diff options
author | Chris Dyer <cdyer@cs.cmu.edu> | 2012-10-11 14:06:32 -0400 |
---|---|---|
committer | Chris Dyer <cdyer@cs.cmu.edu> | 2012-10-11 14:06:32 -0400 |
commit | 07ea7b64b6f85e5798a8068453ed9fd2b97396db (patch) | |
tree | 644496a1690d84d82a396bbc1e39160788beb2cd /gi/pf/conditional_pseg.h | |
parent | 37b9e45e5cb29d708f7249dbe0b0fb27685282a0 (diff) | |
parent | a36fcc5d55c1de84ae68c1091ebff2b1c32dc3b7 (diff) |
Merge branch 'master' of https://github.com/redpony/cdec
Diffstat (limited to 'gi/pf/conditional_pseg.h')
-rw-r--r-- | gi/pf/conditional_pseg.h | 275 |
1 files changed, 0 insertions, 275 deletions
diff --git a/gi/pf/conditional_pseg.h b/gi/pf/conditional_pseg.h deleted file mode 100644 index 81ddb206..00000000 --- a/gi/pf/conditional_pseg.h +++ /dev/null @@ -1,275 +0,0 @@ -#ifndef _CONDITIONAL_PSEG_H_ -#define _CONDITIONAL_PSEG_H_ - -#include <vector> -#include <tr1/unordered_map> -#include <boost/functional/hash.hpp> -#include <iostream> - -#include "m.h" -#include "prob.h" -#include "ccrp_nt.h" -#include "mfcr.h" -#include "trule.h" -#include "base_distributions.h" -#include "tdict.h" - -template <typename ConditionalBaseMeasure> -struct MConditionalTranslationModel { - explicit MConditionalTranslationModel(ConditionalBaseMeasure& rcp0) : - rp0(rcp0), d(0.5), strength(1.0), lambdas(1, prob_t::One()), p0s(1) {} - - void Summary() const { - std::cerr << "Number of conditioning contexts: " << r.size() << std::endl; - for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) { - std::cerr << TD::GetString(it->first) << " \t(d=" << it->second.discount() << ",s=" << it->second.strength() << ") --------------------------" << std::endl; - for (MFCR<1,TRule>::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2) - std::cerr << " " << i2->second.total_dish_count_ << '\t' << i2->first << std::endl; - } - } - - double log_likelihood(const double& dd, const double& aa) const { - if (aa <= -dd) return -std::numeric_limits<double>::infinity(); - //double llh = Md::log_beta_density(dd, 10, 3) + Md::log_gamma_density(aa, 1, 1); - double llh = Md::log_beta_density(dd, 1, 1) + - Md::log_gamma_density(dd + aa, 1, 1); - typename std::tr1::unordered_map<std::vector<WordID>, MFCR<1,TRule>, boost::hash<std::vector<WordID> > >::const_iterator it; - for (it = r.begin(); it != r.end(); ++it) - llh += it->second.log_crp_prob(dd, aa); - return llh; - } - - struct DiscountResampler { - DiscountResampler(const MConditionalTranslationModel& m) : m_(m) {} - const MConditionalTranslationModel& m_; - double operator()(const double& proposed_discount) const { - return m_.log_likelihood(proposed_discount, m_.strength); - } - }; - - struct AlphaResampler { - AlphaResampler(const MConditionalTranslationModel& m) : m_(m) {} - const MConditionalTranslationModel& m_; - double operator()(const double& proposed_strength) const { - return m_.log_likelihood(m_.d, proposed_strength); - } - }; - - void ResampleHyperparameters(MT19937* rng) { - typename std::tr1::unordered_map<std::vector<WordID>, MFCR<1,TRule>, boost::hash<std::vector<WordID> > >::iterator it; -#if 1 - for (it = r.begin(); it != r.end(); ++it) { - it->second.resample_hyperparameters(rng); - } -#else - const unsigned nloop = 5; - const unsigned niterations = 10; - DiscountResampler dr(*this); - AlphaResampler ar(*this); - for (int iter = 0; iter < nloop; ++iter) { - strength = slice_sampler1d(ar, strength, *rng, -d + std::numeric_limits<double>::min(), - std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations); - double min_discount = std::numeric_limits<double>::min(); - if (strength < 0.0) min_discount -= strength; - d = slice_sampler1d(dr, d, *rng, min_discount, - 1.0, 0.0, niterations, 100*niterations); - } - strength = slice_sampler1d(ar, strength, *rng, -d, - std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations); - std::cerr << "MConditionalTranslationModel(d=" << d << ",s=" << strength << ") = " << log_likelihood(d, strength) << std::endl; - for (it = r.begin(); it != r.end(); ++it) { - it->second.set_discount(d); - it->second.set_strength(strength); - } -#endif - } - - int DecrementRule(const TRule& rule, MT19937* rng) { - RuleModelHash::iterator it = r.find(rule.f_); - assert(it != r.end()); - const TableCount delta = it->second.decrement(rule, rng); - if (delta.count) { - if (it->second.num_customers() == 0) r.erase(it); - } - return delta.count; - } - - int IncrementRule(const TRule& rule, MT19937* rng) { - RuleModelHash::iterator it = r.find(rule.f_); - if (it == r.end()) { - //it = r.insert(make_pair(rule.f_, MFCR<1,TRule>(d, strength))).first; - it = r.insert(make_pair(rule.f_, MFCR<1,TRule>(1,1,1,1,0.6, -0.12))).first; - } - p0s[0] = rp0(rule); - TableCount delta = it->second.increment(rule, p0s.begin(), lambdas.begin(), rng); - return delta.count; - } - - prob_t RuleProbability(const TRule& rule) const { - prob_t p; - RuleModelHash::const_iterator it = r.find(rule.f_); - if (it == r.end()) { - p = rp0(rule); - } else { - p0s[0] = rp0(rule); - p = it->second.prob(rule, p0s.begin(), lambdas.begin()); - } - return p; - } - - prob_t Likelihood() const { - prob_t p; p.logeq(log_likelihood(d, strength)); - return p; - } - - const ConditionalBaseMeasure& rp0; - typedef std::tr1::unordered_map<std::vector<WordID>, - MFCR<1, TRule>, - boost::hash<std::vector<WordID> > > RuleModelHash; - RuleModelHash r; - double d, strength; - std::vector<prob_t> lambdas; - mutable std::vector<prob_t> p0s; -}; - -template <typename ConditionalBaseMeasure> -struct ConditionalTranslationModel { - explicit ConditionalTranslationModel(ConditionalBaseMeasure& rcp0) : - rp0(rcp0) {} - - void Summary() const { - std::cerr << "Number of conditioning contexts: " << r.size() << std::endl; - for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) { - std::cerr << TD::GetString(it->first) << " \t(\\alpha = " << it->second.alpha() << ") --------------------------" << std::endl; - for (CCRP_NoTable<TRule>::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2) - std::cerr << " " << i2->second << '\t' << i2->first << std::endl; - } - } - - void ResampleHyperparameters(MT19937* rng) { - for (RuleModelHash::iterator it = r.begin(); it != r.end(); ++it) - it->second.resample_hyperparameters(rng); - } - - int DecrementRule(const TRule& rule) { - RuleModelHash::iterator it = r.find(rule.f_); - assert(it != r.end()); - int count = it->second.decrement(rule); - if (count) { - if (it->second.num_customers() == 0) r.erase(it); - } - return count; - } - - int IncrementRule(const TRule& rule) { - RuleModelHash::iterator it = r.find(rule.f_); - if (it == r.end()) { - it = r.insert(make_pair(rule.f_, CCRP_NoTable<TRule>(1.0, 1.0, 8.0))).first; - } - int count = it->second.increment(rule); - return count; - } - - void IncrementRules(const std::vector<TRulePtr>& rules) { - for (int i = 0; i < rules.size(); ++i) - IncrementRule(*rules[i]); - } - - void DecrementRules(const std::vector<TRulePtr>& rules) { - for (int i = 0; i < rules.size(); ++i) - DecrementRule(*rules[i]); - } - - prob_t RuleProbability(const TRule& rule) const { - prob_t p; - RuleModelHash::const_iterator it = r.find(rule.f_); - if (it == r.end()) { - p.logeq(log(rp0(rule))); - } else { - p.logeq(it->second.logprob(rule, log(rp0(rule)))); - } - return p; - } - - prob_t Likelihood() const { - prob_t p = prob_t::One(); - for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) { - prob_t q; q.logeq(it->second.log_crp_prob()); - p *= q; - for (CCRP_NoTable<TRule>::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2) - p *= rp0(i2->first); - } - return p; - } - - const ConditionalBaseMeasure& rp0; - typedef std::tr1::unordered_map<std::vector<WordID>, - CCRP_NoTable<TRule>, - boost::hash<std::vector<WordID> > > RuleModelHash; - RuleModelHash r; -}; - -template <typename ConditionalBaseMeasure> -struct ConditionalParallelSegementationModel { - explicit ConditionalParallelSegementationModel(ConditionalBaseMeasure& rcp0) : - tmodel(rcp0), base(prob_t::One()), aligns(1,1) {} - - ConditionalTranslationModel<ConditionalBaseMeasure> tmodel; - - void DecrementRule(const TRule& rule) { - tmodel.DecrementRule(rule); - } - - void IncrementRule(const TRule& rule) { - tmodel.IncrementRule(rule); - } - - void IncrementRulesAndAlignments(const std::vector<TRulePtr>& rules) { - tmodel.IncrementRules(rules); - for (int i = 0; i < rules.size(); ++i) { - IncrementAlign(rules[i]->f_.size()); - } - } - - void DecrementRulesAndAlignments(const std::vector<TRulePtr>& rules) { - tmodel.DecrementRules(rules); - for (int i = 0; i < rules.size(); ++i) { - DecrementAlign(rules[i]->f_.size()); - } - } - - prob_t RuleProbability(const TRule& rule) const { - return tmodel.RuleProbability(rule); - } - - void IncrementAlign(unsigned span) { - if (aligns.increment(span)) { - // TODO - } - } - - void DecrementAlign(unsigned span) { - if (aligns.decrement(span)) { - // TODO - } - } - - prob_t AlignProbability(unsigned span) const { - prob_t p; - p.logeq(aligns.logprob(span, Md::log_poisson(span, 1.0))); - return p; - } - - prob_t Likelihood() const { - prob_t p; p.logeq(aligns.log_crp_prob()); - p *= base; - p *= tmodel.Likelihood(); - return p; - } - - prob_t base; - CCRP_NoTable<unsigned> aligns; -}; - -#endif - |