diff options
author | Patrick Simianer <p@simianer.de> | 2012-03-13 09:24:47 +0100 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2012-03-13 09:24:47 +0100 |
commit | ef6085e558e26c8819f1735425761103021b6470 (patch) | |
tree | 5cf70e4c48c64d838e1326b5a505c8c4061bff4a /mteval | |
parent | 10a232656a0c882b3b955d2bcfac138ce11e8a2e (diff) | |
parent | dfbc278c1057555fda9312291c8024049e00b7d8 (diff) |
merge with upstream
Diffstat (limited to 'mteval')
-rw-r--r-- | mteval/Makefile.am | 2 | ||||
-rw-r--r-- | mteval/fast_score.cc | 40 | ||||
-rw-r--r-- | mteval/mbr_kbest.cc | 24 | ||||
-rw-r--r-- | mteval/ns.cc | 290 | ||||
-rw-r--r-- | mteval/ns.h | 115 | ||||
-rw-r--r-- | mteval/ns_comb.cc | 87 | ||||
-rw-r--r-- | mteval/ns_comb.h | 19 | ||||
-rw-r--r-- | mteval/ns_docscorer.cc | 60 | ||||
-rw-r--r-- | mteval/ns_docscorer.h | 31 | ||||
-rw-r--r-- | mteval/ns_ext.cc | 130 | ||||
-rw-r--r-- | mteval/ns_ext.h | 21 | ||||
-rw-r--r-- | mteval/ns_ter.cc | 492 | ||||
-rw-r--r-- | mteval/ns_ter.h | 21 | ||||
-rw-r--r-- | mteval/scorer_test.cc | 48 |
14 files changed, 1352 insertions, 28 deletions
diff --git a/mteval/Makefile.am b/mteval/Makefile.am index 95845090..e7126675 100644 --- a/mteval/Makefile.am +++ b/mteval/Makefile.am @@ -10,7 +10,7 @@ endif noinst_LIBRARIES = libmteval.a -libmteval_a_SOURCES = ter.cc comb_scorer.cc aer_scorer.cc scorer.cc external_scorer.cc +libmteval_a_SOURCES = ter.cc comb_scorer.cc aer_scorer.cc scorer.cc external_scorer.cc ns.cc ns_ter.cc ns_ext.cc ns_comb.cc ns_docscorer.cc fast_score_SOURCES = fast_score.cc fast_score_LDADD = libmteval.a $(top_srcdir)/utils/libutils.a -lz diff --git a/mteval/fast_score.cc b/mteval/fast_score.cc index 5ee264a6..a271ccc5 100644 --- a/mteval/fast_score.cc +++ b/mteval/fast_score.cc @@ -4,9 +4,11 @@ #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> +#include "stringlib.h" #include "filelib.h" #include "tdict.h" -#include "scorer.h" +#include "ns.h" +#include "ns_docscorer.h" using namespace std; namespace po = boost::program_options; @@ -14,8 +16,8 @@ namespace po = boost::program_options; void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() - ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)") - ("loss_function,l",po::value<string>()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)") + ("reference,r",po::value<vector<string> >(), "[1 or more required] Reference translation(s) in tokenized text files") + ("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)") ("in_file,i", po::value<string>()->default_value("-"), "Input file") ("help,h", "Help"); po::options_description dcmdline_options; @@ -35,24 +37,29 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); - const string loss_function = conf["loss_function"].as<string>(); - ScoreType type = ScoreTypeFromString(loss_function); - DocScorer ds(type, conf["reference"].as<vector<string> >(), ""); + string loss_function = UppercaseString(conf["evaluation_metric"].as<string>()); + if (loss_function == "COMBI") { + cerr << "WARNING: 'combi' metric is no longer supported, switching to 'COMB:TER=-0.5;IBM_BLEU=0.5'\n"; + loss_function = "COMB:TER=-0.5;IBM_BLEU=0.5"; + } else if (loss_function == "BLEU") { + cerr << "WARNING: 'BLEU' is ambiguous, assuming 'IBM_BLEU'\n"; + loss_function = "IBM_BLEU"; + } + EvaluationMetric* metric = EvaluationMetric::Instance(loss_function); + DocumentScorer ds(metric, conf["reference"].as<vector<string> >()); cerr << "Loaded " << ds.size() << " references for scoring with " << loss_function << endl; ReadFile rf(conf["in_file"].as<string>()); - ScoreP acc; + SufficientStats acc; istream& in = *rf.stream(); int lc = 0; - while(in) { - string line; - getline(in, line); - if (line.empty() && !in) break; + string line; + while(getline(in, line)) { vector<WordID> sent; TD::ConvertSentence(line, &sent); - ScoreP sentscore = ds[lc]->ScoreCandidate(sent); - if (!acc) { acc = sentscore->GetZero(); } - acc->PlusEquals(*sentscore); + SufficientStats t; + ds[lc]->Evaluate(sent, &t); + acc += t; ++lc; } assert(lc > 0); @@ -63,9 +70,8 @@ int main(int argc, char** argv) { if (lc != ds.size()) cerr << "Fewer sentences in hyp (" << lc << ") than refs (" << ds.size() << "): scoring partial set!\n"; - float score = acc->ComputeScore(); - string details; - acc->ScoreDetails(&details); + float score = metric->ComputeScore(acc); + const string details = metric->DetailedScore(acc); cerr << details << endl; cout << score << endl; return 0; diff --git a/mteval/mbr_kbest.cc b/mteval/mbr_kbest.cc index 64a6a8bf..2bd31566 100644 --- a/mteval/mbr_kbest.cc +++ b/mteval/mbr_kbest.cc @@ -5,7 +5,7 @@ #include "prob.h" #include "tdict.h" -#include "scorer.h" +#include "ns.h" #include "filelib.h" #include "stringlib.h" @@ -17,7 +17,7 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("scale,a",po::value<double>()->default_value(1.0), "Posterior scaling factor (alpha)") - ("loss_function,l",po::value<string>()->default_value("bleu"), "Loss function") + ("evaluation_metric,m",po::value<string>()->default_value("ibm_bleu"), "Evaluation metric") ("input,i",po::value<string>()->default_value("-"), "File to read k-best lists from") ("output_list,L", "Show reranked list as output") ("help,h", "Help"); @@ -75,13 +75,15 @@ bool ReadKBestList(istream* in, string* sent_id, vector<pair<vector<WordID>, pro int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); - const string metric = conf["loss_function"].as<string>(); + const string smetric = conf["evaluation_metric"].as<string>(); + EvaluationMetric* metric = EvaluationMetric::Instance(smetric); + + const bool is_loss = (UppercaseString(smetric) == "TER"); const bool output_list = conf.count("output_list") > 0; const string file = conf["input"].as<string>(); const double mbr_scale = conf["scale"].as<double>(); cerr << "Posterior scaling factor (alpha) = " << mbr_scale << endl; - ScoreType type = ScoreTypeFromString(metric); vector<pair<vector<WordID>, prob_t> > list; ReadFile rf(file); string sent_id; @@ -99,15 +101,17 @@ int main(int argc, char** argv) { vector<double> mbr_scores(output_list ? list.size() : 0); double mbr_loss = numeric_limits<double>::max(); for (int i = 0 ; i < list.size(); ++i) { - vector<vector<WordID> > refs(1, list[i].first); - //cerr << i << ": " << list[i].second <<"\t" << TD::GetString(list[i].first) << endl; - ScorerP scorer = SentenceScorer::CreateSentenceScorer(type, refs); + const vector<vector<WordID> > refs(1, list[i].first); + boost::shared_ptr<SegmentEvaluator> segeval = metric-> + CreateSegmentEvaluator(refs); + double wl_acc = 0; for (int j = 0; j < list.size(); ++j) { if (i != j) { - ScoreP s = scorer->ScoreCandidate(list[j].first); - double loss = 1.0 - s->ComputeScore(); - if (type == TER || type == AER) loss = 1.0 - loss; + SufficientStats ss; + segeval->Evaluate(list[j].first, &ss); + double loss = 1.0 - metric->ComputeScore(ss); + if (is_loss) loss = 1.0 - loss; double weighted_loss = loss * (joints[j] / marginal).as_float(); wl_acc += weighted_loss; if ((!output_list) && wl_acc > mbr_loss) break; diff --git a/mteval/ns.cc b/mteval/ns.cc new file mode 100644 index 00000000..788f809a --- /dev/null +++ b/mteval/ns.cc @@ -0,0 +1,290 @@ +#include "ns.h" +#include "ns_ter.h" +#include "ns_ext.h" +#include "ns_comb.h" + +#include <cstdio> +#include <cassert> +#include <cmath> +#include <cstdlib> +#include <iostream> +#include <sstream> + +#include "tdict.h" +#include "stringlib.h" + +using namespace std; +using boost::shared_ptr; + +map<string, EvaluationMetric*> EvaluationMetric::instances_; + +SegmentEvaluator::~SegmentEvaluator() {} +EvaluationMetric::~EvaluationMetric() {} + +bool EvaluationMetric::IsErrorMetric() const { + return false; +} + +struct DefaultSegmentEvaluator : public SegmentEvaluator { + DefaultSegmentEvaluator(const vector<vector<WordID> >& refs, const EvaluationMetric* em) : refs_(refs), em_(em) {} + void Evaluate(const vector<WordID>& hyp, SufficientStats* out) const { + em_->ComputeSufficientStatistics(hyp, refs_, out); + out->id_ = em_->MetricId(); + } + const vector<vector<WordID> > refs_; + const EvaluationMetric* em_; +}; + +shared_ptr<SegmentEvaluator> EvaluationMetric::CreateSegmentEvaluator(const vector<vector<WordID> >& refs) const { + return shared_ptr<SegmentEvaluator>(new DefaultSegmentEvaluator(refs, this)); +} + +#define MAX_SS_VECTOR_SIZE 50 +unsigned EvaluationMetric::SufficientStatisticsVectorSize() const { + return MAX_SS_VECTOR_SIZE; +} + +void EvaluationMetric::ComputeSufficientStatistics(const vector<WordID>&, + const vector<vector<WordID> >&, + SufficientStats*) const { + cerr << "Base class ComputeSufficientStatistics should not be called.\n"; + abort(); +} + +string EvaluationMetric::DetailedScore(const SufficientStats& stats) const { + ostringstream os; + os << MetricId() << "=" << ComputeScore(stats); + return os.str(); +} + +enum BleuType { IBM, Koehn, NIST }; +template <unsigned int N = 4u, BleuType BrevityType = IBM> +struct BleuSegmentEvaluator : public SegmentEvaluator { + BleuSegmentEvaluator(const vector<vector<WordID> >& refs, const EvaluationMetric* em) : evaluation_metric(em) { + assert(refs.size() > 0); + float tot = 0; + int smallest = 9999999; + for (vector<vector<WordID> >::const_iterator ci = refs.begin(); + ci != refs.end(); ++ci) { + lengths_.push_back(ci->size()); + tot += lengths_.back(); + if (lengths_.back() < smallest) smallest = lengths_.back(); + CountRef(*ci); + } + if (BrevityType == Koehn) + lengths_[0] = tot / refs.size(); + if (BrevityType == NIST) + lengths_[0] = smallest; + } + + void Evaluate(const vector<WordID>& hyp, SufficientStats* out) const { + out->fields.resize(N + N + 2); + out->id_ = evaluation_metric->MetricId(); + for (unsigned i = 0; i < N+N+2; ++i) out->fields[i] = 0; + + ComputeNgramStats(hyp, &out->fields[0], &out->fields[N], true); + float& hyp_len = out->fields[2*N]; + float& ref_len = out->fields[2*N + 1]; + hyp_len = hyp.size(); + ref_len = lengths_[0]; + if (lengths_.size() > 1 && BrevityType == IBM) { + float bestd = 2000000; + float hl = hyp.size(); + float bl = -1; + for (vector<float>::const_iterator ci = lengths_.begin(); ci != lengths_.end(); ++ci) { + if (fabs(*ci - hl) < bestd) { + bestd = fabs(*ci - hl); + bl = *ci; + } + } + ref_len = bl; + } + } + + struct NGramCompare { + int operator() (const vector<WordID>& a, const vector<WordID>& b) { + const size_t as = a.size(); + const size_t bs = b.size(); + const size_t s = (as < bs ? as : bs); + for (size_t i = 0; i < s; ++i) { + int d = a[i] - b[i]; + if (d < 0) return true; + if (d > 0) return false; + } + return as < bs; + } + }; + typedef map<vector<WordID>, pair<int,int>, NGramCompare> NGramCountMap; + + void CountRef(const vector<WordID>& ref) { + NGramCountMap tc; + vector<WordID> ngram(N); + int s = ref.size(); + for (int j=0; j<s; ++j) { + int remaining = s-j; + int k = (N < remaining ? N : remaining); + ngram.clear(); + for (int i=1; i<=k; ++i) { + ngram.push_back(ref[j + i - 1]); + tc[ngram].first++; + } + } + for (typename NGramCountMap::iterator i = tc.begin(); i != tc.end(); ++i) { + pair<int,int>& p = ngrams_[i->first]; + if (p.first < i->second.first) + p = i->second; + } + } + + void ComputeNgramStats(const vector<WordID>& sent, + float* correct, // N elements reserved + float* hyp, // N elements reserved + bool clip_counts = true) const { + // clear clipping stats + for (typename NGramCountMap::iterator it = ngrams_.begin(); it != ngrams_.end(); ++it) + it->second.second = 0; + + vector<WordID> ngram(N); + *correct *= 0; + *hyp *= 0; + int s = sent.size(); + for (int j=0; j<s; ++j) { + int remaining = s-j; + int k = (N < remaining ? N : remaining); + ngram.clear(); + for (int i=1; i<=k; ++i) { + ngram.push_back(sent[j + i - 1]); + pair<int,int>& p = ngrams_[ngram]; + if(clip_counts){ + if (p.second < p.first) { + ++p.second; + correct[i-1]++; + } + } else { + ++p.second; + correct[i-1]++; + } + // if the 1 gram isn't found, don't try to match don't need to match any 2- 3- .. grams: + if (!p.first) { + for (; i<=k; ++i) + hyp[i-1]++; + } else { + hyp[i-1]++; + } + } + } + } + + const EvaluationMetric* evaluation_metric; + vector<float> lengths_; + mutable NGramCountMap ngrams_; +}; + +template <unsigned int N = 4u, BleuType BrevityType = IBM> +struct BleuMetric : public EvaluationMetric { + BleuMetric() : EvaluationMetric(BrevityType == IBM ? "IBM_BLEU" : (BrevityType == Koehn ? "KOEHN_BLEU" : "NIST_BLEU")) {} + unsigned SufficientStatisticsVectorSize() const { return N*2 + 2; } + shared_ptr<SegmentEvaluator> CreateSegmentEvaluator(const vector<vector<WordID> >& refs) const { + return shared_ptr<SegmentEvaluator>(new BleuSegmentEvaluator<N,BrevityType>(refs, this)); + } + float ComputeBreakdown(const SufficientStats& stats, float* bp, vector<float>* out) const { + if (out) { out->clear(); } + float log_bleu = 0; + int count = 0; + for (int i = 0; i < N; ++i) { + if (stats.fields[i+N] > 0) { + float cor_count = stats.fields[i]; // correct_ngram_hit_counts[i]; + // smooth bleu + if (!cor_count) { cor_count = 0.01; } + float lprec = log(cor_count) - log(stats.fields[i+N]); // log(hyp_ngram_counts[i]); + if (out) out->push_back(exp(lprec)); + log_bleu += lprec; + ++count; + } + } + log_bleu /= count; + float lbp = 0.0; + const float& hyp_len = stats.fields[2*N]; + const float& ref_len = stats.fields[2*N + 1]; + if (hyp_len < ref_len) + lbp = (hyp_len - ref_len) / hyp_len; + log_bleu += lbp; + if (bp) *bp = exp(lbp); + return exp(log_bleu); + } + string DetailedScore(const SufficientStats& stats) const { + char buf[2000]; + vector<float> precs(N); + float bp; + float bleu = ComputeBreakdown(stats, &bp, &precs); + sprintf(buf, "%s = %.2f, %.1f|%.1f|%.1f|%.1f (brev=%.3f)", + MetricId().c_str(), + bleu*100.0, + precs[0]*100.0, + precs[1]*100.0, + precs[2]*100.0, + precs[3]*100.0, + bp); + return buf; + } + float ComputeScore(const SufficientStats& stats) const { + return ComputeBreakdown(stats, NULL, NULL); + } +}; + +EvaluationMetric* EvaluationMetric::Instance(const string& imetric_id) { + static bool is_first = true; + if (is_first) { + instances_["NULL"] = NULL; + is_first = false; + } + const string metric_id = UppercaseString(imetric_id); + + map<string, EvaluationMetric*>::iterator it = instances_.find(metric_id); + if (it == instances_.end()) { + EvaluationMetric* m = NULL; + if (metric_id == "IBM_BLEU") { + m = new BleuMetric<4, IBM>; + } else if (metric_id == "NIST_BLEU") { + m = new BleuMetric<4, NIST>; + } else if (metric_id == "KOEHN_BLEU") { + m = new BleuMetric<4, Koehn>; + } else if (metric_id == "TER") { + m = new TERMetric; + } else if (metric_id == "METEOR") { + m = new ExternalMetric("METEOR", "java -Xmx1536m -jar /Users/cdyer/software/meteor/meteor-1.3.jar - - -mira -lower -t tune -l en"); + } else if (metric_id.find("COMB:") == 0) { + m = new CombinationMetric(metric_id); + } else { + cerr << "Implement please: " << metric_id << endl; + abort(); + } + if (m->MetricId() != metric_id) { + cerr << "Registry error: " << metric_id << " vs. " << m->MetricId() << endl; + abort(); + } + return instances_[metric_id] = m; + } else { + return it->second; + } +} + +SufficientStats::SufficientStats(const string& encoded) { + istringstream is(encoded); + is >> id_; + float val; + while(is >> val) + fields.push_back(val); +} + +void SufficientStats::Encode(string* out) const { + ostringstream os; + if (id_.size() > 0) + os << id_; + else + os << "NULL"; + for (unsigned i = 0; i < fields.size(); ++i) + os << ' ' << fields[i]; + *out = os.str(); +} + diff --git a/mteval/ns.h b/mteval/ns.h new file mode 100644 index 00000000..4e4c6975 --- /dev/null +++ b/mteval/ns.h @@ -0,0 +1,115 @@ +#ifndef _NS_H_ +#define _NS_H_ + +#include <string> +#include <vector> +#include <map> +#include <boost/shared_ptr.hpp> +#include "wordid.h" +#include <iostream> + +class SufficientStats { + public: + SufficientStats() : id_() {} + explicit SufficientStats(const std::string& encoded); + SufficientStats(const std::string& mid, const std::vector<float>& f) : + id_(mid), fields(f) {} + + SufficientStats& operator+=(const SufficientStats& delta) { + if (id_.empty() && delta.id_.size()) id_ = delta.id_; + if (fields.size() != delta.fields.size()) + fields.resize(std::max(fields.size(), delta.fields.size())); + for (unsigned i = 0; i < delta.fields.size(); ++i) + fields[i] += delta.fields[i]; + return *this; + } + SufficientStats& operator-=(const SufficientStats& delta) { + if (id_.empty() && delta.id_.size()) id_ = delta.id_; + if (fields.size() != delta.fields.size()) + fields.resize(std::max(fields.size(), delta.fields.size())); + for (unsigned i = 0; i < delta.fields.size(); ++i) + fields[i] -= delta.fields[i]; + return *this; + } + SufficientStats& operator*=(const double& scalar) { + for (unsigned i = 0; i < fields.size(); ++i) + fields[i] *= scalar; + return *this; + } + SufficientStats& operator/=(const double& scalar) { + for (unsigned i = 0; i < fields.size(); ++i) + fields[i] /= scalar; + return *this; + } + bool operator==(const SufficientStats& other) const { + return other.fields == fields; + } + bool IsAdditiveIdentity() const { + for (unsigned i = 0; i < fields.size(); ++i) + if (fields[i]) return false; + return true; + } + size_t size() const { return fields.size(); } + float operator[](size_t i) const { + if (i < fields.size()) return fields[i]; + return 0; + } + void Encode(std::string* out) const; + + std::string id_; + std::vector<float> fields; +}; + +inline const SufficientStats operator+(const SufficientStats& a, const SufficientStats& b) { + SufficientStats res(a); + return res += b; +} + +inline const SufficientStats