diff options
author | Patrick Simianer <p@simianer.de> | 2011-09-23 22:02:45 +0200 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2011-09-23 22:02:45 +0200 |
commit | e8f1795f6aa14ca4a936d675d446894f5c721190 (patch) | |
tree | 9747dd7386c54f0803734331d2772181b66de983 /dtrain/hgsampler.cc | |
parent | 9bde56ed23b4b97f8193f9f8f582f18086ff17c1 (diff) |
more renaming, random pair sampler uses boost rng
Diffstat (limited to 'dtrain/hgsampler.cc')
-rw-r--r-- | dtrain/hgsampler.cc | 74 |
1 files changed, 74 insertions, 0 deletions
diff --git a/dtrain/hgsampler.cc b/dtrain/hgsampler.cc new file mode 100644 index 00000000..7a00a3d3 --- /dev/null +++ b/dtrain/hgsampler.cc @@ -0,0 +1,74 @@ +#include "hgsampler.h" + +#include <queue> + +#include "viterbi.h" +#include "inside_outside.h" + +using namespace std; + +struct SampledDerivationWeightFunction { + typedef double Weight; + explicit SampledDerivationWeightFunction(const vector<bool>& sampled) : sampled_edges(sampled) {} + double operator()(const Hypergraph::Edge& e) const { + return static_cast<double>(sampled_edges[e.id_]); + } + const vector<bool>& sampled_edges; +}; + +void HypergraphSampler::sample_hypotheses(const Hypergraph& hg, + unsigned n, + MT19937* rng, + vector<Hypothesis>* hypos) { + hypos->clear(); + hypos->resize(n); + + // compute inside probabilities + vector<prob_t> node_probs; + Inside<prob_t, EdgeProb>(hg, &node_probs, EdgeProb()); + + vector<bool> sampled_edges(hg.edges_.size()); + queue<unsigned> q; + SampleSet<prob_t> ss; + for (unsigned i = 0; i < n; ++i) { + fill(sampled_edges.begin(), sampled_edges.end(), false); + // sample derivation top down + assert(q.empty()); + Hypothesis& hyp = (*hypos)[i]; + SparseVector<double>& deriv_features = hyp.fmap; + q.push(hg.nodes_.size() - 1); + prob_t& model_score = hyp.model_score; + model_score = prob_t::One(); + while(!q.empty()) { + unsigned cur_node_id = q.front(); + q.pop(); + const Hypergraph::Node& node = hg.nodes_[cur_node_id]; + const unsigned num_in_edges = node.in_edges_.size(); + unsigned sampled_edge_idx = 0; + if (num_in_edges == 1) { + sampled_edge_idx = node.in_edges_[0]; + } else { + assert(num_in_edges > 1); + ss.clear(); + for (unsigned j = 0; j < num_in_edges; ++j) { + const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; + prob_t p = edge.edge_prob_; // edge weight + for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k) + p *= node_probs[edge.tail_nodes_[k]]; // tail node inside weight + ss.add(p); + } + sampled_edge_idx = node.in_edges_[rng->SelectSample(ss)]; + } + sampled_edges[sampled_edge_idx] = true; + const Hypergraph::Edge& sampled_edge = hg.edges_[sampled_edge_idx]; + deriv_features += sampled_edge.feature_values_; + model_score *= sampled_edge.edge_prob_; + //sampled_deriv->push_back(sampled_edge_idx); + for (unsigned j = 0; j < sampled_edge.tail_nodes_.size(); ++j) { + q.push(sampled_edge.tail_nodes_[j]); + } + } + Viterbi(hg, &hyp.words, ESentenceTraversal(), SampledDerivationWeightFunction(sampled_edges)); + } +} + |