summaryrefslogtreecommitdiff
path: root/dtrain/dtrain.cc
diff options
context:
space:
mode:
authorMichael Denkowski <michael.j.denkowski@gmail.com>2012-12-22 16:01:23 -0500
committerMichael Denkowski <michael.j.denkowski@gmail.com>2012-12-22 16:01:23 -0500
commit597d89c11db53e91bc011eab70fd613bbe6453e8 (patch)
tree83c87c07d1ff6d3ee4e3b1626f7eddd49c61095b /dtrain/dtrain.cc
parent65e958ff2678a41c22be7171456a63f002ef370b (diff)
parent201af2acd394415a05072fbd53d42584875aa4b4 (diff)
Merge branch 'master' of git://github.com/redpony/cdec
Diffstat (limited to 'dtrain/dtrain.cc')
-rw-r--r--dtrain/dtrain.cc657
1 files changed, 0 insertions, 657 deletions
diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc
deleted file mode 100644
index 18286668..00000000
--- a/dtrain/dtrain.cc
+++ /dev/null
@@ -1,657 +0,0 @@
-#include "dtrain.h"
-
-
-bool
-dtrain_init(int argc, char** argv, po::variables_map* cfg)
-{
- po::options_description ini("Configuration File Options");
- ini.add_options()
- ("input", po::value<string>()->default_value("-"), "input file")
- ("output", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT")
- ("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)")
- ("decoder_config", po::value<string>(), "configuration file for cdec")
- ("print_weights", po::value<string>(), "weights to print on each iteration")
- ("stop_after", po::value<unsigned>()->default_value(0), "stop after X input sentences")
- ("tmp", po::value<string>()->default_value("/tmp"), "temp dir to use")
- ("keep", po::value<bool>()->zero_tokens(), "keep weights files for each iteration")
- ("hstreaming", po::value<string>(), "run in hadoop streaming mode, arg is a task id")
- ("epochs", po::value<unsigned>()->default_value(10), "# of iterations T (per shard)")
- ("k", po::value<unsigned>()->default_value(100), "how many translations to sample")
- ("sample_from", po::value<string>()->default_value("kbest"), "where to sample translations from: 'kbest', 'forest'")
- ("filter", po::value<string>()->default_value("uniq"), "filter kbest list: 'not', 'uniq'")
- ("pair_sampling", po::value<string>()->default_value("XYX"), "how to sample pairs: 'all', 'XYX' or 'PRO'")
- ("hi_lo", po::value<float>()->default_value(0.1), "hi and lo (X) for XYX (default 0.1), <= 0.5")
- ("pair_threshold", po::value<score_t>()->default_value(0.), "bleu [0,1] threshold to filter pairs")
- ("N", po::value<unsigned>()->default_value(4), "N for Ngrams (BLEU)")
- ("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring: bleu, stupid_, smooth_, approx_, lc_")
- ("learning_rate", po::value<weight_t>()->default_value(1.0), "learning rate")
- ("gamma", po::value<weight_t>()->default_value(0.), "gamma for SVM (0 for perceptron)")
- ("select_weights", po::value<string>()->default_value("last"), "output best, last, avg weights ('VOID' to throw away)")
- ("rescale", po::value<bool>()->zero_tokens(), "rescale weight vector after each input")
- ("l1_reg", po::value<string>()->default_value("none"), "apply l1 regularization as in 'Tsuroka et al' (2010)")
- ("l1_reg_strength", po::value<weight_t>(), "l1 regularization strength")
- ("fselect", po::value<weight_t>()->default_value(-1), "select top x percent (or by threshold) of features after each epoch NOT IMPLEMENTED") // TODO
- ("approx_bleu_d", po::value<score_t>()->default_value(0.9), "discount for approx. BLEU")
- ("scale_bleu_diff", po::value<bool>()->zero_tokens(), "learning rate <- bleu diff of a misranked pair")
- ("loss_margin", po::value<weight_t>()->default_value(0.), "update if no error in pref pair but model scores this near")
- ("max_pairs", po::value<unsigned>()->default_value(std::numeric_limits<unsigned>::max()), "max. # of pairs per Sent.")
