diff options
author | redpony <redpony@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-06-22 05:12:27 +0000 |
---|---|---|
committer | redpony <redpony@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-06-22 05:12:27 +0000 |
commit | 0172721855098ca02b207231a654dffa5e4eb1c9 (patch) | |
tree | 8069c3a62e2d72bd64a2cdeee9724b2679c8a56b /decoder/inside_outside.h | |
parent | 37728b8be4d0b3df9da81fdda2198ff55b4b2d91 (diff) |
initial checkin
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@2 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'decoder/inside_outside.h')
-rw-r--r-- | decoder/inside_outside.h | 112 |
1 files changed, 112 insertions, 0 deletions
diff --git a/decoder/inside_outside.h b/decoder/inside_outside.h new file mode 100644 index 00000000..3c7518f2 --- /dev/null +++ b/decoder/inside_outside.h @@ -0,0 +1,112 @@ +#ifndef _INSIDE_H_ +#define _INSIDE_H_ + +#include <vector> +#include <algorithm> +#include "hg.h" + +// run the inside algorithm and return the inside score +// if result is non-NULL, result will contain the inside +// score for each node +// NOTE: WeightType() must construct the semiring's additive identity +// WeightType(1) must construct the semiring's multiplicative identity +template<typename WeightType, typename WeightFunction> +WeightType Inside(const Hypergraph& hg, + std::vector<WeightType>* result = NULL, + const WeightFunction& weight = WeightFunction()) { + const int num_nodes = hg.nodes_.size(); + std::vector<WeightType> dummy; + std::vector<WeightType>& inside_score = result ? *result : dummy; + inside_score.resize(num_nodes); + std::fill(inside_score.begin(), inside_score.end(), WeightType()); + for (int i = 0; i < num_nodes; ++i) { + const Hypergraph::Node& cur_node = hg.nodes_[i]; + WeightType* const cur_node_inside_score = &inside_score[i]; + const int num_in_edges = cur_node.in_edges_.size(); + if (num_in_edges == 0) { + *cur_node_inside_score = WeightType(1); + continue; + } + for (int j = 0; j < num_in_edges; ++j) { + const Hypergraph::Edge& edge = hg.edges_[cur_node.in_edges_[j]]; + WeightType score = weight(edge); + for (int k = 0; k < edge.tail_nodes_.size(); ++k) { + const int tail_node_index = edge.tail_nodes_[k]; + score *= inside_score[tail_node_index]; + } + *cur_node_inside_score += score; + } + } + return inside_score.back(); +} + +template<typename WeightType, typename WeightFunction> +void Outside(const Hypergraph& hg, + std::vector<WeightType>& inside_score, + std::vector<WeightType>* result, + const WeightFunction& weight = WeightFunction()) { + assert(result); + const int num_nodes = hg.nodes_.size(); + assert(inside_score.size() == num_nodes); + std::vector<WeightType>& outside_score = *result; + outside_score.resize(num_nodes); + std::fill(outside_score.begin(), outside_score.end(), WeightType()); + outside_score.back() = WeightType(1); + for (int i = num_nodes - 1; i >= 0; --i) { + const Hypergraph::Node& cur_node = hg.nodes_[i]; + const WeightType& head_node_outside_score = outside_score[i]; + const int num_in_edges = cur_node.in_edges_.size(); + for (int j = 0; j < num_in_edges; ++j) { + const Hypergraph::Edge& edge = hg.edges_[cur_node.in_edges_[j]]; + WeightType head_and_edge_weight = weight(edge); + head_and_edge_weight *= head_node_outside_score; + const int num_tail_nodes = edge.tail_nodes_.size(); + for (int k = 0; k < num_tail_nodes; ++k) { + const int update_tail_node_index = edge.tail_nodes_[k]; + WeightType* const tail_outside_score = &outside_score[update_tail_node_index]; + WeightType inside_contribution = WeightType(1); + for (int l = 0; l < num_tail_nodes; ++l) { + const int other_tail_node_index = edge.tail_nodes_[l]; + if (update_tail_node_index != other_tail_node_index) + inside_contribution *= inside_score[other_tail_node_index]; + } + inside_contribution *= head_and_edge_weight; + *tail_outside_score += inside_contribution; + } + } + } +} + +// this is the Inside-Outside optimization described in Li and Eisner (EMNLP 2009) +// for computing the inside algorithm over expensive semirings +// (such as expectations over features). See Figure 4. +// NOTE: XType * KType must be valid (and yield XType) +// NOTE: This may do things slightly differently than you are used to, please +// read the description in Li and Eisner (2009) carefully! +template<typename KType, typename KWeightFunction, typename XType, typename XWeightFunction> +KType InsideOutside(const Hypergraph& hg, + XType* result_x, + const KWeightFunction& kwf = KWeightFunction(), + const XWeightFunction& xwf = XWeightFunction()) { + const int num_nodes = hg.nodes_.size(); + std::vector<KType> inside, outside; + const KType k = Inside<KType,KWeightFunction>(hg, &inside, kwf); + Outside<KType,KWeightFunction>(hg, inside, &outside, kwf); + XType& x = *result_x; + x = XType(); // default constructor is semiring 0 + for (int i = 0; i < num_nodes; ++i) { + const Hypergraph::Node& cur_node = hg.nodes_[i]; + const int num_in_edges = cur_node.in_edges_.size(); + for (int j = 0; j < num_in_edges; ++j) { + const Hypergraph::Edge& edge = hg.edges_[cur_node.in_edges_[j]]; + KType kbar_e = outside[i]; + const int num_tail_nodes = edge.tail_nodes_.size(); + for (int k = 0; k < num_tail_nodes; ++k) + kbar_e *= inside[edge.tail_nodes_[k]]; + x += xwf(edge) * kbar_e; + } + } + return k; +} + +#endif |