summaryrefslogtreecommitdiff
path: root/gi/pf/cbgi.cc
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cs.cmu.edu>2011-10-11 12:06:32 +0100
committerChris Dyer <cdyer@cs.cmu.edu>2011-10-11 12:06:32 +0100
commit0acc92a0eecf04a2c429f6f7685bfcaa68c7ec3a (patch)
treef85f238a7921541702112ae0835cf638c5c7abf2 /gi/pf/cbgi.cc
parentb77d23a3032f42be3705e88ae1734bae779fb9a3 (diff)
check in some experimental particle filtering code, some gitignore fixes
Diffstat (limited to 'gi/pf/cbgi.cc')
-rw-r--r--gi/pf/cbgi.cc340
1 files changed, 340 insertions, 0 deletions
diff --git a/gi/pf/cbgi.cc b/gi/pf/cbgi.cc
new file mode 100644
index 00000000..20204e8a
--- /dev/null
+++ b/gi/pf/cbgi.cc
@@ -0,0 +1,340 @@
+#include <queue>
+#include <sstream>
+#include <iostream>
+
+#include <boost/unordered_map.hpp>
+#include <boost/functional/hash.hpp>
+
+#include "sampler.h"
+#include "filelib.h"
+#include "hg_io.h"
+#include "hg.h"
+#include "ccrp_nt.h"
+#include "trule.h"
+#include "inside_outside.h"
+
+using namespace std;
+using namespace std::tr1;
+
+double log_poisson(unsigned x, const double& lambda) {
+ assert(lambda > 0.0);
+ return log(lambda) * x - lgamma(x + 1) - lambda;
+}
+
+double log_decay(unsigned x, const double& b) {
+ assert(b > 1.0);
+ assert(x > 0);
+ return log(b - 1) - x * log(b);
+}
+
+size_t hash_value(const TRule& r) {
+ // TODO fix hash function
+ size_t h = boost::hash_value(r.e_) * boost::hash_value(r.f_) * r.lhs_;
+ return h;
+}
+
+bool operator==(const TRule& a, const TRule& b) {
+ return (a.lhs_ == b.lhs_ && a.e_ == b.e_ && a.f_ == b.f_);
+}
+
+struct SimpleBase {
+ SimpleBase(unsigned esize, unsigned fsize, unsigned ntsize = 144) :
+ uniform_e(-log(esize)),
+ uniform_f(-log(fsize)),
+ uniform_nt(-log(ntsize)) {
+ }
+
+ // binomial coefficient
+ static double choose(unsigned n, unsigned k) {
+ return exp(lgamma(n + 1) - lgamma(k + 1) - lgamma(n - k + 1));
+ }
+
+ // count the number of patterns of terminals and NTs in the rule, given elen and flen
+ static double log_number_of_patterns(const unsigned flen, const unsigned elen) {
+ static vector<vector<double> > counts;
+ if (elen >= counts.size()) counts.resize(elen + 1);
+ if (flen >= counts[elen].size()) counts[elen].resize(flen + 1);
+ double& count = counts[elen][flen];
+ if (count) return log(count);
+ const unsigned max_arity = min(elen, flen);
+ for (unsigned a = 0; a <= max_arity; ++a)
+ count += choose(elen, a) * choose(flen, a);
+ return log(count);
+ }
+
+ // return logp0 of rule | LHS
+ double operator()(const TRule& rule) const {
+ const unsigned flen = rule.f_.size();
+ const unsigned elen = rule.e_.size();
+#if 0
+ double p = 0;
+ p += log_poisson(flen, 0.5); // flen ~Pois(0.5)
+ p += log_poisson(elen, flen); // elen | flen ~Pois(flen)
+ p -= log_number_of_patterns(flen, elen); // pattern | flen,elen ~Uniform
+ for (unsigned i = 0; i < flen; ++i) { // for each position in f-RHS
+ if (rule.f_[i] <= 0) // according to pattern
+ p += uniform_nt; // draw NT ~Uniform
+ else
+ p += uniform_f; // draw f terminal ~Uniform
+ }
+ p -= lgamma(rule.Arity() + 1); // draw permutation ~Uniform
+ for (unsigned i = 0; i < elen; ++i) { // for each position in e-RHS
+ if (rule.e_[i] > 0) // according to pattern
+ p += uniform_e; // draw e|f term ~Uniform
+ // TODO this should prob be model 1
+ }
+#else
+ double p = 0;
+ bool is_abstract = rule.f_[0] <= 0;
+ p += log(0.5);
+ if (is_abstract) {
+ if (flen == 2) p += log(0.99); else p += log(0.01);
+ } else {
+ p += log_decay(flen, 3);
+ }
+
+ for (unsigned i = 0; i < flen; ++i) { // for each position in f-RHS
+ if (rule.f_[i] <= 0) // according to pattern
+ p += uniform_nt; // draw NT ~Uniform
+ else
+ p += uniform_f; // draw f terminal ~Uniform