operator-(const SufficientStats& a, const SufficientStats& b) { + SufficientStats res(a); + return res -= b; +} + +struct SegmentEvaluator { + virtual ~SegmentEvaluator(); + virtual void Evaluate(const std::vector<WordID>& hyp, SufficientStats* out) const = 0; +}; + +// Instructions for implementing a new metric +// To Instance(), add something that creates the metric +// Implement ComputeScore(const SufficientStats& stats) const; +// Implement ONE of the following: +// 1) void ComputeSufficientStatistics(const std::vector<std::vector<WordID> >& refs, SufficientStats* out) const; +// 2) a new SegmentEvaluator class AND CreateSegmentEvaluator(const std::vector<std::vector<WordID> >& refs) const; +// [The later (#2) is only used when it is necessary to precompute per-segment data from a set of refs] +// OPTIONAL: Override SufficientStatisticsVectorSize() if it is easy to do so +class EvaluationMetric { + public: + static EvaluationMetric* Instance(const std::string& metric_id = "IBM_BLEU"); + + protected: + EvaluationMetric(const std::string& id) : name_(id) {} + virtual ~EvaluationMetric(); + + public: + const std::string& MetricId() const { return name_; } + + // returns true for metrics like WER and TER where lower scores are better + // false for metrics like BLEU and METEOR where higher scores are better + virtual bool IsErrorMetric() const; + + virtual unsigned SufficientStatisticsVectorSize() const; + virtual float ComputeScore(const SufficientStats& stats) const = 0; + virtual std::string DetailedScore(const SufficientStats& stats) const; + virtual boost::shared_ptr<SegmentEvaluator> CreateSegmentEvaluator(const std::vector<std::vector<WordID> >& refs) const; + virtual void ComputeSufficientStatistics(const std::vector<WordID>& hyp, + const std::vector<std::vector<WordID> >& refs, + SufficientStats* out) const; + + private: + static std::map<std::string, EvaluationMetric*> instances_; + const std::string name_; +}; + +#endif + diff --git a/mteval/ns_comb.cc b/mteval/ns_comb.cc new file mode 100644 index 00000000..41c634cd --- /dev/null +++ b/mteval/ns_comb.cc @@ -0,0 +1,87 @@ +#include "ns_comb.h" + +#include <iostream> + +#include "stringlib.h" + +using namespace std; + +// e.g. COMB:IBM_BLEU=0.5;TER=0.5 +CombinationMetric::CombinationMetric(const std::string& cmd) : + EvaluationMetric(cmd), + total_size() { + if (cmd.find("COMB:") != 0 || cmd.size() < 9) { + cerr << "Error in combination metric specifier: " << cmd << endl; + exit(1); + } + string mix = cmd.substr(5); + vector<string> comps; + Tokenize(cmd.substr(5), ';', &comps); + if(comps.size() < 2) { + cerr << "Error in combination metric specifier: " << cmd << endl; + exit(1); + } + vector<string> cwpairs; + for (unsigned i = 0; i < comps.size(); ++i) { + Tokenize(comps[i], '=', &cwpairs); + if (cwpairs.size() != 2) { cerr << "Error in combination metric specifier: " << cmd << endl; exit(1); } + metrics.push_back(EvaluationMetric::Instance(cwpairs[0])); + coeffs.push_back(atof(cwpairs[1].c_str())); + offsets.push_back(total_size); + total_size += metrics.back()->SufficientStatisticsVectorSize(); + cerr << (i > 0 ? " + " : "( ") << coeffs.back() << " * " << cwpairs[0]; + } + cerr << " )\n"; +} + +struct CombinationSegmentEvaluator : public SegmentEvaluator { + CombinationSegmentEvaluator(const string& id, + const vector<vector<WordID> >& refs, + const vector<EvaluationMetric*>& metrics, + const vector<unsigned>& offsets, + const unsigned ts) : id_(id), offsets_(offsets), total_size_(ts), component_evaluators_(metrics.size()) { + for (unsigned i = 0; i < metrics.size(); ++i) + component_evaluators_[i] = metrics[i]->CreateSegmentEvaluator(refs); + } + virtual void Evaluate(const std::vector<WordID>& hyp, SufficientStats* out) const { + out->id_ = id_; + out->fields.resize(total_size_); + for (unsigned i = 0; i < component_evaluators_.size(); ++i) { + SufficientStats t; + component_evaluators_[i]->Evaluate(hyp, &t); + for (unsigned j = 0; j < t.fields.size(); ++j) { + unsigned op = j + offsets_[i]; + assert(op < out->fields.size()); + out->fields[op] = t[j]; + } + } + } + const string& id_; + const vector<unsigned>& offsets_; + const unsigned total_size_; + vector<boost::shared_ptr<SegmentEvaluator> > component_evaluators_; +}; + +boost::shared_ptr<SegmentEvaluator> CombinationMetric::CreateSegmentEvaluator(const std::vector<std::vector<WordID> >& refs) const { + boost::shared_ptr<SegmentEvaluator> res; + res.reset(new CombinationSegmentEvaluator(MetricId(), refs, metrics, offsets, total_size)); + return res; +} + +float CombinationMetric::ComputeScore(const SufficientStats& stats) const { + float tot = 0; + for (unsigned i = 0; i < metrics.size(); ++i) { + SufficientStats t; + unsigned next = total_size; + if (i + 1 < offsets.size()) next = offsets[i+1]; + for (unsigned j = offsets[i]; j < next; ++j) + t.fields.push_back(stats[j]); + tot += metrics[i]->ComputeScore(t) * coeffs[i]; + } + return tot; +} + +unsigned CombinationMetric::SufficientStatisticsVectorSize() const { + return total_size; +} + diff --git a/mteval/ns_comb.h b/mteval/ns_comb.h new file mode 100644 index 00000000..140e7e6a --- /dev/null +++ b/mteval/ns_comb.h @@ -0,0 +1,19 @@ +#ifndef _NS_COMB_H_ +#define _NS_COMB_H_ + +#include "ns.h" + +class CombinationMetric : public EvaluationMetric { + public: + CombinationMetric(const std::string& cmd); + virtual boost::shared_ptr<SegmentEvaluator> CreateSegmentEvaluator(const std::vector<std::vector<WordID> >& refs) const; + virtual float ComputeScore(const SufficientStats& stats) const; + virtual unsigned SufficientStatisticsVectorSize() const; + private: + std::vector<EvaluationMetric*> metrics; + std::vector<float> coeffs; + std::vector<unsigned> offsets; + unsigned total_size; +}; + +#endif diff --git a/mteval/ns_docscorer.cc b/mteval/ns_docscorer.cc new file mode 100644 index 00000000..28a2fd09 --- /dev/null +++ b/mteval/ns_docscorer.cc @@ -0,0 +1,60 @@ +#include "ns_docscorer.h" + +#include <iostream> +#include <cstring> + +#include "tdict.h" +#include "filelib.h" +#include "ns.h" + +using namespace std; + +DocumentScorer::~DocumentScorer() {} + +void DocumentScorer::Init(const EvaluationMetric* metric, + const vector<string>& ref_files, + const string& src_file, + bool verbose) { + scorers_.clear(); + cerr << "Loading references (" << ref_files.size() << " files)\n"; + assert(src_file.empty()); + std::vector<ReadFile> ifs(ref_files.begin(),ref_files.end()); + for (int i=0; i < ref_files.size(); ++i) ifs[i].Init(ref_files[i]); + char buf[64000]; + bool expect_eof = false; + int line=0; + while (ifs[0].get()) { + vector<vector<WordID> > refs(ref_files.size()); + for (int i=0; i < ref_files.size(); ++i) { + istream &in=ifs[i].get(); + if (in.eof()) break; + in.getline(buf, 64000); + refs[i].clear(); + if (strlen(buf) == 0) { + if (in.eof()) { + if (!expect_eof) { + assert(i == 0); + expect_eof = true; + } + break; + } + } else { + TD::ConvertSentence(buf, &refs[i]); + assert(!refs[i].empty()); + } + assert(!expect_eof); + } + if (!expect_eof) { + string src_line; + //if (srcrf) { + // getline(srcrf.get(), src_line); + // map<string,string> dummy; + // ProcessAndStripSGML(&src_line, &dummy); + //} + scorers_.push_back(metric->CreateSegmentEvaluator(refs)); + ++line; + } + } + cerr << "Loaded reference translations for " << scorers_.size() << " sentences.\n"; +} + diff --git a/mteval/ns_docscorer.h b/mteval/ns_docscorer.h new file mode 100644 index 00000000..170ac627 --- /dev/null +++ b/mteval/ns_docscorer.h @@ -0,0 +1,31 @@ +#ifndef _NS_DOC_SCORER_H_ +#define _NS_DOC_SCORER_H_ + +#include <vector> +#include <string> +#include <boost/shared_ptr.hpp> + +struct EvaluationMetric; +struct SegmentEvaluator; +class DocumentScorer { + public: + ~DocumentScorer(); + DocumentScorer() { } + DocumentScorer(const EvaluationMetric* metric, + const std::vector<std::string>& ref_files, + const std::string& src_file = "", + bool verbose=false) { + Init(metric,ref_files,src_file,verbose); + } + void Init(const EvaluationMetric* metric, + const std::vector<std::string>& ref_files, + const std::string& src_file = "", + bool verbose=false); + + int size() const { return scorers_.size(); } + const SegmentEvaluator* operator[](size_t i) const { return scorers_[i].get(); } + private: + std::vector<boost::shared_ptr<SegmentEvaluator> > scorers_; +}; + +#endif diff --git a/mteval/ns_ext.cc b/mteval/ns_ext.cc new file mode 100644 index 00000000..956708af --- /dev/null +++ b/mteval/ns_ext.cc @@ -0,0 +1,130 @@ +#include "ns_ext.h" + +#include <cstdio> // popen +#include <cstdlib> +#include <cstring> +#include <unistd.h> +#include <sstream> +#include <iostream> +#include <cassert> + +#include "stringlib.h" +#include "tdict.h" + +using namespace std; + +struct NScoreServer { + NScoreServer(const std::string& cmd); + ~NScoreServer(); + + float ComputeScore(const std::vector<float>& fields); + void Evaluate(const std::vector<std::vector<WordID> >& refs, const std::vector<WordID>& hyp, std::vector<float>* fields); + + private: + void RequestResponse(const std::string& request, std::string* response); + int p2c[2]; + int c2p[2]; +}; + +NScoreServer::NScoreServer(const string& cmd) { + cerr << "Invoking " << cmd << " ..." << endl; + if (pipe(p2c) < 0) { perror("pipe"); exit(1); } + if (pipe(c2p) < 0) { perror("pipe"); exit(1); } + pid_t cpid = fork(); + if (cpid < 0) { perror("fork"); exit(1); } + if (cpid == 0) { // child + close(p2c[1]); + close(c2p[0]); + dup2(p2c[0], 0); + close(p2c[0]); + dup2(c2p[1], 1); + close(c2p[1]); + cerr << "Exec'ing from child " << cmd << endl; + vector<string> vargs; + SplitOnWhitespace(cmd, &vargs); + const char** cargv = static_cast<const char**>(malloc(sizeof(const char*) * vargs.size())); + for (unsigned i = 1; i < vargs.size(); ++i) cargv[i-1] = vargs[i].c_str(); + cargv[vargs.size() - 1] = NULL; + execvp(vargs[0].c_str(), (char* const*)cargv); + } else { // parent + close(c2p[1]); + close(p2c[0]); + } + string dummy; + RequestResponse("SCORE ||| Reference initialization string . ||| Testing initialization string .", &dummy); + assert(dummy.size() > 0); + cerr << "Connection established.\n"; +} + +NScoreServer::~NScoreServer() { + // TODO close stuff, join stuff +} + +float NScoreServer::ComputeScore(const vector<float>& fields) { + ostringstream os; + os << "EVAL |||"; + for (unsigned i = 0; i < fields.size(); ++i) + os << ' ' << fields[i]; + string sres; + RequestResponse(os.str(), &sres); + return strtod(sres.c_str(), NULL); +} + +void NScoreServer::Evaluate(const vector<vector<WordID> >& refs, const vector<WordID>& hyp, vector<float>* fields) { + ostringstream os; + os << "SCORE"; + for (unsigned i = 0; i < refs.size(); ++i) { + os << " |||"; + for (unsigned j = 0; j < refs[i].size(); ++j) { + os << ' ' << TD::Convert(refs[i][j]); + } + } + os << " |||"; + for (unsigned i = 0; i < hyp.size(); ++i) { + os << ' ' << TD::Convert(hyp[i]); + } + string sres; + RequestResponse(os.str(), &sres); + istringstream is(sres); + float val; + fields->clear(); + while(is >> val) + fields->push_back(val); +} + +#define MAX_BUF 16000 + +void NScoreServer::RequestResponse(const string& request, string* response) { +// cerr << "@SERVER: " << request << endl; + string x = request + "\n"; + write(p2c[1], x.c_str(), x.size()); + char buf[MAX_BUF]; + size_t n = read(c2p[0], buf, MAX_BUF); + while (n < MAX_BUF && buf[n-1] != '\n') + n += read(c2p[0], &buf[n], MAX_BUF - n); + + buf[n-1] = 0; + if (n < 2) { + cerr << "Malformed response: " << buf << endl; + } + *response = Trim(buf, " \t\n"); +// cerr << "@RESPONSE: '" << *response << "'\n"; +} + +void ExternalMetric::ComputeSufficientStatistics(const std::vector<WordID>& hyp, + const std::vector<std::vector<WordID> >& refs, + SufficientStats* out) const { + eval_server->Evaluate(refs, hyp, &out->fields); +} + +float ExternalMetric::ComputeScore(const SufficientStats& stats) const { + eval_server->ComputeScore(stats.fields); +} + +ExternalMetric::ExternalMetric(const string& metric_name, const std::string& command) : + EvaluationMetric(metric_name), + eval_server(new NScoreServer(command)) {} + +ExternalMetric::~ExternalMetric() { + delete eval_server; +} diff --git a/mteval/ns_ext.h b/mteval/ns_ext.h new file mode 100644 index 00000000..78badb2e --- /dev/null +++ b/mteval/ns_ext.h @@ -0,0 +1,21 @@ +#ifndef _NS_EXTERNAL_SCORER_H_ +#define _NS_EXTERNAL_SCORER_H_ + +#include "ns.h" + +struct NScoreServer; +class ExternalMetric : public EvaluationMetric { + public: + ExternalMetric(const std::string& metricid, const std::string& command); + ~ExternalMetric(); + + virtual void ComputeSufficientStatistics(const std::vector<WordID>& hyp, + const std::vector<std::vector<WordID> >& refs, + SufficientStats* out) const; + virtual float ComputeScore(const SufficientStats& stats) const; + + protected: + NScoreServer* eval_server; +}; + +#endif diff --git a/mteval/ns_ter.cc b/mteval/ns_ter.cc new file mode 100644 index 00000000..0e1008db --- /dev/null +++ b/mteval/ns_ter.cc @@ -0,0 +1,492 @@ +#include "ns_ter.h" + +#include <cstdio> +#include <cassert> +#include <iostream> +#include <limits> +#include <tr1/unordered_map> +#include <set> +#include <boost/functional/hash.hpp> +#include "tdict.h" + +static const bool ter_use_average_ref_len = true; +static const int ter_short_circuit_long_sentences = -1; + +static const unsigned kINSERTIONS = 0; +static const unsigned kDELETIONS = 1; +static const unsigned kSUBSTITUTIONS = 2; +static const unsigned kSHIFTS = 3; +static const unsigned kREF_WORDCOUNT = 4; +static const unsigned kDUMMY_LAST_ENTRY = 5; + +using namespace std; +using namespace std::tr1; + +bool TERMetric::IsErrorMetric() const { + return true; +} + +namespace NewScorer { + +struct COSTS { + static const float substitution; + static const float deletion; + static const float insertion; + static const float shift; +}; +const float COSTS::substitution = 1.0f; +const float COSTS::deletion = 1.0f; +const float COSTS::insertion = 1.0f; +const float COSTS::shift = 1.0f; + +static const int MAX_SHIFT_SIZE = 10; +static const int MAX_SHIFT_DIST = 50; + +struct Shift { + unsigned int d_; + Shift() : d_() {} + Shift(int b, int e, int m) : d_() { + begin(b); + end(e); + moveto(m); + } + inline int begin() const { + return d_ & 0x3ff; + } + inline int end() const { + return (d_ >> 10) & 0x3ff; + } + inline int moveto() const { + int m = (d_ >> 20) & 0x7ff; + if (m > 1024) { m -= 1024; m *= -1; } + return m; + } + inline void begin(int b) { + d_ &= 0xfffffc00u; + d_ |= (b & 0x3ff); + } + inline void end(int e) { + d_ &= 0xfff003ffu; + d_ |= (e & 0x3ff) << 10; + } + inline void moveto(int m) { + bool neg = (m < 0); + if (neg) { m *= -1; m += 1024; } + d_ &= 0xfffff; + d_ |= (m & 0x7ff) << 20; + } +}; + +class TERScorerImpl { + + public: + enum TransType { MATCH, SUBSTITUTION, INSERTION, DELETION }; + + explicit TERScorerImpl(const vector<WordID>& ref) : ref_(ref) { + for (unsigned i = 0; i < ref.size(); ++i) + rwexists_.insert(ref[i]); + } + + float Calculate(const vector<WordID>& hyp, int* subs, int* ins, int* dels, int* shifts) const { + return CalculateAllShifts(hyp, subs, ins, dels, shifts); + } + + inline int GetRefLength() const { + return ref_.size(); + } + + private: + const vector<WordID>& ref_; + set<WordID> rwexists_; + + typedef unordered_map<vector<WordID>, set<int>, boost::hash<vector<WordID> > > NgramToIntsMap; + mutable NgramToIntsMap nmap_; + + static float MinimumEditDistance( + const vector<WordID>& hyp, + const vector<WordID>& ref, + vector<TransType>* path) { + vector<vector<TransType> > bmat(hyp.size() + 1, vector<TransType>(ref.size() + 1, MATCH)); + vector<vector<float> > cmat(hyp.size() + 1, vector<float>(ref.size() + 1, 0)); + for (int i = 0; i <= hyp.size(); ++i) + cmat[i][0] = i; + for (int j = 0; j <= ref.size(); ++j) + cmat[0][j] = j; + for (int i = 1; i <= hyp.size(); ++i) { + const WordID& hw = hyp[i-1]; + for (int j = 1; j <= ref.size(); ++j) { + const WordID& rw = ref[j-1]; + float& cur_c = cmat[i][j]; + TransType& cur_b = bmat[i][j]; + + if (rw == hw) { + cur_c = cmat[i-1][j-1]; + cur_b = MATCH; + } else { + cur_c = cmat[i-1][j-1] + COSTS::substitution; + cur_b = SUBSTITUTION; + } + float cwoi = cmat[i-1][j]; + if (cur_c > cwoi + COSTS::insertion) { + cur_c = cwoi + COSTS::insertion; + cur_b = INSERTION; + } + float cwod = cmat[i][j-1]; + if (cur_c > cwod + COSTS::deletion) { + cur_c = cwod + COSTS::deletion; + cur_b = DELETION; + } + } + } + + // trace back along the best path and record the transition types + path->clear(); + int i = hyp.size(); + int j = ref.size(); + while (i > 0 || j > 0) { + if (j == 0) { + --i; + path->push_back(INSERTION); + } else if (i == 0) { + --j; + path->push_back(DELETION); + } else { + TransType t = bmat[i][j]; + path->push_back(t); + switch (t) { + case SUBSTITUTION: + case MATCH: + --i; --j; break; + case INSERTION: + --i; break; + case DELETION: + --j; break; + } + } + } + reverse(path->begin(), path->end()); + return cmat[hyp.size()][ref.size()]; + } + + void BuildWordMatches(const vector<WordID>& hyp, NgramToIntsMap* nmap) const { + nmap->clear(); + set<WordID> exists_both; + for (int i = 0; i < hyp.size(); ++i) + if (rwexists_.find(hyp[i]) != rwexists_.end()) + exists_both.insert(hyp[i]); + for (int start=0; start<ref_.size(); ++start) { + if (exists_both.find(ref_[start]) == exists_both.end()) continue; + vector<WordID> cp; + int mlen = min(MAX_SHIFT_SIZE, static_cast<int>(ref_.size() - start)); + for (int len=0; len<mlen; ++len) { + if (len && exists_both.find(ref_[start + len]) == exists_both.end()) break; + cp.push_back(ref_[start + len]); + (*nmap)[cp].insert(start); + } + } + } + + static void PerformShift(const vector<WordID>& in, + int start, int end, int moveto, vector<WordID>* out) { + // cerr << "ps: " << start << " " << end << " " << moveto << endl; + out->clear(); + if (moveto == -1) { + for (int i = start; i <= end; ++i) + out->push_back(in[i]); + for (int i = 0; i < start; ++i) + out->push_back(in[i]); + for (int i = end+1; i < in.size(); ++i) + out->push_back(in[i]); + } else if (moveto < start) { + for (int i = 0; i <= moveto; ++i) + out->push_back(in[i]); + for (int i = start; i <= end; ++i) + out->push_back(in[i]); + for (int i = moveto+1; i < start; ++i) + out->push_back(in[i]); + for (int i = end+1; i < in.size(); ++i) + out->push_back(in[i]); + } else if (moveto > end) { + for (int i = 0; i < start; ++i) + out->push_back(in[i]); + for (int i = end+1; i <= moveto; ++i) + out->push_back(in[i]); + for (int i = start; i <= end; ++i) + out->push_back(in[i]); + for (int i = moveto+1; i < in.size(); ++i) + out->push_back(in[i]); + } else { + for (int i = 0; i < start; ++i) + out->push_back(in[i]); + for (int i = end+1; (i < in.size()) && (i <= end + (moveto - start)); ++i) + out->push_back(in[i]); + for (int i = start; i <= end; ++i) + out->push_back(in[i]); + for (int i = (end + (moveto - start))+1; i < in.size(); ++i) + out->push_back(in[i]); + } + if (out->size() != in.size()) { + cerr << "ps: " << start << " " << end << " " << moveto << endl; + cerr << "in=" << TD::GetString(in) << endl; + cerr << "out=" << TD::GetString(*out) << endl; + } + assert(out->size() == in.size()); + // cerr << "ps: " << TD::GetString(*out) << endl; + } + + void GetAllPossibleShifts(const vector<WordID>& hyp, + const vector<int>& ralign, + const vector<bool>& herr, + const vector<bool>& rerr, + const int min_size, + vector<vector<Shift> >* shifts) const { + for (int start = 0; start < hyp.size(); ++start) { + vector<WordID> cp(1, hyp[start]); + NgramToIntsMap::iterator niter = nmap_.find(cp); + if (niter == nmap_.end()) continue; + bool ok = false; + int moveto; + for (set<int>::iterator i = niter->second.begin(); i != niter->second.end(); ++i) { + moveto = *i; + int rm = ralign[moveto]; + ok = (start != rm && + (rm - start) < MAX_SHIFT_DIST && + (start - rm - 1) < MAX_SHIFT_DIST); + if (ok) break; + } + if (!ok) continue; + cp.clear(); + for (int end = start + min_size - 1; + ok && end < hyp.size() && end < (start + MAX_SHIFT_SIZE); ++end) { + cp.push_back(hyp[end]); + vector<Shift>& sshifts = (*shifts)[end - start]; + ok = false; + NgramToIntsMap::iterator niter = nmap_.find(cp); + if (niter == nmap_.end()) break; + bool any_herr = false; + for (int i = start; i <= end && !any_herr; ++i) + any_herr = herr[i]; + if (!any_herr) { + ok = true; + continue; + } + for (set<int>::iterator mi = niter->second.begin(); + mi != niter->second.end(); ++mi) { + int moveto = *mi; + int rm = ralign[moveto]; + if (! ((rm != start) && + ((rm < start) || (rm > end)) && + (rm - start <= MAX_SHIFT_DIST) && + ((start - rm - 1) <= MAX_SHIFT_DIST))) continue; + ok = true; + bool any_rerr = false; + for (int i = 0; (i <= end - start) && (!any_rerr); ++i) + any_rerr = rerr[moveto+i]; + if (!any_rerr) continue; + for (int roff = 0; roff <= (end - start); ++roff) { + int rmr = ralign[moveto+roff]; + if ((start != rmr) && ((roff == 0) || (rmr != ralign[moveto]))) + sshifts.push_back(Shift(start, end, moveto + roff)); + } + } + } + } + } + + bool CalculateBestShift(const vector<WordID>& cur, + const vector<WordID>& hyp, + float curerr, + const vector<TransType>& path, + vector<WordID>* new_hyp, + float* newerr, + vector<TransType>* new_path) const { + vector<bool> herr, rerr; + vector<int> ralign; + int hpos = -1; + for (int i = 0; i < path.size(); ++i) { + switch (path[i]) { + case MATCH: + ++hpos; + herr.push_back(false); + rerr.push_back(false); + ralign.push_back(hpos); + break; + case SUBSTITUTION: + ++hpos; + herr.push_back(true); + rerr.push_back(true); + ralign.push_back(hpos); + break; + case INSERTION: + ++hpos; + herr.push_back(true); + break; + case DELETION: + rerr.push_back(true); + ralign.push_back(hpos); + break; + } + } +#if 0 + cerr << "RALIGN: "; + for (int i = 0; i < rerr.size(); ++i) + cerr << ralign[i] << " "; + cerr << endl; + cerr << "RERR: "; + for (int i = 0; i < rerr.size(); ++i) + cerr << (bool)rerr[i] << " "; + cerr << endl; + cerr << "HERR: "; + for (int i = 0; i < herr.size(); ++i) + cerr << (bool)herr[i] << " "; + cerr << endl; +#endif + + vector<vector<Shift> > shifts(MAX_SHIFT_SIZE + 1); + GetAllPossibleShifts(cur, ralign, herr, rerr, 1, &shifts); + float cur_best_shift_cost = 0; + *newerr = curerr; + vector<TransType> cur_best_path; + vector<WordID> cur_best_hyp; + + bool res = false; + for (int i = shifts.size() - 1; i >=0; --i) { + float curfix = curerr - (cur_best_shift_cost + *newerr); + float maxfix = 2.0f * (1 + i) - COSTS::shift; + if ((curfix > maxfix) || ((cur_best_shift_cost == 0) && (curfix == maxfix))) break; + for (int j = 0; j < shifts[i].size(); ++j) { + const Shift& s = shifts[i][j]; + curfix = curerr - (cur_best_shift_cost + *newerr); + maxfix = 2.0f * (1 + i) - COSTS::shift; // TODO remove? + if ((curfix > maxfix) || ((cur_best_shift_cost == 0) && (curfix == maxfix))) continue; + vector<WordID> shifted(cur.size()); + PerformShift(cur, s.begin(), s.end(), ralign[s.moveto()], &shifted); + vector<TransType> try_path; + float try_cost = MinimumEditDistance(shifted, ref_, &try_path); + float gain = (*newerr + cur_best_shift_cost) - (try_cost + COSTS::shift); + if (gain > 0.0f || ((cur_best_shift_cost == 0.0f) && (gain == 0.0f))) { + *newerr = try_cost; + cur_best_shift_cost = COSTS::shift; + new_path->swap(try_path); + new_hyp->swap(shifted); + res = true; + // cerr << "Found better shift " << s.begin() << "..." << s.end() << " moveto " << s.moveto() << endl; + } + } + } + + return res; + } + + static