diff options
author | Chris Dyer <cdyer@cs.cmu.edu> | 2011-11-11 17:12:39 -0500 |
---|---|---|
committer | Chris Dyer <cdyer@cs.cmu.edu> | 2011-11-11 17:12:39 -0500 |
commit | 105a52a8d37497fe69a01a7de771ef9b9300cd71 (patch) | |
tree | f20c4cc8bf31ccf1ce7204301bfa169c6fa080a7 /decoder/hg_sampler.cc | |
parent | b4fd470d2cb80b0c88d4210f7e5bb10d2aa4531d (diff) |
optionally sample from forest to get training instances, rather than k-best it
Diffstat (limited to 'decoder/hg_sampler.cc')
-rw-r--r-- | decoder/hg_sampler.cc | 73 |
1 files changed, 73 insertions, 0 deletions
diff --git a/decoder/hg_sampler.cc b/decoder/hg_sampler.cc new file mode 100644 index 00000000..cdf0ec3c --- /dev/null +++ b/decoder/hg_sampler.cc @@ -0,0 +1,73 @@ +#include "hg_sampler.h" + +#include <queue> + +#include "viterbi.h" +#include "inside_outside.h" + +using namespace std; + +struct SampledDerivationWeightFunction { + typedef double Weight; + explicit SampledDerivationWeightFunction(const vector<bool>& sampled) : sampled_edges(sampled) {} + double operator()(const Hypergraph::Edge& e) const { + return static_cast<double>(sampled_edges[e.id_]); + } + const vector<bool>& sampled_edges; +}; + +void HypergraphSampler::sample_hypotheses(const Hypergraph& hg, + unsigned n, + MT19937* rng, + vector<Hypothesis>* hypos) { + hypos->clear(); + hypos->resize(n); + + // compute inside probabilities + vector<prob_t> node_probs; + Inside<prob_t, EdgeProb>(hg, &node_probs, EdgeProb()); + + vector<bool> sampled_edges(hg.edges_.size()); + queue<unsigned> q; + SampleSet<prob_t> ss; + for (unsigned i = 0; i < n; ++i) { + fill(sampled_edges.begin(), sampled_edges.end(), false); + // sample derivation top down + assert(q.empty()); + Hypothesis& hyp = (*hypos)[i]; + SparseVector<double>& deriv_features = hyp.fmap; + q.push(hg.nodes_.size() - 1); + prob_t& model_score = hyp.model_score; + model_score = prob_t::One(); + while(!q.empty()) { + unsigned cur_node_id = q.front(); + q.pop(); + const Hypergraph::Node& node = hg.nodes_[cur_node_id]; + const unsigned num_in_edges = node.in_edges_.size(); + unsigned sampled_edge_idx = 0; + if (num_in_edges == 1) { + sampled_edge_idx = node.in_edges_[0]; + } else { + assert(num_in_edges > 1); + ss.clear(); + for (unsigned j = 0; j < num_in_edges; ++j) { + const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; + prob_t p = edge.edge_prob_; // edge weight + for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k) + p *= node_probs[edge.tail_nodes_[k]]; // tail node inside weight + ss.add(p); + } + sampled_edge_idx = node.in_edges_[rng->SelectSample(ss)]; + } + sampled_edges[sampled_edge_idx] = true; + const Hypergraph::Edge& sampled_edge = hg.edges_[sampled_edge_idx]; + deriv_features += sampled_edge.feature_values_; + model_score *= sampled_edge.edge_prob_; + //sampled_deriv->push_back(sampled_edge_idx); + for (unsigned j = 0; j < sampled_edge.tail_nodes_.size(); ++j) { + q.push(sampled_edge.tail_nodes_[j]); + } + } + Viterbi(hg, &hyp.words, ESentenceTraversal(), SampledDerivationWeightFunction(sampled_edges)); + } +} |