+ }
+#endif
+ return p;
+ }
+ const double uniform_e;
+ const double uniform_f;
+ const double uniform_nt;
+ vector<double> arities;
+};
+
+MT19937* rng = NULL;
+
+template <typename Base>
+struct MHSamplerEdgeProb {
+ MHSamplerEdgeProb(const Hypergraph& hg,
+ const map<int, CCRP_NoTable<TRule> >& rdp,
+ const Base& logp0,
+ const bool exclude_multiword_terminals) : edge_probs(hg.edges_.size()) {
+ for (int i = 0; i < edge_probs.size(); ++i) {
+ const TRule& rule = *hg.edges_[i].rule_;
+ const map<int, CCRP_NoTable<TRule> >::const_iterator it = rdp.find(rule.lhs_);
+ assert(it != rdp.end());
+ const CCRP_NoTable<TRule>& crp = it->second;
+ edge_probs[i].logeq(crp.logprob(rule, logp0(rule)));
+ if (exclude_multiword_terminals && rule.f_[0] > 0 && rule.f_.size() > 1)
+ edge_probs[i] = prob_t::Zero();
+ }
+ }
+ inline prob_t operator()(const Hypergraph::Edge& e) const {
+ return edge_probs[e.id_];
+ }
+ prob_t DerivationProb(const vector<int>& d) const {
+ prob_t p = prob_t::One();
+ for (unsigned i = 0; i < d.size(); ++i)
+ p *= edge_probs[d[i]];
+ return p;
+ }
+ vector<prob_t> edge_probs;
+};
+
+template <typename Base>
+struct ModelAndData {
+ ModelAndData() :
+ base_lh(prob_t::One()),
+ logp0(10000, 10000),
+ mh_samples(),
+ mh_rejects() {}
+
+ void SampleCorpus(const string& hgpath, int i);
+ void ResampleHyperparameters() {
+ for (map<int, CCRP_NoTable<TRule> >::iterator it = rules.begin(); it != rules.end(); ++it)
+ it->second.resample_hyperparameters(rng);
+ }
+
+ CCRP_NoTable<TRule>& RuleCRP(int lhs) {
+ map<int, CCRP_NoTable<TRule> >::iterator it = rules.find(lhs);
+ if (it == rules.end()) {
+ rules.insert(make_pair(lhs, CCRP_NoTable<TRule>(1,1)));
+ it = rules.find(lhs);
+ }
+ return it->second;
+ }
+
+ void IncrementRule(const TRule& rule) {
+ CCRP_NoTable<TRule>& crp = RuleCRP(rule.lhs_);
+ if (crp.increment(rule)) {
+ prob_t p; p.logeq(logp0(rule));
+ base_lh *= p;
+ }
+ }
+
+ void DecrementRule(const TRule& rule) {
+ CCRP_NoTable<TRule>& crp = RuleCRP(rule.lhs_);
+ if (crp.decrement(rule)) {
+ prob_t p; p.logeq(logp0(rule));
+ base_lh /= p;
+ }
+ }
+
+ void DecrementDerivation(const Hypergraph& hg, const vector<int>& d) {
+ for (unsigned i = 0; i < d.size(); ++i) {
+ const TRule& rule = *hg.edges_[d[i]].rule_;
+ DecrementRule(rule);
+ }
+ }
+
+ void IncrementDerivation(const Hypergraph& hg, const vector<int>& d) {
+ for (unsigned i = 0; i < d.size(); ++i) {
+ const TRule& rule = *hg.edges_[d[i]].rule_;
+ IncrementRule(rule);
+ }
+ }
+
+ prob_t Likelihood() const {
+ prob_t p = prob_t::One();
+ for (map<int, CCRP_NoTable<TRule> >::const_iterator it = rules.begin(); it != rules.end(); ++it) {
+ prob_t q; q.logeq(it->second.log_crp_prob());
+ p *= q;
+ }
+ p *= base_lh;
+ return p;
+ }
+
+ void ResampleDerivation(const Hypergraph& hg, vector<int>* sampled_derivation);
+
+ map<int, CCRP_NoTable<TRule> > rules; // [lhs] -> distribution over RHSs
+ prob_t base_lh;
+ SimpleBase logp0;
+ vector<vector<int> > samples; // sampled derivations
+ unsigned int mh_samples;
+ unsigned int mh_rejects;
+};
+
+template <typename Base>
+void ModelAndData<Base>::SampleCorpus(const string& hgpath, int n) {
+ vector<Hypergraph> hgs(n); hgs.clear();
+ boost::unordered_map<TRule, unsigned> acc;
+ map<int, unsigned> tot;
+ for (int i = 0; i < n; ++i) {
+ ostringstream os;
+ os << hgpath << '/' << i << ".json.gz";
+ if (!FileExists(os.str())) continue;
+ hgs.push_back(Hypergraph());
+ ReadFile rf(os.str());
+ HypergraphIO::ReadFromJSON(rf.stream(), &hgs.back());
+ }
+ cerr << "Read " << hgs.size() << " alignment hypergraphs.\n";
+ samples.resize(hgs.size());
+ const unsigned SAMPLES = 2000;
+ const unsigned burnin = 3 * SAMPLES / 4;