-#ifdef DTRAIN_LOCAL
- ("refs,r", po::value<string>(), "references in local mode")
-#endif
- ("noup", po::value<bool>()->zero_tokens(), "do not update weights");
- po::options_description cl("Command Line Options");
- cl.add_options()
- ("config,c", po::value<string>(), "dtrain config file")
- ("quiet,q", po::value<bool>()->zero_tokens(), "be quiet")
- ("verbose,v", po::value<bool>()->zero_tokens(), "be verbose");
- cl.add(ini);
- po::store(parse_command_line(argc, argv, cl), *cfg);
- if (cfg->count("config")) {
- ifstream ini_f((*cfg)["config"].as<string>().c_str());
- po::store(po::parse_config_file(ini_f, ini), *cfg);
- }
- po::notify(*cfg);
- if (!cfg->count("decoder_config")) {
- cerr << cl << endl;
- return false;
- }
- if (cfg->count("hstreaming") && (*cfg)["output"].as<string>() != "-") {
- cerr << "When using 'hstreaming' the 'output' param should be '-'." << endl;
- return false;
- }
-#ifdef DTRAIN_LOCAL
- if ((*cfg)["input"].as<string>() == "-") {
- cerr << "Can't use stdin as input with this binary. Recompile without DTRAIN_LOCAL" << endl;
- return false;
- }
-#endif
- if ((*cfg)["sample_from"].as<string>() != "kbest"
- && (*cfg)["sample_from"].as<string>() != "forest") {
- cerr << "Wrong 'sample_from' param: '" << (*cfg)["sample_from"].as<string>() << "', use 'kbest' or 'forest'." << endl;
- return false;
- }
- if ((*cfg)["sample_from"].as<string>() == "kbest" && (*cfg)["filter"].as<string>() != "uniq" &&
- (*cfg)["filter"].as<string>() != "not") {
- cerr << "Wrong 'filter' param: '" << (*cfg)["filter"].as<string>() << "', use 'uniq' or 'not'." << endl;
- return false;
- }
- if ((*cfg)["pair_sampling"].as<string>() != "all" && (*cfg)["pair_sampling"].as<string>() != "XYX" &&
- (*cfg)["pair_sampling"].as<string>() != "PRO") {
- cerr << "Wrong 'pair_sampling' param: '" << (*cfg)["pair_sampling"].as<string>() << "'." << endl;
- return false;
- }
- if(cfg->count("hi_lo") && (*cfg)["pair_sampling"].as<string>() != "XYX") {
- cerr << "Warning: hi_lo only works with pair_sampling XYX." << endl;
- }
- if((*cfg)["hi_lo"].as<float>() > 0.5 || (*cfg)["hi_lo"].as<float>() < 0.01) {
- cerr << "hi_lo must lie in [0.01, 0.5]" << endl;
- return false;
- }
- if ((*cfg)["pair_threshold"].as<score_t>() < 0) {
- cerr << "The threshold must be >= 0!" << endl;
- return false;
- }
- if ((*cfg)["select_weights"].as<string>() != "last" && (*cfg)["select_weights"].as<string>() != "best" &&
- (*cfg)["select_weights"].as<string>() != "avg" && (*cfg)["select_weights"].as<string>() != "VOID") {
- cerr << "Wrong 'select_weights' param: '" << (*cfg)["select_weights"].as<string>() << "', use 'last' or 'best'." << endl;
- return false;
- }
- return true;
-}
-
-int
-main(int argc, char** argv)
-{
- // handle most parameters
- po::variables_map cfg;
- if (!dtrain_init(argc, argv, &cfg)) exit(1); // something is wrong
- bool quiet = false;
- if (cfg.count("quiet")) quiet = true;
- bool verbose = false;
- if (cfg.count("verbose")) verbose = true;
- bool noup = false;
- if (cfg.count("noup")) noup = true;
- bool hstreaming = false;
- string task_id;
- if (cfg.count("hstreaming")) {
- hstreaming = true;
- quiet = true;
- task_id = cfg["hstreaming"].as<string>();
- cerr.precision(17);
- }
- bool rescale = false;
- if (cfg.count("rescale")) rescale = true;
- HSReporter rep(task_id);
- bool keep = false;
- if (cfg.count("keep")) keep = true;
-
- const unsigned k = cfg["k"].as<unsigned>();
- const unsigned N = cfg["N"].as<unsigned>();
- const unsigned T = cfg["epochs"].as<unsigned>();
- const unsigned stop_after = cfg["stop_after"].as<unsigned>();
