diff options
author | Chris Dyer <cdyer@cs.cmu.edu> | 2012-03-05 16:06:45 -0500 |
---|---|---|
committer | Chris Dyer <cdyer@cs.cmu.edu> | 2012-03-05 16:06:45 -0500 |
commit | 2048ac9943e2695a75b5f0303ca869e66ee32202 (patch) | |
tree | 35de13bff0ce7f1fde619d04d165f7e6ac5b0631 /gi | |
parent | ce58cb44771a5194b71682d1602abe2fef9e6f13 (diff) |
use template parameter inference to figure out what type to use for probability computations, templatatize number of floors in MFCR rather than compile-time set
Diffstat (limited to 'gi')
-rw-r--r-- | gi/pf/align-lexonly-pyp.cc | 20 | ||||
-rw-r--r-- | gi/pf/conditional_pseg.h | 22 | ||||
-rw-r--r-- | gi/pf/learn_cfg.cc | 8 |
3 files changed, 25 insertions, 25 deletions
diff --git a/gi/pf/align-lexonly-pyp.cc b/gi/pf/align-lexonly-pyp.cc index 87f7f6b5..ac0590e0 100644 --- a/gi/pf/align-lexonly-pyp.cc +++ b/gi/pf/align-lexonly-pyp.cc @@ -68,7 +68,7 @@ struct AlignedSentencePair { struct HierarchicalWordBase { explicit HierarchicalWordBase(const unsigned vocab_e_size) : - base(prob_t::One()), r(1,1,1,25,25), u0(-log(vocab_e_size)), l(1,1.0), v(1, 0.0) {} + base(prob_t::One()), r(1,1,1,1), u0(-log(vocab_e_size)), l(1,prob_t::One()), v(1, prob_t::Zero()) {} void ResampleHyperparameters(MT19937* rng) { r.resample_hyperparameters(rng); @@ -80,14 +80,14 @@ struct HierarchicalWordBase { // return p0 of rule.e_ prob_t operator()(const TRule& rule) const { - v[0] = exp(logp0(rule.e_)); - return prob_t(r.prob(rule.e_, v, l)); + v[0].logeq(logp0(rule.e_)); + return r.prob(rule.e_, v.begin(), l.begin()); } void Increment(const TRule& rule) { - v[0] = exp(logp0(rule.e_)); - if (r.increment(rule.e_, v, l, &*prng).count) { - base *= prob_t(v[0] * l[0]); + v[0].logeq(logp0(rule.e_)); + if (r.increment(rule.e_, v.begin(), l.begin(), &*prng).count) { + base *= v[0] * l[0]; } } @@ -105,15 +105,15 @@ struct HierarchicalWordBase { void Summary() const { cerr << "NUMBER OF CUSTOMERS: " << r.num_customers() << " (d=" << r.discount() << ",s=" << r.strength() << ')' << endl; - for (MFCR<vector<WordID> >::const_iterator it = r.begin(); it != r.end(); ++it) + for (MFCR<1,vector<WordID> >::const_iterator it = r.begin(); it != r.end(); ++it) cerr << " " << it->second.total_dish_count_ << " (on " << it->second.table_counts_.size() << " tables)" << TD::GetString(it->first) << endl; } prob_t base; - MFCR<vector<WordID> > r; + MFCR<1,vector<WordID> > r; const double u0; - const vector<double> l; - mutable vector<double> v; + const vector<prob_t> l; + mutable vector<prob_t> v; }; struct BasicLexicalAlignment { diff --git a/gi/pf/conditional_pseg.h b/gi/pf/conditional_pseg.h index 86403d8d..ef73e332 100644 --- a/gi/pf/conditional_pseg.h +++ b/gi/pf/conditional_pseg.h @@ -17,13 +17,13 @@ template <typename ConditionalBaseMeasure> struct MConditionalTranslationModel { explicit MConditionalTranslationModel(ConditionalBaseMeasure& rcp0) : - rp0(rcp0), lambdas(1, 1.0), p0s(1) {} + rp0(rcp0), lambdas(1, prob_t::One()), p0s(1) {} void Summary() const { std::cerr << "Number of conditioning contexts: " << r.size() << std::endl; for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) { std::cerr << TD::GetString(it->first) << " \t(d=" << it->second.discount() << ",s=" << it->second.strength() << ") --------------------------" << std::endl; - for (MFCR<TRule>::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2) + for (MFCR<1,TRule>::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2) std::cerr << " " << -1 << '\t' << i2->first << std::endl; } } @@ -46,10 +46,10 @@ struct MConditionalTranslationModel { int IncrementRule(const TRule& rule, MT19937* rng) { RuleModelHash::iterator it = r.find(rule.f_); if (it == r.end()) { - it = r.insert(make_pair(rule.f_, MFCR<TRule>(1, 1.0, 1.0, 1.0, 1.0, 1e-9, 4.0))).first; + it = r.insert(make_pair(rule.f_, MFCR<1,TRule>(1.0, 1.0, 1.0, 1.0, 1e-9, 4.0))).first; } - p0s[0] = rp0(rule).as_float(); - TableCount delta = it->second.increment(rule, p0s, lambdas, rng); + p0s[0] = rp0(rule); + TableCount delta = it->second.increment(rule, p0s.begin(), lambdas.begin(), rng); return delta.count; } @@ -57,10 +57,10 @@ struct MConditionalTranslationModel { prob_t p; RuleModelHash::const_iterator it = r.find(rule.f_); if (it == r.end()) { - p.logeq(log(rp0(rule))); + p = rp0(rule); } else { - p0s[0] = rp0(rule).as_float(); - p = prob_t(it->second.prob(rule, p0s, lambdas)); + p0s[0] = rp0(rule); + p = it->second.prob(rule, p0s.begin(), lambdas.begin()); } return p; } @@ -80,11 +80,11 @@ struct MConditionalTranslationModel { const ConditionalBaseMeasure& rp0; typedef std::tr1::unordered_map<std::vector<WordID>, - MFCR<TRule>, + MFCR<1, TRule>, boost::hash<std::vector<WordID> > > RuleModelHash; RuleModelHash r; - std::vector<double> lambdas; - mutable std::vector<double> p0s; + std::vector<prob_t> lambdas; + mutable std::vector<prob_t> p0s; }; template <typename ConditionalBaseMeasure> diff --git a/gi/pf/learn_cfg.cc b/gi/pf/learn_cfg.cc index bf157828..ed1772bf 100644 --- a/gi/pf/learn_cfg.cc +++ b/gi/pf/learn_cfg.cc @@ -127,20 +127,20 @@ struct HieroLMModel { nts(num_nts, CCRP<TRule>(1,1,1,1)) {} prob_t Prob(const TRule& r) const { - return nts[nt_id_to_index[-r.lhs_]].probT<prob_t>(r, p0(r)); + return nts[nt_id_to_index[-r.lhs_]].prob(r, p0(r)); } inline prob_t p0(const TRule& r) const { if (kHIERARCHICAL_PRIOR) - return q0.probT<prob_t>(r, base(r)); + return q0.prob(r, base(r)); else return base(r); } int Increment(const TRule& r, MT19937* rng) { - const int delta = nts[nt_id_to_index[-r.lhs_]].incrementT<prob_t>(r, p0(r), rng); + const int delta = nts[nt_id_to_index[-r.lhs_]].increment(r, p0(r), rng); if (kHIERARCHICAL_PRIOR && delta) - q0.incrementT<prob_t>(r, base(r), rng); + q0.increment(r, base(r), rng); return delta; // return x.increment(r); } |