+ const unsigned every = 20;
+ for (unsigned s = 0; s < SAMPLES; ++s) {
+ if (s % 10 == 0) {
+ if (s > 0) { cerr << endl; ResampleHyperparameters(); }
+ cerr << "[" << s << " LLH=" << log(Likelihood()) << " REJECTS=" << ((double)mh_rejects / mh_samples) << " LHS's=" << rules.size() << " base=" << log(base_lh) << "] ";
+ }
+ cerr << '.';
+ for (unsigned i = 0; i < hgs.size(); ++i) {
+ ResampleDerivation(hgs[i], &samples[i]);
+ if (s > burnin && s % every == 0) {
+ for (unsigned j = 0; j < samples[i].size(); ++j) {
+ const TRule& rule = *hgs[i].edges_[samples[i][j]].rule_;
+ ++acc[rule];
+ ++tot[rule.lhs_];
+ }
+ }
+ }
+ }
+ cerr << endl;
+ for (boost::unordered_map<TRule,unsigned>::iterator it = acc.begin(); it != acc.end(); ++it) {
+ cout << it->first << " MyProb=" << log(it->second)-log(tot[it->first.lhs_]) << endl;
+ }
+}
+
+template <typename Base>
+void ModelAndData<Base>::ResampleDerivation(const Hypergraph& hg, vector<int>* sampled_deriv) {
+ vector<int> cur;
+ cur.swap(*sampled_deriv);
+
+ const prob_t p_cur = Likelihood();
+ DecrementDerivation(hg, cur);
+ if (cur.empty()) {
+ // first iteration, create restaurants
+ for (int i = 0; i < hg.edges_.size(); ++i)
+ RuleCRP(hg.edges_[i].rule_->lhs_);
+ }
+ MHSamplerEdgeProb<SimpleBase> wf(hg, rules, logp0, cur.empty());
+// MHSamplerEdgeProb<SimpleBase> wf(hg, rules, logp0, false);
+ const prob_t q_cur = wf.DerivationProb(cur);
+ vector<prob_t> node_probs;
+ Inside<prob_t, MHSamplerEdgeProb<SimpleBase> >(hg, &node_probs, wf);
+ queue<unsigned> q;
+ q.push(hg.nodes_.size() - 3);
+ while(!q.empty()) {
+ unsigned cur_node_id = q.front();
+// cerr << "NODE=" << cur_node_id << endl;
+ q.pop();
+ const Hypergraph::Node& node = hg.nodes_[cur_node_id];
+ const unsigned num_in_edges = node.in_edges_.size();
+ unsigned sampled_edge = 0;
+ if (num_in_edges == 1) {
+ sampled_edge = node.in_edges_[0];
+ } else {
+ prob_t z;
+ assert(num_in_edges > 1);
+ SampleSet<prob_t> ss;
+ for (unsigned j = 0; j < num_in_edges; ++j) {
+ const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
+ prob_t p = wf.edge_probs[edge.id_]; // edge proposal prob
+ for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k)
+ p *= node_probs[edge.tail_nodes_[k]];
+ ss.add(p);
+// cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl;
+ z += p;
+ }
+// for (unsigned j = 0; j < num_in_edges; ++j) {
+// const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
+// cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl;
+// }
+// cerr << " --- \n";
+ sampled_edge = node.in_edges_[rng->SelectSample(ss)];
+ }
+ sampled_deriv->push_back(sampled_edge);
+ const Hypergraph::Edge& edge = hg.edges_[sampled_edge];
+ for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) {
+ q.push(edge.tail_nodes_[j]);
+ }
+ }
+ IncrementDerivation(hg, *sampled_deriv);
+
+// cerr << "sampled derivation contains " << sampled_deriv->size() << " edges\n";
+// cerr << "DERIV:\n";
+// for (int i = 0; i < sampled_deriv->size(); ++i) {
+// cerr << " " << hg.edges_[(*sampled_deriv)[i]].rule_->AsString() << endl;
+// }
+
+ if (cur.empty()) return; // accept first sample
+
+ ++mh_samples;
+ // only need to do MH if proposal is different to current state
+ if (cur != *sampled_deriv) {
+ const prob_t q_prop = wf.DerivationProb(*sampled_deriv);
+ const prob_t p_prop = Likelihood();
+ if (!rng->AcceptMetropolisHastings(p_prop, p_cur, q_prop, q_cur)) {
+ ++mh_rejects;
+ DecrementDerivation(hg, *sampled_deriv);
+ IncrementDerivation(hg, cur);
+ swap(cur, *sampled_deriv);
+ }
+ }
+}
+
+int main(int argc, char** argv) {
+ rng = new MT19937;
+ ModelAndData<SimpleBase> m;
+ m.SampleCorpus("./hgs", 50);
+ // m.SampleCorpus("./btec/hgs", 5000);
+ return 0;
+}
+