diff options
author | Chris Dyer <cdyer@cab.ark.cs.cmu.edu> | 2012-10-02 00:19:43 -0400 |
---|---|---|
committer | Chris Dyer <cdyer@cab.ark.cs.cmu.edu> | 2012-10-02 00:19:43 -0400 |
commit | e26434979adc33bd949566ba7bf02dff64e80a3e (patch) | |
tree | d1c72495e3af6301bd28e7e66c42de0c7a944d1f /gi/pf/pfdist.new.cc | |
parent | 0870d4a1f5e14cc7daf553b180d599f09f6614a2 (diff) |
cdec cleanup, remove bayesian stuff, parsing stuff
Diffstat (limited to 'gi/pf/pfdist.new.cc')
-rw-r--r-- | gi/pf/pfdist.new.cc | 620 |
1 files changed, 0 insertions, 620 deletions
diff --git a/gi/pf/pfdist.new.cc b/gi/pf/pfdist.new.cc deleted file mode 100644 index 3169eb75..00000000 --- a/gi/pf/pfdist.new.cc +++ /dev/null @@ -1,620 +0,0 @@ -#include <iostream> -#include <tr1/memory> -#include <queue> - -#include <boost/functional.hpp> -#include <boost/program_options.hpp> -#include <boost/program_options/variables_map.hpp> - -#include "base_measures.h" -#include "reachability.h" -#include "viterbi.h" -#include "hg.h" -#include "trule.h" -#include "tdict.h" -#include "filelib.h" -#include "dict.h" -#include "sampler.h" -#include "ccrp_nt.h" -#include "ccrp_onetable.h" - -using namespace std; -using namespace tr1; -namespace po = boost::program_options; - -shared_ptr<MT19937> prng; - -size_t hash_value(const TRule& r) { - size_t h = boost::hash_value(r.e_); - boost::hash_combine(h, -r.lhs_); - boost::hash_combine(h, boost::hash_value(r.f_)); - return h; -} - -bool operator==(const TRule& a, const TRule& b) { - return (a.lhs_ == b.lhs_ && a.e_ == b.e_ && a.f_ == b.f_); -} - -void InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples") - ("particles,p",po::value<unsigned>()->default_value(25),"Number of particles") - ("input,i",po::value<string>(),"Read parallel data from") - ("max_src_phrase",po::value<unsigned>()->default_value(5),"Maximum length of source language phrases") - ("max_trg_phrase",po::value<unsigned>()->default_value(5),"Maximum length of target language phrases") - ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)") - ("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)") - ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution") - ("random_seed,S",po::value<uint32_t>(), "Random seed"); - po::options_description clo("Command line options"); - clo.add_options() - ("config", po::value<string>(), "Configuration file") - ("help,h", "Print this help message and exit"); - po::options_description dconfig_options, dcmdline_options; - dconfig_options.add(opts); - dcmdline_options.add(opts).add(clo); - - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - if (conf->count("config")) { - ifstream config((*conf)["config"].as<string>().c_str()); - po::store(po::parse_config_file(config, dconfig_options), *conf); - } - po::notify(*conf); - - if (conf->count("help") || (conf->count("input") == 0)) { - cerr << dcmdline_options << endl; - exit(1); - } -} - -void ReadParallelCorpus(const string& filename, - vector<vector<WordID> >* f, - vector<vector<WordID> >* e, - set<WordID>* vocab_f, - set<WordID>* vocab_e) { - f->clear(); - e->clear(); - vocab_f->clear(); - vocab_e->clear(); - istream* in; - if (filename == "-") - in = &cin; - else - in = new ifstream(filename.c_str()); - assert(*in); - string line; - const WordID kDIV = TD::Convert("|||"); - vector<WordID> tmp; - while(*in) { - getline(*in, line); - if (line.empty() && !