- const string filter_type = cfg["filter"].as<string>();
- const string sample_from = cfg["sample_from"].as<string>();
- const string pair_sampling = cfg["pair_sampling"].as<string>();
- const score_t pair_threshold = cfg["pair_threshold"].as<score_t>();
- const string select_weights = cfg["select_weights"].as<string>();
- const float hi_lo = cfg["hi_lo"].as<float>();
- const score_t approx_bleu_d = cfg["approx_bleu_d"].as<score_t>();
- const unsigned max_pairs = cfg["max_pairs"].as<unsigned>();
- weight_t loss_margin = cfg["loss_margin"].as<weight_t>();
- if (loss_margin > 9998.) loss_margin = std::numeric_limits<float>::max();
- bool scale_bleu_diff = false;
- if (cfg.count("scale_bleu_diff")) scale_bleu_diff = true;
- bool average = false;
- if (select_weights == "avg")
- average = true;
- vector<string> print_weights;
- if (cfg.count("print_weights"))
- boost::split(print_weights, cfg["print_weights"].as<string>(), boost::is_any_of(" "));
-
- // setup decoder
- register_feature_functions();
- SetSilent(true);
- ReadFile ini_rf(cfg["decoder_config"].as<string>());
- if (!quiet)
- cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl;
- Decoder decoder(ini_rf.stream());
-
- // scoring metric/scorer
- string scorer_str = cfg["scorer"].as<string>();
- LocalScorer* scorer;
- if (scorer_str == "bleu") {
- scorer = dynamic_cast<BleuScorer*>(new BleuScorer);
- } else if (scorer_str == "stupid_bleu") {
- scorer = dynamic_cast<StupidBleuScorer*>(new StupidBleuScorer);
- } else if (scorer_str == "smooth_bleu") {
- scorer = dynamic_cast<SmoothBleuScorer*>(new SmoothBleuScorer);
- } else if (scorer_str == "sum_bleu") {
- scorer = dynamic_cast<SumBleuScorer*>(new SumBleuScorer);
- } else if (scorer_str == "sumexp_bleu") {
- scorer = dynamic_cast<SumExpBleuScorer*>(new SumExpBleuScorer);
- } else if (scorer_str == "sumwhatever_bleu") {
- scorer = dynamic_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer);
- } else if (scorer_str == "approx_bleu") {
- scorer = dynamic_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d));
- } else if (scorer_str == "lc_bleu") {
- scorer = dynamic_cast<LinearBleuScorer*>(new LinearBleuScorer(N));
- } else {
- cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl;
- exit(1);
- }
- vector<score_t> bleu_weights;
- scorer->Init(N, bleu_weights);
-
- // setup decoder observer
- MT19937 rng; // random number generator, only for forest sampling
- HypSampler* observer;
- if (sample_from == "kbest")
- observer = dynamic_cast<KBestGetter*>(new KBestGetter(k, filter_type));
- else
- observer = dynamic_cast<KSampler*>(new KSampler(k, &rng));
- observer->SetScorer(scorer);
-
- // init weights
- vector<weight_t>& dense_weights = decoder.CurrentWeightVector();
- SparseVector<weight_t> lambdas, cumulative_penalties, w_average;
- if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as<string>(), &dense_weights);
- Weights::InitSparseVector(dense_weights, &lambdas);
-
- // meta params for perceptron, SVM
- weight_t eta = cfg["learning_rate"].as<weight_t>();
- weight_t gamma = cfg["gamma"].as<weight_t>();
-
- // l1 regularization
- bool l1naive = false;
- bool l1clip = false;
- bool l1cumul = false;
- weight_t l1_reg = 0;
- if (cfg["l1_reg"].as<string>() != "none") {
- string s = cfg["l1_reg"].as<string>();
- if (s == "naive") l1naive = true;
- else if (s == "clip") l1clip = true;
- else if (s == "cumul") l1cumul = true;
- l1_reg = cfg["l1_reg_strength"].as<weight_t>();
- }
-
- // output
- string output_fn = cfg["output"].as<string>();
- // input
