summaryrefslogtreecommitdiff
path: root/dtrain/score.cc
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2011-09-23 22:02:45 +0200
committerPatrick Simianer <p@simianer.de>2011-09-23 22:02:45 +0200
commite8f1795f6aa14ca4a936d675d446894f5c721190 (patch)
tree9747dd7386c54f0803734331d2772181b66de983 /dtrain/score.cc
parent9bde56ed23b4b97f8193f9f8f582f18086ff17c1 (diff)
more renaming, random pair sampler uses boost rng
Diffstat (limited to 'dtrain/score.cc')
-rw-r--r--dtrain/score.cc165
1 files changed, 74 insertions, 91 deletions
diff --git a/dtrain/score.cc b/dtrain/score.cc
index 1e98c11d..d08e87f3 100644
--- a/dtrain/score.cc
+++ b/dtrain/score.cc
@@ -1,166 +1,149 @@
#include "score.h"
-
namespace dtrain
{
-/******************************************************************************
- * NGRAMS
- *
- *
- * make_ngrams
- *
- */
-typedef map<vector<WordID>, size_t> Ngrams;
Ngrams
-make_ngrams( vector<WordID>& s, size_t N )
+make_ngrams(vector<WordID>& s, size_t N)
{
Ngrams ngrams;
vector<WordID> ng;
- for ( size_t i = 0; i < s.size(); i++ ) {
+ for (size_t i = 0; i < s.size(); i++) {
ng.clear();
- for ( size_t j = i; j < min( i+N, s.size() ); j++ ) {
- ng.push_back( s[j] );
+ for (size_t j = i; j < min(i+N, s.size()); j++) {
+ ng.push_back(s[j]);
ngrams[ng]++;
}
}
return ngrams;
}
-
-/*
- * ngram_matches
- *
- */
NgramCounts
-make_ngram_counts( vector<WordID> hyp, vector<WordID> ref, size_t N )
+make_ngram_counts(vector<WordID> hyp, vector<WordID> ref, size_t N)
{
- Ngrams hyp_ngrams = make_ngrams( hyp, N );
- Ngrams ref_ngrams = make_ngrams( ref, N );
- NgramCounts counts( N );
+ Ngrams hyp_ngrams = make_ngrams(hyp, N);
+ Ngrams ref_ngrams = make_ngrams(ref, N);
+ NgramCounts counts(N);
Ngrams::iterator it;
Ngrams::iterator ti;
- for ( it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++ ) {
- ti = ref_ngrams.find( it->first );
- if ( ti != ref_ngrams.end() ) {
- counts.add( it->second, ti->second, it->first.size() - 1 );
+ for (it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++) {
+ ti = ref_ngrams.find(it->first);
+ if (ti != ref_ngrams.end()) {
+ counts.add(it->second, ti->second, it->first.size() - 1);
} else {
- counts.add( it->second, 0, it->first.size() - 1 );
+ counts.add(it->second, 0, it->first.size() - 1);
}
}
return counts;
}
-
-/******************************************************************************
- * SCORERS
- *
+/*
+ * bleu
*
- * brevity_penaly
+ * as in "BLEU: a Method for Automatic Evaluation
+ * of Machine Translation"
+ * (Papineni et al. '02)
*
+ * NOTE: 0 if one n in {1..N} has 0 count
*/
double
-brevity_penaly( const size_t hyp_len, const size_t ref_len )
+brevity_penaly(const size_t hyp_len, const size_t ref_len)
{
- if ( hyp_len > ref_len ) return 1;
- return exp( 1 - (double)ref_len/(double)hyp_len );
+ if (hyp_len > ref_len) return 1;
+ return exp(1 - (double)ref_len/(double)hyp_len);
}
-
-
-/*
- * bleu
- * as in "BLEU: a Method for Automatic Evaluation of Machine Translation" (Papineni et al. '02)
- * page TODO
- * 0 if for N one of the counts = 0
- */
double
-bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- size_t N, vector<float> weights )
+bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
+ size_t N, vector<float> weights )
{
- if ( hyp_len == 0 || ref_len == 0 ) return 0;
- if ( ref_len < N ) N = ref_len;
+ if (hyp_len == 0 || ref_len == 0) return 0;
+ if (ref_len < N) N = ref_len;
float N_ = (float)N;
- if ( weights.empty() )
+ if (weights.empty())
{
- for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ );
+ for (size_t i = 0; i < N; i++) weights.push_back(1/N_);
}
double sum = 0;
- for ( size_t i = 0; i < N; i++ ) {
- if ( counts.clipped[i] == 0 || counts.sum[i] == 0 ) return 0;
