diff options
author | Patrick Simianer <p@simianer.de> | 2012-03-13 09:24:47 +0100 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2012-03-13 09:24:47 +0100 |
commit | ef6085e558e26c8819f1735425761103021b6470 (patch) | |
tree | 5cf70e4c48c64d838e1326b5a505c8c4061bff4a /gi/pf/transliterations.cc | |
parent | 10a232656a0c882b3b955d2bcfac138ce11e8a2e (diff) | |
parent | dfbc278c1057555fda9312291c8024049e00b7d8 (diff) |
merge with upstream
Diffstat (limited to 'gi/pf/transliterations.cc')
-rw-r--r-- | gi/pf/transliterations.cc | 334 |
1 files changed, 334 insertions, 0 deletions
diff --git a/gi/pf/transliterations.cc b/gi/pf/transliterations.cc new file mode 100644 index 00000000..2200715e --- /dev/null +++ b/gi/pf/transliterations.cc @@ -0,0 +1,334 @@ +#include "transliterations.h" + +#include <iostream> +#include <vector> + +#include "boost/shared_ptr.hpp" + +#include "backward.h" +#include "filelib.h" +#include "tdict.h" +#include "trule.h" +#include "filelib.h" +#include "ccrp_nt.h" +#include "m.h" +#include "reachability.h" + +using namespace std; +using namespace std::tr1; + +struct TruncatedConditionalLengthModel { + TruncatedConditionalLengthModel(unsigned max_src_size, unsigned max_trg_size, double expected_src_to_trg_ratio) : + plens(max_src_size+1, vector<prob_t>(max_trg_size+1, 0.0)) { + for (unsigned i = 1; i <= max_src_size; ++i) { + prob_t z = prob_t::Zero(); + for (unsigned j = 1; j <= max_trg_size; ++j) + z += (plens[i][j] = prob_t(0.01 + exp(Md::log_poisson(j, i * expected_src_to_trg_ratio)))); + for (unsigned j = 1; j <= max_trg_size; ++j) + plens[i][j] /= z; + //for (unsigned j = 1; j <= max_trg_size; ++j) + // cerr << "P(trg_len=" << j << " | src_len=" << i << ") = " << plens[i][j] << endl; + } + } + + // return p(tlen | slen) for *chunks* not full words + inline const prob_t& operator()(int slen, int tlen) const { + return plens[slen][tlen]; + } + + vector<vector<prob_t> > plens; +}; + +struct CondBaseDist { + CondBaseDist(unsigned max_src_size, unsigned max_trg_size, double expected_src_to_trg_ratio) : + tclm(max_src_size, max_trg_size, expected_src_to_trg_ratio) {} + + prob_t operator()(const vector<WordID>& src, unsigned sf, unsigned st, + const vector<WordID>& trg, unsigned tf, unsigned tt) const { + prob_t p = tclm(st - sf, tt - tf); // target len | source length ~ TCLM(source len) + assert(!"not impl"); + return p; + } + inline prob_t operator()(const vector<WordID>& src, const vector<WordID>& trg) const { + return (*this)(src, 0, src.size(), trg, 0, trg.size()); + } + TruncatedConditionalLengthModel tclm; +}; + +// represents transliteration phrase probabilities, e.g. +// p( a l - | A l ) , p( o | A w ) , ... +struct TransliterationChunkConditionalModel { + explicit TransliterationChunkConditionalModel(const CondBaseDist& pp0) : + d(0.0), + strength(1.0), + rp0(pp0) { + } + + void Summary() const { + std::cerr << "Number of conditioning contexts: " << r.size() << std::endl; + for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) { + std::cerr << TD::GetString(it->first) << " \t(\\alpha = " << it->second.alpha() << ") --------------------------" << std::endl; + for (CCRP_NoTable<TRule>::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2) + std::cerr << " " << i2->second << '\t' << i2->first << std::endl; + } + } + + int DecrementRule(const TRule& rule) { + RuleModelHash::iterator it = r.find(rule.f_); + assert(it != r.end()); + int count = it->second.decrement(rule); + if (count) { + if (it->second.num_customers() == 0) r.erase(it); + } + return count; + } + + int IncrementRule(const TRule& rule) { + RuleModelHash::iterator it = r.find(rule.f_); + if (it == r.end()) { + it = r.insert(make_pair(rule.f_, CCRP_NoTable<TRule>(strength))).first; + } + int count = it->second.increment(rule); + return count; + } + + void IncrementRules(const std::vector<TRulePtr>& rules) { + for (int i = 0; i < rules.size(); ++i) + IncrementRule(*rules[i]); + } + + void DecrementRules(const std::vector<TRulePtr>& rules) { + for (int i = 0; i < rules.size(); ++i) + DecrementRule(*rules[i]); + } + + prob_t RuleProbability(const TRule& rule) const { + prob_t p; + RuleModelHash::const_iterator it = r.find(rule.f_); + if (it == r.end()) { + p = rp0(rule.f_, rule.e_); + } else { + p = it->second.prob(rule, rp0(rule.f_, rule.e_)); + } + return p; + } + + double LogLikelihood(const double& dd, const double& aa) const { + if (aa <= -dd) return -std::numeric_limits<double>::infinity(); + //double llh = Md::log_beta_density(dd, 10, 3) + Md::log_gamma_density(aa, 1, 1); + double llh = //Md::log_beta_density(dd, 1, 1) + + Md::log_gamma_density(dd + aa, 1, 1); + typename std::tr1::unordered_map<std::vector<WordID>, CCRP_NoTable<TRule>, boost::hash<std::vector<WordID> > >::const_iterator it; + for (it = r.begin(); it != r.end(); ++it) + llh += it->second.log_crp_prob(aa); + return llh; + } + + struct AlphaResampler { + AlphaResampler(const TransliterationChunkConditionalModel& m) : m_(m) {} + const TransliterationChunkConditionalModel& m_; + double operator()(const double& proposed_strength) const { + return m_.LogLikelihood(m_.d, proposed_strength); + } + }; + + void ResampleHyperparameters(MT19937* rng) { + typename std::tr1::unordered_map<std::vector<WordID>, CCRP_NoTable<TRule>, boost::hash<std::vector<WordID> > >::iterator it; + //const unsigned nloop = 5; + const unsigned niterations = 10; + //DiscountResampler dr(*this); + AlphaResampler ar(*this); +#if 0 + for (int iter = 0; iter < nloop; ++iter) { + strength = slice_sampler1d(ar, strength, *rng, -d + std::numeric_limits<double>::min(), + std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations); + double min_discount = std::numeric_limits<double>::min(); + if (strength < 0.0) min_discount -= strength; + d = slice_sampler1d(dr, d, *rng, min_discount, + 1.0, 0.0, niterations, 100*niterations); + } +#endif + strength = slice_sampler1d(ar, strength, *rng, -d, + std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations); + std::cerr << "CTMModel(alpha=" << strength << ") = " << LogLikelihood(d, strength) << std::endl; + for (it = r.begin(); it != r.end(); ++it) { +#if 0 + it->second.set_discount(d); +#endif + it->second.set_alpha(strength); + } + } + + prob_t Likelihood() const { + prob_t p; p.logeq(LogLikelihood(d, strength)); + return p; + } + + const CondBaseDist& rp0; + typedef std::tr1::unordered_map<std::vector<WordID>, + CCRP_NoTable<TRule>, + boost::hash<std::vector<WordID> > > RuleModelHash; + RuleModelHash r; + double d, strength; +}; + +struct GraphStructure { + GraphStructure() : r() {} + // leak memory - these are basically static + const Reachability* r; + bool IsReachable() const { return r->nodes > 0; } +}; + +struct ProbabilityEstimates { + ProbabilityEstimates() : gs(), backward() {} + explicit ProbabilityEstimates(const GraphStructure& g) : + gs(&g), backward() { + if (g.r->nodes > 0) + backward = new float[g.r->nodes]; + } + // leak memory, these are static + + // returns an estimate of the marginal probability + double MarginalEstimate() const { + if (!backward) return 0; + return backward[0]; + } + + // returns an backward estimate + double Backward(int src_covered, int trg_covered) const { + if (!backward) return 0; + int ind = gs->r->node_addresses[src_covered][trg_covered]; + if (ind < 0) return 0; + return backward[ind]; + } + + prob_t estp; + float* backward; + private: + const GraphStructure* gs; +}; + +struct TransliterationsImpl { + TransliterationsImpl(int max_src, int max_trg, double sr, const BackwardEstimator& b) : + cp0(max_src, max_trg, sr), + tccm(cp0), + be(b), + kMAX_SRC_CHUNK(max_src), + kMAX_TRG_CHUNK(max_trg), + kS2T_RATIO(sr), + tot_pairs(), tot_mem() { + } + const CondBaseDist cp0; + TransliterationChunkConditionalModel tccm; + const BackwardEstimator& be; + + void