- string input_fn = cfg["input"].as<string>();
- ReadFile input(input_fn);
- // buffer input for t > 0
- vector<string> src_str_buf; // source strings (decoder takes only strings)
- vector<vector<WordID> > ref_ids_buf; // references as WordID vecs
- // where temp files go
- string tmp_path = cfg["tmp"].as<string>();
-#ifdef DTRAIN_LOCAL
- string refs_fn = cfg["refs"].as<string>();
- ReadFile refs(refs_fn);
-#else
- string grammar_buf_fn = gettmpf(tmp_path, "dtrain-grammars");
- ogzstream grammar_buf_out;
- grammar_buf_out.open(grammar_buf_fn.c_str());
-#endif
-
- unsigned in_sz = std::numeric_limits<unsigned>::max(); // input index, input size
- vector<pair<score_t, score_t> > all_scores;
- score_t max_score = 0.;
- unsigned best_it = 0;
- float overall_time = 0.;
-
- // output cfg
- if (!quiet) {
- cerr << _p5;
- cerr << endl << "dtrain" << endl << "Parameters:" << endl;
- cerr << setw(25) << "k " << k << endl;
- cerr << setw(25) << "N " << N << endl;
- cerr << setw(25) << "T " << T << endl;
- cerr << setw(25) << "scorer '" << scorer_str << "'" << endl;
- if (scorer_str == "approx_bleu")
- cerr << setw(25) << "approx. B discount " << approx_bleu_d << endl;
- cerr << setw(25) << "sample from " << "'" << sample_from << "'" << endl;
- if (sample_from == "kbest")
- cerr << setw(25) << "filter " << "'" << filter_type << "'" << endl;
- if (!scale_bleu_diff) cerr << setw(25) << "learning rate " << eta << endl;
- else cerr << setw(25) << "learning rate " << "bleu diff" << endl;
- cerr << setw(25) << "gamma " << gamma << endl;
- cerr << setw(25) << "loss margin " << loss_margin << endl;
- cerr << setw(25) << "pairs " << "'" << pair_sampling << "'" << endl;
- if (pair_sampling == "XYX")
- cerr << setw(25) << "hi lo " << hi_lo << endl;
- cerr << setw(25) << "pair threshold " << pair_threshold << endl;
- cerr << setw(25) << "select weights " << "'" << select_weights << "'" << endl;
- if (cfg.count("l1_reg"))
- cerr << setw(25) << "l1 reg " << l1_reg << " '" << cfg["l1_reg"].as<string>() << "'" << endl;
- if (rescale)
- cerr << setw(25) << "rescale " << rescale << endl;
- cerr << setw(25) << "max pairs " << max_pairs << endl;
- cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl;
- cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
-#ifdef DTRAIN_LOCAL
- cerr << setw(25) << "refs " << "'" << refs_fn << "'" << endl;
-#endif
- cerr << setw(25) << "output " << "'" << output_fn << "'" << endl;
- if (cfg.count("input_weights"))
- cerr << setw(25) << "weights in " << "'" << cfg["input_weights"].as<string>() << "'" << endl;
- if (stop_after > 0)
- cerr << setw(25) << "stop_after " << stop_after << endl;
- if (!verbose) cerr << "(a dot represents " << DTRAIN_DOTS << " inputs)" << endl;
- }
-
-
- for (unsigned t = 0; t < T; t++) // T epochs
- {
-
- if (hstreaming) cerr << "reporter:status:Iteration #" << t+1 << " of " << T << endl;
-
- time_t start, end;
- time(&start);
-#ifndef DTRAIN_LOCAL
- igzstream grammar_buf_in;
- if (t > 0) grammar_buf_in.open(grammar_buf_fn.c_str());
-#endif
- score_t score_sum = 0.;
- score_t model_sum(0);
- unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0;
- if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl;
-
- while(true)
- {
-
- string in;
- bool next = false, stop = false; // next iteration or premature stop
- if (t == 0) {
- if(!getline(*input, in)) next = true;
- } else {
- if (ii == in_sz) next = true; // stop if we reach the end of our input
- }
- // stop after X sentences (but still go on for those)
- if (stop_after > 0 && stop_after == ii && !next) stop = true;
