diff options
author | graehl <graehl@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-07-25 02:52:53 +0000 |
---|---|---|
committer | graehl <graehl@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-07-25 02:52:53 +0000 |
commit | 0f80272c5e32dd3a0d5d747d00c914b0a6bf0be8 (patch) | |
tree | 66e17864ccce229ffd46dcafc114839c5c17e64e /extools/featurize_grammar.cc | |
parent | 3469df4ef7163c056423e8815b9bb01534561cd5 (diff) |
compile
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@404 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'extools/featurize_grammar.cc')
-rw-r--r-- | extools/featurize_grammar.cc | 60 |
1 files changed, 30 insertions, 30 deletions
diff --git a/extools/featurize_grammar.cc b/extools/featurize_grammar.cc index 2fc53ff9..0c3418eb 100644 --- a/extools/featurize_grammar.cc +++ b/extools/featurize_grammar.cc @@ -36,12 +36,12 @@ static const size_t MAX_LINE_LENGTH = 64000000; // Data structures for indexing and counting rules //typedef boost::tuple< WordID, vector<WordID>, vector<WordID> > RuleTuple; struct RuleTuple { - RuleTuple(const WordID& lhs, const vector<WordID>& s, const vector<WordID>& t) + RuleTuple(const WordID& lhs, const vector<WordID>& s, const vector<WordID>& t) : m_lhs(lhs), m_source(s), m_target(t) { hash_value(); m_dirty = false; } - + size_t hash_value() const { // if (m_dirty) { size_t hash = 0; @@ -99,17 +99,17 @@ struct FreqCount { Counts counts; int inc(const Key& r, int c=1) { - pair<typename Counts::iterator,bool> itb + pair<typename Counts::iterator,bool> itb = counts.insert(make_pair(r,c)); - if (!itb.second) - itb.first->second += c; + if (!itb.second) + itb.first->second += c; return itb.first->second; } int inc_if_exists(const Key& r, int c=1) { typename Counts::iterator it = counts.find(r); - if (it != counts.end()) - it->second += c; + if (it != counts.end()) + it->second += c; return it->second; } @@ -284,9 +284,9 @@ struct LogRuleCount : public FeatureExtractor { const RuleStatistics& info, SparseVector<float>* result) const { (void) lhs; (void) src; (void) trg; - //result->set_value(fid_, log(info.counts.value(kCFE))); - result->set_value(fid_, log(info.counts.value(kCFE))); - if (IsZero(info.counts.value(kCFE))) + //result->set_value(fid_, log(info.counts.get(kCFE))); + result->set_value(fid_, log(info.counts.get(kCFE))); + if (IsZero(info.counts.get(kCFE))) result->set_value(sfid_, 1); } const int fid_; @@ -300,14 +300,14 @@ struct RulePenalty : public FeatureExtractor { const vector<WordID>& /*src*/, const vector<WordID>& /*trg*/, const RuleStatistics& /*info*/, - SparseVector<float>* result) const + SparseVector<float>* result) const { result->set_value(fid_, 1); } const int fid_; }; -// The negative log of the condition rule probs -// ignoring the identities of the non-terminals. +// The negative log of the condition rule probs +// ignoring the identities of the non-terminals. // i.e. the prob Hiero would assign. // Also extracts Labelled features. struct XFeatures: public FeatureExtractor { @@ -335,7 +335,7 @@ struct XFeatures: public FeatureExtractor { const RuleStatistics& info) { RuleTuple r(-1, src, trg); map_rule(r); - const int count = info.counts.value(kCFE); + const int count = info.counts.get(kCFE); assert(count > 0); rule_counts.inc_if_exists(r, count); source_counts.inc_if_exists(r.source(), count); @@ -354,14 +354,14 @@ struct XFeatures: public FeatureExtractor { const int t_c = target_counts(r.target()); assert(t_c > 