*in) break; - e->push_back(vector<int>()); - f->push_back(vector<int>()); - vector<int>& le = e->back(); - vector<int>& lf = f->back(); - tmp.clear(); - TD::ConvertSentence(line, &tmp); - bool isf = true; - for (unsigned i = 0; i < tmp.size(); ++i) { - const int cur = tmp[i]; - if (isf) { - if (kDIV == cur) { isf = false; } else { - lf.push_back(cur); - vocab_f->insert(cur); - } - } else { - assert(cur != kDIV); - le.push_back(cur); - vocab_e->insert(cur); - } - } - assert(isf == false); - } - if (in != &cin) delete in; -} - -#if 0 -struct MyConditionalModel { - MyConditionalModel(PhraseConditionalBase& rcp0) : rp0(&rcp0), base(prob_t::One()), src_phrases(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {} - - prob_t srcp0(const vector<WordID>& src) const { - prob_t p(1.0 / 3000.0); - p.poweq(src.size()); - prob_t lenp; lenp.logeq(log_poisson(src.size(), 1.0)); - p *= lenp; - return p; - } - - void DecrementRule(const TRule& rule) { - const RuleCRPMap::iterator it = rules.find(rule.f_); - assert(it != rules.end()); - if (it->second.decrement(rule)) { - base /= (*rp0)(rule); - if (it->second.num_customers() == 0) - rules.erase(it); - } - if (src_phrases.decrement(rule.f_)) - base /= srcp0(rule.f_); - } - - void IncrementRule(const TRule& rule) { - RuleCRPMap::iterator it = rules.find(rule.f_); - if (it == rules.end()) - it = rules.insert(make_pair(rule.f_, CCRP_NoTable<TRule>(1,1))).first; - if (it->second.increment(rule)) { - base *= (*rp0)(rule); - } - if (src_phrases.increment(rule.f_)) - base *= srcp0(rule.f_); - } - - void IncrementRules(const vector<TRulePtr>& rules) { - for (int i = 0; i < rules.size(); ++i) - IncrementRule(*rules[i]); - } - - void DecrementRules(const vector<TRulePtr>& rules) { - for (int i = 0; i < rules.size(); ++i) - DecrementRule(*rules[i]); - } - - void IncrementJump(int dist, unsigned src_len) { - assert(src_len > 0); - if (src_jumps[src_len].increment(dist)) - base *= jp0(dist, src_len); - } - - void DecrementJump(int dist, unsigned src_len) { - assert(src_len > 0); - if (src_jumps[src_len].decrement(dist)) - base /= jp0(dist, src_len); - } - - void IncrementJumps(const vector<int>& js, unsigned src_len) { - for (unsigned i = 0; i < js.size(); ++i) - IncrementJump(js[i], src_len); - } - - void DecrementJumps(const vector<int>& js, unsigned src_len) { - for (unsigned i = 0; i < js.size(); ++i) - DecrementJump(js[i], src_len); - } - - // p(jump = dist | src_len , z) - prob_t JumpProbability(int dist, unsigned src_len) { - const prob_t p0 = jp0(dist, src_len); - const double lp = src_jumps[src_len].logprob(dist, log(p0)); - prob_t q; q.logeq(lp); - return q; - } - - // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z) - prob_t RuleProbability(const TRule& rule) const { - const prob_t p0 = (*rp0)(rule); - prob_t srcp; srcp.logeq(src_phrases.logprob(rule.f_, log(srcp0(rule.f_)))); - const RuleCRPMap::const_iterator it = rules.find(rule.f_); - if (it == rules.end()) return srcp * p0; - const double lp = it->second.logprob(rule, log(p0)); - prob_t q; q.logeq(lp); - return q * srcp; - } - - prob_t Likelihood() const { - prob_t p = base; - for (RuleCRPMap::const_iterator it = rules.begin(); - it != rules.end(); ++it) { - prob_t cl; cl.logeq(it->second.log_crp_prob()); - p *= cl; - } - for (unsigned l = 1; l < src_jumps.size(); ++l) { - if (src_jumps[l].num_customers() > 0) { - prob_t q; - q.logeq(src_jumps[l].log_crp_prob()); - p *= q; - } - } - return p; - } - - JumpBase jp0; - const PhraseConditionalBase* rp0; - prob_t base; - typedef unordered_map<vector<WordID>, CCRP_NoTable<TRule>, boost::hash<vector<WordID> > > RuleCRPMap; - RuleCRPMap rules; - CCRP_NoTable<vector<WordID> > src_phrases; - vector<CCRP_NoTable<int> > src_jumps; -}; - -#endif - -struct MyJointModel { - MyJointModel(PhraseJointBase& rcp0) : - rp0(rcp0), base(prob_t::One()), rules(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {} - - void DecrementRule(const TRule& rule) { - if (rules.decrement(rule)) - base /= rp0(rule); - } - - void IncrementRule(const TRule& rule) { - if (rules.increment(rule)) - base *= rp0(rule); - } - - void IncrementRules(const vector<TRulePtr>& rules) { - for (int i = 0; i < rules.size(); ++i) - IncrementRule(*rules[i]); - } - - void DecrementRules(const vector<TRulePtr>& rules) { - for (int i = 0; i < rules.size(); ++i) - DecrementRule(*rules[i]); - } - - void IncrementJump(int dist, unsigned src_len) { - assert(src_len > 0); - if (src_jumps[src_len].increment(dist)) - base *= jp0(dist, src_len); - } - - void DecrementJump(int dist, unsigned src_len) { - assert(src_len > 0); - if (src_jumps[src_len].decrement(dist)) - base /= jp0(dist, src_len); - } - - void IncrementJumps(const vector<int>& js, unsigned src_len) { - for (unsigned i = 0; i < js.size(); ++i) - IncrementJump(js[i], src_len); - } - - void DecrementJumps(const vector<int>& js, unsigned src_len) { - for (unsigned i = 0; i < js.size(); ++i) - DecrementJump(js[i], src_len); - } - - // p(jump = dist | src_len , z) - prob_t JumpProbability(int dist, unsigned src_len) { - const prob_t p0 = jp0(dist, src_len); - const double lp = src_jumps[src_len].logprob(dist, log(p0)); - prob_t q; q.logeq(lp); - return q; - } - - // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z) - prob_t RuleProbability(const TRule& rule) const { - prob_t p; p.logeq(rules.logprob(rule, log(rp0(rule)))); - return p; - } - - prob_t Likelihood() const { - prob_t p = base; - prob_t q; q.logeq(rules.log_crp_prob()); - p *= q; - for (unsigned l = 1; l < src_jumps.size(); ++l) { - if (src_jumps[l].num_customers() > 0) { - prob_t q; - q.logeq(src_jumps[l].log_crp_prob()); - p *= q; - } - } - return p; - } - - JumpBase jp0; - const PhraseJointBase& rp0; - prob_t base; - CCRP_NoTable<TRule> rules; - vector<CCRP_NoTable<int> > src_jumps; -}; - -struct BackwardEstimate { - BackwardEstimate(const Model1& m1, const vector<WordID>& src, const vector<WordID>& trg) : - model1_(m1), src_(src), trg_(trg) { - } - const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const { - assert(src_.size() == src_cov.size()); - assert(trg_cov <= trg_.size()); - prob_t& e = cache_[src_cov][trg_cov]; - if (e.is_0()) { - if (trg_cov == trg_.size()) { e = prob_t::One(); return e; } - vector<WordID> r(src_.size() + 1); r.clear(); - r.push_back(0); // NULL word - for (int i = 0; i < src_cov.size(); ++i) - if (!src_cov[i]) r.push_back(src_[i]); - const prob_t uniform_alignment(1.0 / r.size()); - e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining) - for (unsigned j = trg_cov; j < trg_.size(); ++j) { - prob_t p; - for (unsigned i = 0; i < r.size(); ++i) - p += model1_(r[i], trg_[j]); - if (p.is_0()) { - cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n"; - abort(); - } - p *= uniform_alignment; - e *= p; - } - } - return e; - } - const Model1& model1_; - const vector<WordID>& src_; - const vector<WordID>& trg_; - mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_; -}; - -struct BackwardEstimateSym { - BackwardEstimateSym(const Model1& m1, - const Model1& invm1, const vector<WordID>& src, const vector<WordID>& trg) : - model1_(m1), invmodel1_(invm1), src_(src), trg_(trg) { - } - const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const { - assert(src_.size() == src_cov.size()); - assert(trg_cov <= trg_.size()); - prob_t& e = cache_[src_cov][trg_cov]; - if (e.is_0()) { - if (trg_cov == trg_.size()) { e = prob_t::One(); return e; } - vector<WordID> r(src_.size() + 1); r.clear(); - for (int i = 0; i < src_cov.size(); ++i) - if (!src_cov[i]) r.push_back(src_[i]); - r.push_back(0); // NULL word - const prob_t uniform_alignment(1.0 / r.size()); - e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining) - for (unsigned j = trg_cov; j < trg_.size(); ++j) { - prob_t p; - for (unsigned i = 0; i < r.size(); ++i) - p += model1_(r[i], trg_[j]); - if (p.is_0()) { - cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n"; - abort(); - } - p *= uniform_alignment; - e *= p; - } - r.pop_back(); - const prob_t inv_uniform(1.0 / (trg_.size() - trg_cov + 1.0)); - prob_t inv; - inv.logeq(log_poisson(r.size(), trg_.size() - trg_cov)); - for (unsigned i = 0; i < r.size(); ++i) { - prob_t p; - for (unsigned j = trg_cov - 1; j < trg_.size(); ++j) - p += invmodel1_(j < trg_cov ? 0 : trg_[j], r[i]); - if (p.is_0()) { - cerr << "ERROR: p_inv(" << TD::Convert(r[i]) << " | " << TD::GetString(trg_) << ") = 0!