-
- // produce some pretty output
- if (!quiet && !verbose) {
- if (ii == 0) cerr << " ";
- if ((ii+1) % (DTRAIN_DOTS) == 0) {
- cerr << ".";
- cerr.flush();
- }
- if ((ii+1) % (20*DTRAIN_DOTS) == 0) {
- cerr << " " << ii+1 << endl;
- if (!next && !stop) cerr << " ";
- }
- if (stop) {
- if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
- cerr << "Stopping after " << stop_after << " input sentences." << endl;
- } else {
- if (next) {
- if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
- }
- }
- }
-
- // next iteration
- if (next || stop) break;
-
- // weights
- lambdas.init_vector(&dense_weights);
-
- // getting input
- vector<WordID> ref_ids; // reference as vector<WordID>
-#ifndef DTRAIN_LOCAL
- vector<string> in_split; // input: sid\tsrc\tref\tpsg
- if (t == 0) {
- // handling input
- split_in(in, in_split);
- if (hstreaming && ii == 0) cerr << "reporter:counter:" << task_id << ",First ID," << in_split[0] << endl;
- // getting reference
- vector<string> ref_tok;
- boost::split(ref_tok, in_split[2], boost::is_any_of(" "));
- register_and_convert(ref_tok, ref_ids);
- ref_ids_buf.push_back(ref_ids);
- // process and set grammar
- bool broken_grammar = true; // ignore broken grammars
- for (string::iterator it = in.begin(); it != in.end(); it++) {
- if (!isspace(*it)) {
- broken_grammar = false;
- break;
- }
- }
- if (broken_grammar) {
- cerr << "Broken grammar for " << ii+1 << "! Ignoring this input." << endl;
- continue;
- }
- boost::replace_all(in, "\t", "\n");
- in += "\n";
- grammar_buf_out << in << DTRAIN_GRAMMAR_DELIM << " " << in_split[0] << endl;
- decoder.AddSupplementalGrammarFromString(in);
- src_str_buf.push_back(in_split[1]);
- // decode
- observer->SetRef(ref_ids);
- decoder.Decode(in_split[1], observer);
- } else {
- // get buffered grammar
- string grammar_str;
- while (true) {
- string rule;
- getline(grammar_buf_in, rule);
- if (boost::starts_with(rule, DTRAIN_GRAMMAR_DELIM)) break;
- grammar_str += rule + "\n";
- }
- decoder.AddSupplementalGrammarFromString(grammar_str);
- // decode
- observer->SetRef(ref_ids_buf[ii]);
- decoder.Decode(src_str_buf[ii], observer);
- }
-#else
- if (t == 0) {
- string r_;
- getline(*refs, r_);
- vector<string> ref_tok;
- boost::split(ref_tok, r_, boost::is_any_of(" "));
- register_and_convert(ref_tok, ref_ids);
- ref_ids_buf.push_back(ref_ids);
- src_str_buf.push_back(in);
- } else {
- ref_ids = ref_ids_buf[ii];
- }
- observer->SetRef(ref_ids);
- if (t == 0)
- decoder.Decode(in, observer);
- else
- decoder.Decode(src_str_buf[ii], observer);
-#endif
-
- // get (scored) samples
- vector<ScoredHyp>* samples = observer->GetSamples();
-
- if (verbose) {
- cerr << "--- ref for " << ii << ": ";
- if (t > 0) printWordIDVec(ref_ids_buf[ii]);
- else printWordIDVec(ref_ids);
- cerr << endl;
- for (unsigned u = 0; u < samples->size(); u++) {
- cerr << _p2 << _np << "[" << u << ". '";
- printWordIDVec((*samples)[u].w);
- cerr << "'" << endl;
- cerr << "SCORE=" << (*samples)[u].score << ",model="<< (*samples)[u].model << endl;
- cerr << "F{" << (*samples)[u].f << "} ]" << endl << endl;
- }
- }
-
- score_sum += (*samples)[0].score; // stats for 1best
- model_sum += (*samples)[0].model;
-
- f_count += observer->get_f_count();
- list_sz += observer->get_sz();
-
- // weight updates
- if (!noup) {
- // get pairs
- vector<pair<ScoredHyp,ScoredHyp> > pairs;
- if (pair_sampling == "all")
- all_pairs(samples, pairs, pair_threshold, max_pairs);
- if (pair_sampling == "XYX")
- partXYX(samples, pairs, pair_threshold, max_pairs, hi_lo);
