.back().a = J_i[a].hyp; - v1.back().b = J_i[b].hyp; - cerr << "N: " << v1.back() << endl; -#endif - } - avg_diff /= v1.size(); - - for (unsigned i = 0; i < v1.size(); ++i) { - double p = 1.0 / (1.0 + exp(-avg_diff - v1[i].gdiff)); - // cerr << "avg_diff=" << avg_diff << " gdiff=" << v1[i].gdiff << " p=" << p << endl; - if (rng->next() < p) v2.push_back(v1[i]); - } - vector<TrainingInstance>::iterator mid = v2.begin() + xi; - if (xi > v2.size()) mid = v2.end(); - partial_sort(v2.begin(), mid, v2.end(), DiffOrder()); - copy(v2.begin(), mid, back_inserter(*pv)); -#ifdef DEBUGGING_PRO - if (v2.size() >= 5) { - for (int i =0; i < (mid - v2.begin()); ++i) { - cerr << v2[i] << endl; - } - cerr << pv->back() << endl; - } -#endif -} - -int main(int argc, char** argv) { - po::variables_map conf; - InitCommandLine(argc, argv, &conf); - if (conf.count("random_seed")) - rng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); - else - rng.reset(new MT19937); - const string evaluation_metric = conf["evaluation_metric"].as<string>(); - - EvaluationMetric* metric = EvaluationMetric::Instance(evaluation_metric); - DocumentScorer ds(metric, conf["reference"].as<vector<string> >()); - cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl; - - Hypergraph hg; - string last_file; - ReadFile in_read(conf["input"].as<string>()); - istream &in=*in_read.stream(); - const unsigned kbest_size = conf["kbest_size"].as<unsigned>(); - const unsigned gamma = conf["candidate_pairs"].as<unsigned>(); - const unsigned xi = conf["best_pairs"].as<unsigned>(); - string weightsf = conf["weights"].as<string>(); - vector<weight_t> weights; - Weights::InitFromFile(weightsf, &weights); - string kbest_repo = conf["kbest_repository"].as<string>(); - MkDirP(kbest_repo); - while(in) { - vector<TrainingInstance> v; - string line; - getline(in, line); - if (line.empty()) continue; - istringstream is(line); - int sent_id; - string file; - // path-to-file (JSON) sent_id - is >> file >> sent_id; - ReadFile rf(file); - ostringstream os; - training::CandidateSet J_i; - os << kbest_repo << "/kbest." << sent_id << ".txt.gz"; - const string kbest_file = os.str(); - if (FileExists(kbest_file)) - J_i.ReadFromFile(kbest_file); - HypergraphIO::ReadFromJSON(rf.stream(), &hg); - hg.Reweight(weights); - J_i.AddKBestCandidates(hg, kbest_size, ds[sent_id]); - J_i.WriteToFile(kbest_file); - - Sample(gamma, xi, J_i, metric, &v); - for (unsigned i = 0; i < v.size(); ++i) { - const TrainingInstance& vi = v[i]; - cout << vi.y << "\t" << vi.x << endl; - cout << (!vi.y) << "\t" << (vi.x * -1.0) << endl; - } - } - return 0; -} - |