- sum += weights[i] * log( (double)counts.clipped[i] / (double)counts.sum[i] );
+ for (size_t i = 0; i < N; i++) {
+ if (counts.clipped[i] == 0 || counts.sum[i] == 0) return 0;
+ sum += weights[i] * log((double)counts.clipped[i] / (double)counts.sum[i]);
}
- return brevity_penaly( hyp_len, ref_len ) * exp( sum );
+ return brevity_penaly(hyp_len, ref_len) * exp(sum);
}
-
/*
- * stupid_bleu
- * as in "ORANGE: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation (Lin & Och '04)
- * page TODO
- * 0 iff no 1gram match
+ * 'stupid' bleu
+ *
+ * as in "ORANGE: a Method for Evaluating
+ * Automatic Evaluation Metrics
+ * for Machine Translation"
+ * (Lin & Och '04)
+ *
+ * NOTE: 0 iff no 1gram match
*/
double
-stupid_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- size_t N, vector<float> weights )
+stupid_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
+ size_t N, vector<float> weights )
{
- if ( hyp_len == 0 || ref_len == 0 ) return 0;
- if ( ref_len < N ) N = ref_len;
+ if (hyp_len == 0 || ref_len == 0) return 0;
+ if (ref_len < N) N = ref_len;
float N_ = (float)N;
- if ( weights.empty() )
+ if (weights.empty())
{
- for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ );
+ for (size_t i = 0; i < N; i++) weights.push_back(1/N_);
}
double sum = 0;
float add = 0;
- for ( size_t i = 0; i < N; i++ ) {
- if ( i == 1 ) add = 1;
- sum += weights[i] * log( ((double)counts.clipped[i] + add) / ((double)counts.sum[i] + add) );
+ for (size_t i = 0; i < N; i++) {
+ if (i == 1) add = 1;
+ sum += weights[i] * log(((double)counts.clipped[i] + add) / ((double)counts.sum[i] + add));
}
- return brevity_penaly( hyp_len, ref_len ) * exp( sum );
+ return brevity_penaly(hyp_len, ref_len) * exp(sum);
}
-
/*
- * smooth_bleu
- * as in "An End-to-End Discriminative Approach to Machine Translation" (Liang et al. '06)
- * page TODO
- * max. 0.9375
+ * smooth bleu
+ *
+ * as in "An End-to-End Discriminative Approach
+ * to Machine Translation"
+ * (Liang et al. '06)
+ *
+ * NOTE: max is 0.9375
*/
double
-smooth_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- const size_t N, vector<float> weights )
+smooth_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
+ const size_t N, vector<float> weights )
{
- if ( hyp_len == 0 || ref_len == 0 ) return 0;
+ if (hyp_len == 0 || ref_len == 0) return 0;
float N_ = (float)N;
- if ( weights.empty() )
+ if (weights.empty())
{
- for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ );
+ for (size_t i = 0; i < N; i++) weights.push_back(1/N_);
}
double sum = 0;
float j = 1;
- for ( size_t i = 0; i < N; i++ ) {
- if ( counts.clipped[i] == 0 || counts.sum[i] == 0) continue;
- sum += exp((weights[i] * log((double)counts.clipped[i]/(double)counts.sum[i]))) / pow( 2, N_-j+1 );
+ for (size_t i = 0; i < N; i++) {
+ if (counts.clipped[i] == 0 || counts.sum[i] == 0) continue;
+ sum += exp((weights[i] * log((double)counts.clipped[i]/(double)counts.sum[i]))) / pow(2, N_-j+1);
j++;
}
- return brevity_penaly( hyp_len, ref_len ) * sum;
+ return brevity_penaly(hyp_len, ref_len) * sum;
}
-
/*
- * approx_bleu
- * as in "Online Large-Margin Training for Statistical Machine Translation" (Watanabe et al. '07)
- * CHIANG, RESNIK, synt struct features
- * .9*
- * page TODO
+ * approx. bleu
*
+ * as in "Online Large-Margin Training of Syntactic
+ * and Structural Translation Features"
+ * (Chiang et al. '08)
*/
double
-approx_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- const size_t N, vector<float> weights )
+approx_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
+ const size_t N, vector<float> weights)
{
- return bleu( counts, hyp_len, ref_len, N, weights );
+ return brevity_penaly(hyp_len, ref_len)
+ * 0.9 * bleu(counts, hyp_len, ref_len, N, weights);
}