void GetPathStats(const vector<TransType>& path, int* subs, int* ins, int* dels) { + *subs = *ins = *dels = 0; + for (int i = 0; i < path.size(); ++i) { + switch (path[i]) { + case SUBSTITUTION: + ++(*subs); + case MATCH: + break; + case INSERTION: + ++(*ins); break; + case DELETION: + ++(*dels); break; + } + } + } + + float CalculateAllShifts(const vector<WordID>& hyp, + int* subs, int* ins, int* dels, int* shifts) const { + BuildWordMatches(hyp, &nmap_); + vector<TransType> path; + float med_cost = MinimumEditDistance(hyp, ref_, &path); + float edits = 0; + vector<WordID> cur = hyp; + *shifts = 0; + if (ter_short_circuit_long_sentences < 0 || + ref_.size() < ter_short_circuit_long_sentences) { + while (true) { + vector<WordID> new_hyp; + vector<TransType> new_path; + float new_med_cost; + if (!CalculateBestShift(cur, hyp, med_cost, path, &new_hyp, &new_med_cost, &new_path)) + break; + edits += COSTS::shift; + ++(*shifts); + med_cost = new_med_cost; + path.swap(new_path); + cur.swap(new_hyp); + } + } + GetPathStats(path, subs, ins, dels); + return med_cost + edits; + } +}; + +#if 0 +void TERScore::ScoreDetails(std::string* details) const { + char buf[200]; + sprintf(buf, "TER = %.2f, %3d|%3d|%3d|%3d (len=%d)", + ComputeScore() * 100.0f, + stats[kINSERTIONS], + stats[kDELETIONS], + stats[kSUBSTITUTIONS], + stats[kSHIFTS], + stats[kREF_WORDCOUNT]); + *details = buf; +} +#endif + +} // namespace NewScorer + +void TERMetric::ComputeSufficientStatistics(const vector<WordID>& hyp, + const vector<vector<WordID> >& refs, + SufficientStats* out) const { + out->fields.resize(kDUMMY_LAST_ENTRY); + float best_score = numeric_limits<float>::max(); + unsigned avg_len = 0; + for (int i = 0; i < refs.size(); ++i) + avg_len += refs[i].size(); + avg_len /= refs.size(); + + for (int i = 0; i < refs.size(); ++i) { + int subs, ins, dels, shifts; + NewScorer::TERScorerImpl ter(refs[i]); + float score = ter.Calculate(hyp, &subs, &ins, &dels, &shifts); + // cerr << "Component TER cost: " << score << endl; + if (score < best_score) { + out->fields[kINSERTIONS] = ins; + out->fields[kDELETIONS] = dels; + out->fields[kSUBSTITUTIONS] = subs; + out->fields[kSHIFTS] = shifts; + if (ter_use_average_ref_len) { + out->fields[kREF_WORDCOUNT] = avg_len; + } else { + out->fields[kREF_WORDCOUNT] = refs[i].size(); + } + + best_score = score; + } + } +} + +unsigned TERMetric::SufficientStatisticsVectorSize() const { + return kDUMMY_LAST_ENTRY; +} + +float TERMetric::ComputeScore(const SufficientStats& stats) const { + float edits = static_cast<float>(stats[kINSERTIONS] + stats[kDELETIONS] + stats[kSUBSTITUTIONS] + stats[kSHIFTS]); + return edits / static_cast<float>(stats[kREF_WORDCOUNT]); +} + +string TERMetric::DetailedScore(const SufficientStats& stats) const { + char buf[200]; + sprintf(buf, "TER = %.2f, %3.f|%3.f|%3.f|%3.f (len=%3.f)", + ComputeScore(stats) * 100.0f, + stats[kINSERTIONS], + stats[kDELETIONS], + stats[kSUBSTITUTIONS], + stats[kSHIFTS], + stats[kREF_WORDCOUNT]); + return buf; +} + diff --git a/mteval/ns_ter.h b/mteval/ns_ter.h new file mode 100644 index 00000000..c5c25413 --- /dev/null +++ b/mteval/ns_ter.h @@ -0,0 +1,21 @@ +#ifndef _NS_TER_H_ +#define _NS_TER_H_ + +#include "ns.h" + +class TERMetric : public EvaluationMetric { + friend class EvaluationMetric; + protected: + TERMetric() : EvaluationMetric("TER") {} + + public: + virtual bool IsErrorMetric() const; + virtual unsigned SufficientStatisticsVectorSize() const; + virtual std::string DetailedScore(const SufficientStats& stats) const; + virtual void ComputeSufficientStatistics(const std::vector<WordID>& hyp, + const std::vector<std::vector<WordID> >& refs, + SufficientStats* out) const; + virtual float ComputeScore(const SufficientStats& stats) const; +}; + +#endif diff --git a/mteval/scorer_test.cc b/mteval/scorer_test.cc index a07a8c4b..73159557 100644 --- a/mteval/scorer_test.cc +++ b/mteval/scorer_test.cc @@ -3,9 +3,11 @@ #include <valarray> #include <gtest/gtest.h> +#include "ns.h" #include "tdict.h" #include "scorer.h" #include "aer_scorer.h" +#include "kernel_string_subseq.h" using namespace std; @@ -175,6 +177,52 @@ TEST_F(ScorerTest, AERTest) { EXPECT_EQ(d2, details); } +TEST_F(ScorerTest, Kernel) { + for (int i = 1; i < 10; ++i) { + const float l = (i / 10.0); + float f = ssk<4>(refs0[0], hyp1, l) + + ssk<4>(refs0[1], hyp1, l) + + ssk<4>(refs0[2], hyp1, l) + + ssk<4>(refs0[3], hyp1, l); + float f2= ssk<4>(refs1[0], hyp2, l) + + ssk<4>(refs1[1], hyp2, l) + + ssk<4>(refs1[2], hyp2, l) + + ssk<4>(refs1[3], hyp2, l); + f /= 4; + f2 /= 4; + float f3= ssk<4>(refs0[0], hyp2, l) + + ssk<4>(refs0[1], hyp2, l) + + ssk<4>(refs0[2], hyp2, l) + + ssk<4>(refs0[3], hyp2, l); + float f4= ssk<4>(refs1[0], hyp1, l) + + ssk<4>(refs1[1], hyp1, l) + + ssk<4>(refs1[2], hyp1, l) + + ssk<4>(refs1[3], hyp1, l); + f3 += f4; + f3 /= 8; + cerr << "LAMBDA=" << l << "\t" << f << " " << f2 << "\tf=" << ((f + f2)/2 - f3) << " (bad=" << f3 << ")" << endl; + } +} + +TEST_F(ScorerTest, NewScoreAPI) { + //EvaluationMetric* metric = EvaluationMetric::Instance("IBM_BLEU"); + //EvaluationMetric* metric = EvaluationMetric::Instance("METEOR"); + EvaluationMetric* metric = EvaluationMetric::Instance("COMB:IBM_BLEU=0.5;TER=-0.5"); + boost::shared_ptr<SegmentEvaluator> e1 = metric->CreateSegmentEvaluator(refs0); + boost::shared_ptr<SegmentEvaluator> e2 = metric->CreateSegmentEvaluator(refs1); + SufficientStats stats1; + e1->Evaluate(hyp1, &stats1); + SufficientStats stats2; + e2->Evaluate(hyp2, &stats2); + stats1 += stats2; + string ss; + stats1.Encode(&ss); + cerr << "SS: " << ss << endl; + cerr << metric->ComputeScore(stats1) << endl; + //SufficientStats statse("IBM_BLEU 53 32 18 11 65 63 61 59 65 72"); + //cerr << metric->ComputeScore(statse) << endl; +} + int main(int argc, char **argv) { testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); |