- if (pair_sampling == "PRO")
- PROsampling(samples, pairs, pair_threshold, max_pairs);
- npairs += pairs.size();
-
- for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin();
- it != pairs.end(); it++) {
-#ifdef DTRAIN_FASTER_PERCEPTRON
- bool rank_error = true; // pair sampling already did this for us
- rank_errors++;
- score_t margin = std::numeric_limits<float>::max();
-#else
- bool rank_error = it->first.model <= it->second.model;
- if (rank_error) rank_errors++;
- score_t margin = fabs(fabs(it->first.model) - fabs(it->second.model));
- if (!rank_error && margin < loss_margin) margin_violations++;
-#endif
- if (scale_bleu_diff) eta = it->first.score - it->second.score;
- if (rank_error || margin < loss_margin) {
- SparseVector<weight_t> diff_vec = it->first.f - it->second.f;
- lambdas.plus_eq_v_times_s(diff_vec, eta);
- if (gamma)
- lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs));
- }
- }
-
- // l1 regularization
- if (l1naive) {
- for (unsigned d = 0; d < lambdas.size(); d++) {
- weight_t v = lambdas.get(d);
- lambdas.set_value(d, v - sign(v) * l1_reg);
- }
- } else if (l1clip) {
- for (unsigned d = 0; d < lambdas.size(); d++) {
- if (lambdas.nonzero(d)) {
- weight_t v = lambdas.get(d);
- if (v > 0) {
- lambdas.set_value(d, max(0., v - l1_reg));
- } else {
- lambdas.set_value(d, min(0., v + l1_reg));
- }
- }
- }
- } else if (l1cumul) {
- weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input
- for (unsigned d = 0; d < lambdas.size(); d++) {
- if (lambdas.nonzero(d)) {
- weight_t v = lambdas.get(d);
- weight_t penalty = 0;
- if (v > 0) {
- penalty = max(0., v-(acc_penalty + cumulative_penalties.get(d)));
- } else {
- penalty = min(0., v+(acc_penalty - cumulative_penalties.get(d)));
- }
- lambdas.set_value(d, penalty);
- cumulative_penalties.set_value(d, cumulative_penalties.get(d)+penalty);
- }
- }
- }
-
- }
-
- if (rescale) lambdas /= lambdas.l2norm();
-
- ++ii;
-
- if (hstreaming) {
- rep.update_counter("Seen #"+boost::lexical_cast<string>(t+1), 1u);
- rep.update_counter("Seen", 1u);
- }
-
- } // input loop
-
- if (average) w_average += lambdas;
-
- if (scorer_str == "approx_bleu" || scorer_str == "lc_bleu") scorer->Reset();
-
- if (t == 0) {
- in_sz = ii; // remember size of input (# lines)
- if (hstreaming) {
- rep.update_counter("|Input|", ii);
- rep.update_gcounter("|Input|", ii);
- rep.update_gcounter("Shards", 1u);
- }
- }
-
-#ifndef DTRAIN_LOCAL
- if (t == 0) {
- grammar_buf_out.close();
- } else {
- grammar_buf_in.close();
- }
-#endif
-
- // print some stats
- score_t score_avg = score_sum/(score_t)in_sz;
- score_t model_avg = model_sum/(score_t)in_sz;
- score_t score_diff, model_diff;
- if (t > 0) {
- score_diff = score_avg - all_scores[t-1].first;
- model_diff = model_avg - all_scores[t-1].second;
- } else {
- score_diff = score_avg;
- model_diff = model_avg;
- }
-
- unsigned nonz = 0;
- if (!quiet || hstreaming) nonz = (unsigned)lambdas.num_nonzero();
-
- if (!quiet) {
- cerr << _p5 << _p << "WEIGHTS" << endl;
- for (vector<string>::iterator it = print_weights.begin(); it != print_weights.end(); it++) {
- cerr << setw(18) << *it << " = " << lambdas.get(FD::Convert(*it)) << endl;
- }
- cerr << " ---" << endl;
- cerr << _np << " 1best avg score: " << score_avg;
- cerr << _p << " (" << score_diff << ")" << endl;
- cerr << _np << " 1best avg model score: " << model_avg;
- cerr << _p << " (" << model_diff << ")" << endl;
- cerr << " avg # pairs: ";
- cerr << _np << npairs/(float)in_sz << endl;
- cerr << " avg # rank err: ";
- cerr << rank_errors/(float)in_sz << endl;