Initialize(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) { + const size_t src_len = src_lets.size(); + const size_t trg_len = trg_lets.size(); + + // init graph structure + if (src_len >= graphs.size()) graphs.resize(src_len + 1); + if (trg_len >= graphs[src_len].size()) graphs[src_len].resize(trg_len + 1); + GraphStructure& gs = graphs[src_len][trg_len]; + if (!gs.r) { + double rat = exp(fabs(log(trg_len / (src_len * kS2T_RATIO)))); + if (rat > 1.5 || (rat > 2.4 && src_len < 6)) { + cerr << " ** Forbidding transliterations of size " << src_len << "," << trg_len << ": " << rat << endl; + gs.r = new Reachability(src_len, trg_len, 0, 0); + } else { + gs.r = new Reachability(src_len, trg_len, kMAX_SRC_CHUNK, kMAX_TRG_CHUNK); + } + } + + const Reachability& r = *gs.r; + + // init backward estimates + if (src >= ests.size()) ests.resize(src + 1); + unordered_map<WordID, ProbabilityEstimates>::iterator it = ests[src].find(trg); + if (it != ests[src].end()) return; // already initialized + + it = ests[src].insert(make_pair(trg, ProbabilityEstimates(gs))).first; + ProbabilityEstimates& est = it->second; + if (!gs.r->nodes) return; // not derivable subject to length constraints + + be.InitializeGrid(src_lets, trg_lets, r, kS2T_RATIO, est.backward); + cerr << TD::GetString(src_lets) << " ||| " << TD::GetString(trg_lets) << " ||| " << (est.backward[0] / trg_lets.size()) << endl; + tot_pairs++; + tot_mem += sizeof(float) * gs.r->nodes; + } + + void Forbid(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) { + const size_t src_len = src_lets.size(); + const size_t trg_len = trg_lets.size(); + // TODO + } + + prob_t EstimateProbability(WordID s, const vector<WordID>& src, WordID t, const vector<WordID>& trg) const { + assert(src.size() < graphs.size()); + const vector<GraphStructure>& tv = graphs[src.size()]; + assert(trg.size() < tv.size()); + const GraphStructure& gs = tv[trg.size()]; + if (gs.r->nodes == 0) + return prob_t::Zero(); + const unordered_map<WordID, ProbabilityEstimates>::const_iterator it = ests[s].find(t); + assert(it != ests[s].end()); + return it->second.estp; + } + + void GraphSummary() const { + double to = 0; + double tn = 0; + double tt = 0; + for (int i = 0; i < graphs.size(); ++i) { + const vector<GraphStructure>& vt = graphs[i]; + for (int j = 0; j < vt.size(); ++j) { + const GraphStructure& gs = vt[j]; + if (!gs.r) continue; + tt++; + for (int k = 0; k < i; ++k) { + for (int l = 0; l < j; ++l) { + size_t c = gs.r->valid_deltas[k][l].size(); + if (c) { + tn += 1; + to += c; + } + } + } + } + } + cerr << " Average nodes = " << (tn / tt) << endl; + cerr << "Average out-degree = " << (to / tn) << endl; + cerr << " Unique structures = " << tt << endl; + cerr << " Unique pairs = " << tot_pairs << endl; + cerr << " BEs size = " << (tot_mem / (1024.0*1024.0)) << " MB" << endl; + } + + const int kMAX_SRC_CHUNK; + const int kMAX_TRG_CHUNK; + const double kS2T_RATIO; + unsigned tot_pairs; + size_t tot_mem; + vector<vector<GraphStructure> > graphs; // graphs[src_len][trg_len] + vector<unordered_map<WordID, ProbabilityEstimates> > ests; // ests[src][trg] +}; + +Transliterations::Transliterations(int max_src, int max_trg, double sr, const BackwardEstimator& be) : + pimpl_(new TransliterationsImpl(max_src, max_trg, sr, be)) {} +Transliterations::~Transliterations() { delete pimpl_; } + +void Transliterations::Initialize(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) { + pimpl_->Initialize(src, src_lets, trg, trg_lets); +} + +prob_t Transliterations::EstimateProbability(WordID s, const vector<WordID>& src, WordID t, const vector<WordID>& trg) const { + return pimpl_->EstimateProbability(s, src,t, trg); +} + +void Transliterations::Forbid(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) { + pimpl_->Forbid(src, src_lets, trg, trg_lets); +} + +void Transliterations::GraphSummary() const { + pimpl_->GraphSummary(); +} + |