diff options
author | Wu, Ke <wuke@cs.umd.edu> | 2014-12-17 16:11:38 -0500 |
---|---|---|
committer | Wu, Ke <wuke@cs.umd.edu> | 2014-12-17 16:11:38 -0500 |
commit | 7468e8d85e99b4619442c7afaf4a0d92870111bb (patch) | |
tree | a6f17da7c69048c8900260b5490bb9d8611be3bb /klm/lm/interpolate | |
parent | b6dd5a683db9dda2d634dd2fdb76606819594901 (diff) | |
parent | 1a79175f9a101d46cf27ca921213d5dd9300518f (diff) |
Merge with upstream
Diffstat (limited to 'klm/lm/interpolate')
-rw-r--r-- | klm/lm/interpolate/arpa_to_stream.cc | 47 | ||||
-rw-r--r-- | klm/lm/interpolate/arpa_to_stream.hh | 38 | ||||
-rw-r--r-- | klm/lm/interpolate/example_sort_main.cc | 144 |
3 files changed, 229 insertions, 0 deletions
diff --git a/klm/lm/interpolate/arpa_to_stream.cc b/klm/lm/interpolate/arpa_to_stream.cc new file mode 100644 index 00000000..f2696f39 --- /dev/null +++ b/klm/lm/interpolate/arpa_to_stream.cc @@ -0,0 +1,47 @@ +#include "lm/interpolate/arpa_to_stream.hh" + +// TODO: should this move out of builder? +#include "lm/builder/ngram_stream.hh" +#include "lm/read_arpa.hh" +#include "lm/vocab.hh" + +namespace lm { namespace interpolate { + +ARPAToStream::ARPAToStream(int fd, ngram::GrowableVocab<ngram::WriteUniqueWords> &vocab) + : in_(fd), vocab_(vocab) { + + // Read the ARPA file header. + // + // After the following call, counts_ will be correctly initialized, + // and in_ will be positioned for reading the body of the ARPA file. + ReadARPACounts(in_, counts_); + +} + +void ARPAToStream::Run(const util::stream::ChainPositions &positions) { + // Make one stream for each order. + builder::NGramStreams streams(positions); + PositiveProbWarn warn; + + // Unigrams are handled specially because they're being inserted into the vocab. + ReadNGramHeader(in_, 1); + for (uint64_t i = 0; i < counts_[0]; ++i, ++streams[0]) { + streams[0]->begin()[0] = vocab_.FindOrInsert(Read1Gram(in_, streams[0]->Value().complete, warn)); + } + // Finish off the unigram stream. + streams[0].Poison(); + + // TODO: don't waste backoff field for highest order. + for (unsigned char n = 2; n <= counts_.size(); ++n) { + ReadNGramHeader(in_, n); + builder::NGramStream &stream = streams[n - 1]; + const uint64_t end = counts_[n - 1]; + for (std::size_t i = 0; i < end; ++i, ++stream) { + ReadNGram(in_, n, vocab_, stream->begin(), stream->Value().complete, warn); + } + // Finish the stream for n-grams.. + stream.Poison(); + } +} + +}} // namespaces diff --git a/klm/lm/interpolate/arpa_to_stream.hh b/klm/lm/interpolate/arpa_to_stream.hh new file mode 100644 index 00000000..4613998d --- /dev/null +++ b/klm/lm/interpolate/arpa_to_stream.hh @@ -0,0 +1,38 @@ +#include "lm/read_arpa.hh" +#include "util/file_piece.hh" + +#include <vector> + +#include <stdint.h> + +namespace util { namespace stream { class ChainPositions; } } + +namespace lm { + +namespace ngram { +template <class T> class GrowableVocab; +class WriteUniqueWords; +} // namespace ngram + +namespace interpolate { + +class ARPAToStream { + public: + // Takes ownership of fd. + explicit ARPAToStream(int fd, ngram::GrowableVocab<ngram::WriteUniqueWords> &vocab); + + std::size_t Order() const { return counts_.size(); } + + const std::vector<uint64_t> &Counts() const { return counts_; } + + void Run(const util::stream::ChainPositions &positions); + + private: + util::FilePiece in_; + + std::vector<uint64_t> counts_; + + ngram::GrowableVocab<ngram::WriteUniqueWords> &vocab_; +}; + +}} // namespaces diff --git a/klm/lm/interpolate/example_sort_main.cc b/klm/lm/interpolate/example_sort_main.cc new file mode 100644 index 00000000..4282255e --- /dev/null +++ b/klm/lm/interpolate/example_sort_main.cc @@ -0,0 +1,144 @@ +#include "lm/interpolate/arpa_to_stream.hh" + +#include "lm/builder/print.hh" +#include "lm/builder/sort.hh" +#include "lm/vocab.hh" +#include "util/file.hh" +#include "util/unistd.hh" + + +int main() { + + // TODO: Make these all command-line parameters + const std::size_t ONE_GB = 1 << 30; + const std::size_t SIXTY_FOUR_MB = 1 << 26; + const std::size_t NUMBER_OF_BLOCKS = 2; + + // Vocab strings will be written to this file, forgotten, and reconstituted + // later. This saves memory. + util::scoped_fd vocab_file(util::MakeTemp("/tmp/")); + std::vector<uint64_t> counts; + util::stream::Chains chains; + { + // Use consistent vocab ids across models. + lm::ngram::GrowableVocab<lm::ngram::WriteUniqueWords> vocab(10, vocab_file.get()); + lm::interpolate::ARPAToStream reader(STDIN_FILENO, vocab); + counts = reader.Counts(); + + // Configure a chain for each order. TODO: extract chain balance heuristics from lm/builder/pipeline.cc + chains.Init(reader.Order()); + + for (std::size_t i = 0; i < reader.Order(); ++i) { + + // The following call to chains.push_back() invokes the Chain constructor + // and appends the newly created Chain object to the chains array + chains.push_back(util::stream::ChainConfig(lm::builder::NGram::TotalSize(i + 1), NUMBER_OF_BLOCKS, ONE_GB)); + + } + + // The following call to the >> method of chains + // constructs a ChainPosition for each chain in chains using Chain::Add(); + // that function begins with a call to Chain::Start() + // that allocates memory for the chain. + // + // After the following call to the >> method of chains, + // a new thread will be running + // and will be executing the reader.Run() method + // to read through the body of the ARPA file from standard input. + // + // For each n-gram line in the ARPA file, + // the thread executing reader.Run() + // will write the probability, the n-gram, and the backoff + // to the appropriate location in the appropriate chain + // (for details, see the ReadNGram() method in read_arpa.hh). + // + // Normally >> copies then runs so inline >> works. But here we want a ref. + chains >> boost::ref(reader); + + + util::stream::SortConfig sort_config; + sort_config.temp_prefix = "/tmp/"; + sort_config.buffer_size = SIXTY_FOUR_MB; + sort_config.total_memory = ONE_GB; + + // Parallel sorts across orders (though somewhat limited because ARPA files are not being read in parallel across orders) + lm::builder::Sorts<lm::builder::SuffixOrder> sorts(reader.Order()); + for (std::size_t i = 0; i < reader.Order(); ++i) { + + // The following call to sorts.push_back() invokes the Sort constructor + // and appends the newly constructed Sort object to the sorts array. + // + // After the construction of the Sort object, + // two new threads will be running (each owned by the chains[i] object). + // + // The first new thread will execute BlockSorter.Run() to sort the n-gram entries of order (i+1) + // that were previously read into chains[i] by the ARPA input reader thread. + // + // The second new thread will execute WriteAndRecycle.Run() + // to write each sorted block of data to disk as a temporary file. + sorts.push_back(chains[i], sort_config, lm::builder::SuffixOrder(i + 1)); + + } + + // Output to the same chains. + for (std::size_t i = 0; i < reader.Order(); ++i) { + + // The following call to Chain::Wait() + // joins the threads owned by chains[i]. + // + // As such the following call won't return + // until all threads owned by chains[i] have completed. + // + // The following call also resets chain[i] + // so that it can be reused + // (including free'ing the memory previously used by the chain) + chains[i].Wait(); + + + // In an ideal world (without memory restrictions) + // we could merge all of the previously sorted blocks + // by reading them all completely into memory + // and then running merge sort over them. + // + // In the real world, we have memory restrictions; + // depending on how many blocks we have, + // and how much memory we can use to read from each block (sort_config.buffer_size) + // it may be the case that we have insufficient memory + // to read sort_config.buffer_size of data from each block from disk. + // + // If this occurs, then it will be necessary to perform one or more rounds of merge sort on disk; + // doing so will reduce the number of blocks that we will eventually need to read from + // when performing the final round of merge sort in memory. + // + // So, the following call determines whether it is necessary + // to perform one or more rounds of merge sort on disk; + // if such on-disk merge sorting is required, such sorting is performed. + // + // Finally, the following method launches a thread that calls OwningMergingReader.Run() + // to perform the final round of merge sort in memory. + // + // Merge sort could have be invoked directly + // so that merge sort memory doesn't coexist with Chain memory. + sorts[i].Output(chains[i]); + } + + // sorts can go out of scope even though it's still writing to the chains. + // note that vocab going out of scope flushes to vocab_file. + } + + + // Get the vocabulary mapping used for this ARPA file + lm::builder::VocabReconstitute reconstitute(vocab_file.get()); + + // After the following call to the << method of chains, + // a new thread will be running + // and will be executing the Run() method of PrintARPA + // to print the final sorted ARPA file to standard output. + chains >> lm::builder::PrintARPA(reconstitute, counts, NULL, STDOUT_FILENO); + + // Joins all threads that chains owns, + // and does a for loop over each chain object in chains, + // calling chain.Wait() on each such chain object + chains.Wait(true); + +} |