-#ifndef DTRAIN_FASTER_PERCEPTRON
- cerr << " avg # margin viol: ";
- cerr << margin_violations/(float)in_sz << endl;
-#endif
- cerr << " non0 feature count: " << nonz << endl;
- cerr << " avg list sz: " << list_sz/(float)in_sz << endl;
- cerr << " avg f count: " << f_count/(float)list_sz << endl;
- }
-
- if (hstreaming) {
- rep.update_counter("Score 1best avg #"+boost::lexical_cast<string>(t+1), (unsigned)(score_avg*DTRAIN_SCALE));
- rep.update_counter("Model 1best avg #"+boost::lexical_cast<string>(t+1), (unsigned)(model_avg*DTRAIN_SCALE));
- rep.update_counter("Pairs avg #"+boost::lexical_cast<string>(t+1), (unsigned)((npairs/(weight_t)in_sz)*DTRAIN_SCALE));
- rep.update_counter("Rank errors avg #"+boost::lexical_cast<string>(t+1), (unsigned)((rank_errors/(weight_t)in_sz)*DTRAIN_SCALE));
- rep.update_counter("Margin violations avg #"+boost::lexical_cast<string>(t+1), (unsigned)((margin_violations/(weight_t)in_sz)*DTRAIN_SCALE));
- rep.update_counter("Non zero feature count #"+boost::lexical_cast<string>(t+1), nonz);
- rep.update_gcounter("Non zero feature count #"+boost::lexical_cast<string>(t+1), nonz);
- }
-
- pair<score_t,score_t> remember;
- remember.first = score_avg;
- remember.second = model_avg;
- all_scores.push_back(remember);
- if (score_avg > max_score) {
- max_score = score_avg;
- best_it = t;
- }
- time (&end);
- float time_diff = difftime(end, start);
- overall_time += time_diff;
- if (!quiet) {
- cerr << _p2 << _np << "(time " << time_diff/60. << " min, ";
- cerr << time_diff/in_sz << " s/S)" << endl;
- }
- if (t+1 != T && !quiet) cerr << endl;
-
- if (noup) break;
-
- // write weights to file
- if (select_weights == "best" || keep) {
- lambdas.init_vector(&dense_weights);
- string w_fn = "weights." + boost::lexical_cast<string>(t) + ".gz";
- Weights::WriteToFile(w_fn, dense_weights, true);
- }
-
- } // outer loop
-
- if (average) w_average /= (weight_t)T;
-
-#ifndef DTRAIN_LOCAL
- unlink(grammar_buf_fn.c_str());
-#endif
-
- if (!noup) {
- if (!quiet) cerr << endl << "Writing weights file to '" << output_fn << "' ..." << endl;
- if (select_weights == "last" || average) { // last, average
- WriteFile of(output_fn); // works with '-'
- ostream& o = *of.stream();
- o.precision(17);
- o << _np;
- if (average) {
- for (SparseVector<weight_t>::iterator it = w_average.begin(); it != w_average.end(); ++it) {
- if (it->second == 0) continue;
- o << FD::Convert(it->first) << '\t' << it->second << endl;
- }
- } else {
- for (SparseVector<weight_t>::iterator it = lambdas.begin(); it != lambdas.end(); ++it) {
- if (it->second == 0) continue;
- o << FD::Convert(it->first) << '\t' << it->second << endl;
- }
- }
- } else if (select_weights == "VOID") { // do nothing with the weights
- } else { // best
- if (output_fn != "-") {
- CopyFile("weights."+boost::lexical_cast<string>(best_it)+".gz", output_fn);
- } else {
- ReadFile bestw("weights."+boost::lexical_cast<string>(best_it)+".gz");
- string o;
- cout.precision(17);
- cout << _np;
- while(getline(*bestw, o)) cout << o << endl;
- }
- if (!keep) {
- for (unsigned i = 0; i < T; i++) {
- string s = "weights." + boost::lexical_cast<string>(i) + ".gz";
- unlink(s.c_str());
- }
- }
- }
- if (output_fn == "-" && hstreaming) cout << "__SHARD_COUNT__\t1" << endl;
- if (!quiet) cerr << "done" << endl;
- }
-
- if (!quiet) {
- cerr << _p5 << _np << endl << "---" << endl << "Best iteration: ";
- cerr << best_it+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl;
- cerr << "This took " << overall_time/60. << " min." << endl;
- }
-}
-