\n"; - abort(); - } - p *= inv_uniform; - inv *= p; - } - prob_t x = pow(e * inv, 0.5); - e = x; - //cerr << "Forward: " << log(e) << "\tBackward: " << log(inv) << "\t prop: " << log(x) << endl; - } - return e; - } - const Model1& model1_; - const Model1& invmodel1_; - const vector<WordID>& src_; - const vector<WordID>& trg_; - mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_; -}; - -struct Particle { - Particle() : weight(prob_t::One()), src_cov(), trg_cov(), prev_pos(-1) {} - prob_t weight; - prob_t gamma_last; - vector<int> src_jumps; - vector<TRulePtr> rules; - vector<bool> src_cv; - int src_cov; - int trg_cov; - int prev_pos; -}; - -ostream& operator<<(ostream& o, const vector<bool>& v) { - for (int i = 0; i < v.size(); ++i) - o << (v[i] ? '1' : '0'); - return o; -} -ostream& operator<<(ostream& o, const Particle& p) { - o << "[cv=" << p.src_cv << " src_cov=" << p.src_cov << " trg_cov=" << p.trg_cov << " last_pos=" << p.prev_pos << " num_rules=" << p.rules.size() << " w=" << log(p.weight) << ']'; - return o; -} - -void FilterCrapParticlesAndReweight(vector<Particle>* pps) { - vector<Particle>& ps = *pps; - SampleSet<prob_t> ss; - for (int i = 0; i < ps.size(); ++i) - ss.add(ps[i].weight); - vector<Particle> nps; nps.reserve(ps.size()); - const prob_t uniform_weight(1.0 / ps.size()); - for (int i = 0; i < ps.size(); ++i) { - nps.push_back(ps[prng->SelectSample(ss)]); - nps[i].weight = uniform_weight; - } - nps.swap(ps); -} - -int main(int argc, char** argv) { - po::variables_map conf; - InitCommandLine(argc, argv, &conf); - const unsigned kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>(); - const unsigned kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>(); - const unsigned particles = conf["particles"].as<unsigned>(); - const unsigned samples = conf["samples"].as<unsigned>(); - - if (!conf.count("model1")) { - cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n"; - return 1; - } - if (conf.count("random_seed")) - prng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); - else - prng.reset(new MT19937); - MT19937& rng = *prng; - - vector<vector<WordID> > corpuse, corpusf; - set<WordID> vocabe, vocabf; - cerr << "Reading corpus...\n"; - ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe); - cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n"; - cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n"; - assert(corpusf.size() == corpuse.size()); - - const int kLHS = -TD::Convert("X"); - Model1 m1(conf["model1"].as<string>()); - Model1 invm1(conf["inverse_model1"].as<string>()); - -#if 0 - PhraseConditionalBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size()); - MyConditionalModel m(lp0); -#else - PhraseJointBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size()); - MyJointModel m(lp0); -#endif - - cerr << "Initializing reachability limits...\n"; - vector<Particle> ps(corpusf.size()); - vector<Reachability> reaches; reaches.reserve(corpusf.size()); - for (int ci = 0; ci < corpusf.size(); ++ci) - reaches.push_back(Reachability(corpusf[ci].size(), - corpuse[ci].size(), - kMAX_SRC_PHRASE, - kMAX_TRG_PHRASE)); - cerr << "Sampling...\n"; - vector<Particle> tmp_p(10000); // work space - SampleSet<prob_t> pfss; - for (int SS=0; SS < samples; ++SS) { - for (int ci = 0; ci < corpusf.size(); ++ci) { - vector<int>& src = corpusf[ci]; - vector<int>& trg = corpuse[ci]; - m.DecrementRules(ps[ci].rules); - m.DecrementJumps(ps[ci].src_jumps, src.size()); - - //BackwardEstimate be(m1, src, trg); - BackwardEstimateSym be(m1, invm1, src, trg); - const Reachability& r = reaches[ci]; - vector<Particle> lps(particles); - - for (int pi = 0; pi < particles; ++pi) { - Particle& p = lps[pi]; - p.src_cv.resize(src.size(), false); - } - - bool all_complete = false; - while(!all_complete) { - SampleSet<prob_t> ss; - - // all particles have now been extended a bit, we will reweight them now - if (lps[0].trg_cov > 0) - FilterCrapParticlesAndReweight(&lps); - - // loop over all particles and extend them - bool done_nothing = true; - for (int pi = 0; pi < particles; ++pi) { - Particle& p = lps[pi]; - int tic = 0; - const int rejuv_freq = 1; - while(p.trg_cov < trg.size() && tic < rejuv_freq) { - ++tic; - done_nothing = false; - ss.clear(); - TRule x; x.lhs_ = kLHS; - prob_t z; - int first_uncovered = src.size(); - int last_uncovered = -1; - for (int i = 0; i < src.size(); ++i) { - const bool is_uncovered = !p.src_cv[i]; - if (i < first_uncovered && is_uncovered) first_uncovered = i; - if (is_uncovered && i > last_uncovered) last_uncovered = i; - } - assert(last_uncovered > -1); - assert(first_uncovered < src.size()); - - for (int trg_len = 1; trg_len <= kMAX_TRG_PHRASE; ++trg_len) { - x.e_.push_back(trg[trg_len - 1 + p.trg_cov]); - for (int src_len = 1; src_len <= kMAX_SRC_PHRASE; ++src_len) { - if (!r.edges[p.src_cov][p.trg_cov][src_len][trg_len]) continue; - - const int last_possible_start = last_uncovered - src_len + 1; - assert(last_possible_start >= 0); - //cerr << src_len << "," << trg_len << " is allowed. E=" << TD::GetString(x.e_) << endl; - //cerr << " first_uncovered=" << first_uncovered << " last_possible_start=" << last_possible_start << endl; - for (int i = first_uncovered; i <= last_possible_start; ++i) { - if (p.src_cv[i]) continue; - assert(ss.size() < tmp_p.size()); // if fails increase tmp_p size - Particle& np = tmp_p[ss.size()]; - np = p; - x.f_.clear(); - int gap_add = 0; - bool bad = false; - prob_t jp = prob_t::One(); - int prev_pos = p.prev_pos; - for (int j = 0; j < src_len; ++j) { - if ((j + i + gap_add) == src.size()) { bad = true; break; } - while ((i+j+gap_add) < src.size() && p.src_cv[i + j + gap_add]) { ++gap_add; } - if ((j + i + gap_add) == src.size()) { bad = true; break; } - np.src_cv[i + j + gap_add] = true; - x.f_.push_back(src[i + j + gap_add]); - jp *= m.JumpProbability(i + j + gap_add - prev_pos, src.size()); - int jump = i + j + gap_add - prev_pos; - assert(jump != 0); - np.src_jumps.push_back(jump); - prev_pos = i + j + gap_add; - } - if (bad) continue; - np.prev_pos = prev_pos; - np.src_cov += x.f_.size(); - np.trg_cov += x.e_.size(); - if (x.f_.size() != src_len) continue; - prob_t rp = m.RuleProbability(x); - np.gamma_last = rp * jp; - const prob_t u = pow(np.gamma_last * be(np.src_cv, np.trg_cov), 0.2); - //cerr << "**rule=" << x << endl; - //cerr << " u=" << log(u) << " rule=" << rp << " jump=" << jp << endl; - ss.add(u); - np.rules.push_back(TRulePtr(new TRule(x))); - z += u; - - const bool completed = (p.trg_cov == trg.size()); - if (completed) { - int last_jump = src.size() - p.prev_pos; - assert(last_jump > 0); - p.src_jumps.push_back(last_jump); - p.weight *= m.JumpProbability(last_jump, src.size()); - } - } - } - } - cerr << "number of edges to consider: " << ss.size() << endl; - const int sampled = rng.SelectSample(ss); - prob_t q_n = ss[sampled] / z; - p = tmp_p[sampled]; - //m.IncrementRule(*p.rules.back()); - p.weight *= p.gamma_last / q_n; - cerr << "[w=" << log(p.weight) << "]\tsampled rule: " << p.rules.back()->AsString() << endl; - cerr << p << endl; - } - } // loop over particles (pi = 0 .. particles) - if (done_nothing) all_complete = true; - } - pfss.clear(); - for (int i = 0; i < lps.size(); ++i) - pfss.add(lps[i].weight); - const int sampled = rng.SelectSample(pfss); - ps[ci] = lps[sampled]; - m.IncrementRules(lps[sampled].rules); - m.IncrementJumps(lps[sampled].src_jumps, src.size()); - for (int i = 0; i < lps[sampled].rules.size(); ++i) { cerr << "S:\t" << lps[sampled].rules[i]->AsString() << "\n"; } - cerr << "tmp-LLH: " << log(m.Likelihood()) << endl; - } - cerr << "LLH: " << log(m.Likelihood()) << endl; - for (int sni = 0; sni < 5; ++sni) { - for (int i = 0; i < ps[sni].rules.size(); ++i) { cerr << "\t" << ps[sni].rules[i]->AsString() << endl; } - } - } - return 0; -} - |