0); result->set_value(fid_xfe, log(t_c) - l_r_freq); - result->set_value(fid_labelledfe, log(t_c) - log(info.counts.value(kCFE))); + result->set_value(fid_labelledfe, log(t_c) - log(info.counts.get(kCFE))); // if (t_c == 1) // result->set_value(fid_xesingleton, 1.0); const int s_c = source_counts(r.source()); assert(s_c > 0); result->set_value(fid_xef, log(s_c) - l_r_freq); - result->set_value(fid_labelledef, log(s_c) - log(info.counts.value(kCFE))); + result->set_value(fid_labelledef, log(s_c) - log(info.counts.get(kCFE))); // if (s_c == 1) // result->set_value(fid_xfsingleton, 1.0); } @@ -407,10 +407,10 @@ struct LabelledRuleConditionals: public FeatureExtractor { const vector<WordID>& trg, const RuleStatistics& info) { RuleTuple r(lhs, src, trg); - rule_counts.inc_if_exists(r, info.counts.value(kCFE)); - source_counts.inc_if_exists(r.source(), info.counts.value(kCFE)); + rule_counts.inc_if_exists(r, info.counts.get(kCFE)); + source_counts.inc_if_exists(r.source(), info.counts.get(kCFE)); - target_counts.inc_if_exists(r.target(), info.counts.value(kCFE)); + target_counts.inc_if_exists(r.target(), info.counts.get(kCFE)); } virtual void ExtractFeatures(const WordID lhs, @@ -436,10 +436,10 @@ struct LHSProb: public FeatureExtractor { virtual void ObserveUnfilteredRule(const WordID lhs, const vector<WordID>& /*src*/, const vector<WordID>& /*trg*/, - const RuleStatistics& info) { - int count = info.counts.value(kCFE); + const RuleStatistics& info) { + int count = info.counts.get(kCFE); total_count += count; - lhs_counts.inc(lhs, count); + lhs_counts.inc(lhs, count); } virtual void ExtractFeatures(const WordID lhs, @@ -459,22 +459,22 @@ struct LHSProb: public FeatureExtractor { // Proper rule generative probability: p( s,t | lhs) struct GenerativeProb: public FeatureExtractor { - GenerativeProb() : + GenerativeProb() : fid_(FD::Convert("GenerativeProb")), kCFE(FD::Convert("CFE")) {} virtual void ObserveUnfilteredRule(const WordID lhs, const vector<WordID>& /*src*/, const vector<WordID>& /*trg*/, - const RuleStatistics& info) - { lhs_counts.inc(lhs, info.counts.value(kCFE)); } + const RuleStatistics& info) + { lhs_counts.inc(lhs, info.counts.get(kCFE)); } virtual void ExtractFeatures(const WordID lhs, const vector<WordID>& /*src*/, const vector<WordID>& /*trg*/, const RuleStatistics& info, SparseVector<float>* result) const { - double log_prob = log(lhs_counts(lhs)) - log(info.counts.value(kCFE)); + double log_prob = log(lhs_counts(lhs)) - log(info.counts.get(kCFE)); result->set_value(fid_, log_prob); } @@ -502,8 +502,8 @@ struct LabellingShape: public FeatureExtractor { const RuleStatistics& info) { RuleTuple r(-1, src, trg); map_rule(r); - rule_counts.inc_if_exists(r, info.counts.value(kCFE)); - source_counts.inc_if_exists(r.source(), info.counts.value(kCFE)); + rule_counts.inc_if_exists(r, info.counts.get(kCFE)); + source_counts.inc_if_exists(r.source(), info.counts.get(kCFE)); } virtual void ExtractFeatures(const WordID /*lhs*/, @@ -519,9 +519,9 @@ struct LabellingShape: public FeatureExtractor { // Replace all terminals with generic -1 void map_rule(RuleTuple& r) const { - for (vector<WordID>::iterator it = r.target().begin(); it != r.target().end(); ++it) + for (vector<WordID>::iterator it = r.target().begin(); it != r.target().end(); ++it) if (*it <= 0) *it = -1; - for (vector<WordID>::iterator it = r.source().begin(); it != r.source().end(); ++it) + for (vector<WordID>::iterator it = r.source().begin(); it != r.source().end(); ++it) if (*it <= 0) *it = -1; } |