summaryrefslogtreecommitdiff
path: root/decoder/ff_lm.cc
diff options
context:
space:
mode:
authorChris Dyer <redpony@gmail.com>2009-12-14 20:35:11 -0500
committerChris Dyer <redpony@gmail.com>2009-12-14 20:35:11 -0500
commit851e389dffdd6996ea32d70defb8906de80b9edc (patch)
tree8c68ee77205badc056b8ab5b332e67e3e98017df /decoder/ff_lm.cc
parentdc6930c00b4b276883280cff1ed6dcd9ddef03c7 (diff)
few small fixes of alignment tools, add new orthographic similarity feature for word aligner, final naming of directories, libraries in cdec
Diffstat (limited to 'decoder/ff_lm.cc')
-rw-r--r--decoder/ff_lm.cc328
1 files changed, 328 insertions, 0 deletions
diff --git a/decoder/ff_lm.cc b/decoder/ff_lm.cc
new file mode 100644
index 00000000..354787ec
--- /dev/null
+++ b/decoder/ff_lm.cc
@@ -0,0 +1,328 @@
+#include "ff_lm.h"
+
+#include <sstream>
+#include <unistd.h>
+#include <sys/socket.h>
+#include <sys/types.h>
+#include <netinet/in.h>
+#include <netdb.h>
+
+#include "tdict.h"
+#include "Vocab.h"
+#include "Ngram.h"
+#include "hg.h"
+#include "stringlib.h"
+
+using namespace std;
+
+struct LMClient {
+ struct Cache {
+ map<WordID, Cache> tree;
+ float prob;
+ Cache() : prob() {}
+ };
+
+ LMClient(const char* host) : port(6666) {
+ s = strchr(host, ':');
+ if (s != NULL) {
+ *s = '\0';
+ ++s;
+ port = atoi(s);
+ }
+ sock = socket(AF_INET, SOCK_STREAM, 0);
+ hp = gethostbyname(host);
+ if (hp == NULL) {
+ cerr << "unknown host " << host << endl;
+ abort();
+ }
+ bzero((char *)&server, sizeof(server));
+ bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length);
+ server.sin_family = hp->h_addrtype;
+ server.sin_port = htons(port);
+
+ int errors = 0;
+ while (connect(sock, (struct sockaddr *)&server, sizeof(server)) < 0) {
+ cerr << "Error: connect()\n";
+ sleep(1);
+ errors++;
+ if (errors > 3) exit(1);
+ }
+ cerr << "Connected to LM on " << host << " on port " << port << endl;
+ }
+
+ float wordProb(int word, int* context) {
+ Cache* cur = &cache;
+ int i = 0;
+ while (context[i] > 0) {
+ cur = &cur->tree[context[i++]];
+ }
+ cur = &cur->tree[word];
+ if (cur->prob) { return cur->prob; }
+
+ i = 0;
+ ostringstream os;
+ os << "prob " << TD::Convert(word);
+ while (context[i] > 0) {
+ os << ' ' << TD::Convert(context[i++]);
+ }
+ os << endl;
+ string out = os.str();
+ write(sock, out.c_str(), out.size());
+ int r = read(sock, res, 6);
+ int errors = 0;
+ int cnt = 0;
+ while (1) {
+ if (r < 0) {
+ errors++; sleep(1);
+ cerr << "Error: read()\n";
+ if (errors > 5) exit(1);
+ } else if (r==0 || res[cnt] == '\n') { break; }
+ else {
+ cnt += r;
+ if (cnt==6) break;
+ read(sock, &res[cnt], 6-cnt);
+ }
+ }
+ cur->prob = *reinterpret_cast<float*>(res);
+ return cur->prob;
+ }
+
+ void clear() {
+ cache.tree.clear();
+ }
+
+ private:
+ Cache cache;
+ int sock, port;
+ char *s;
+ struct hostent *hp;
+ struct sockaddr_in server;
+ char res[8];
+};
+
+class LanguageModelImpl {
+ public:
+ LanguageModelImpl(int order, const string& f) :
+ ngram_(*TD::dict_), buffer_(), order_(order), state_size_(OrderToStateSize(order) - 1),
+ floor_(-100.0),
+ client_(NULL),
+ kSTART(TD::Convert("<s>")),
+ kSTOP(TD::Convert("</s>")),
+ kUNKNOWN(TD::Convert("<unk>")),
+ kNONE(-1),
+ kSTAR(TD::Convert("<{STAR}>")) {
+ if (f.find("lm://") == 0) {
+ client_ = new LMClient(f.substr(5).c_str());
+ } else {
+ File file(f.c_str(), "r", 0);
+ assert(file);
+ cerr << "Reading " << order_ << "-gram LM from " << f << endl;
+ ngram_.read(file, false);
+ }
+ }
+
+ ~LanguageModelImpl() {
+ delete client_;
+ }
+
+ inline int StateSize(const void* state) const {
+ return *(static_cast<const char*>(state) + state_size_);
+ }
+
+ inline void SetStateSize(int size, void* state) const {
+ *(static_cast<char*>(state) + state_size_) = size;
+ }
+
+ inline double LookupProbForBufferContents(int i) {
+ double p = client_ ?
+ client_->wordProb(buffer_[i], &buffer_[i+1])
+ : ngram_.wordProb(buffer_[i], (VocabIndex*)&buffer_[i+1]);
+ if (p < floor_) p = floor_;
+ return p;
+ }
+
+ string DebugStateToString(const void* state) const {
+ int len = StateSize(state);
+ const int* astate = reinterpret_cast<const int*>(state);
+ string res = "[";
+ for (int i = 0; i < len; ++i) {
+ res += " ";
+ res += TD::Convert(astate[i]);
+ }
+ res += " ]";
+ return res;
+ }
+
+ inline double ProbNoRemnant(int i, int len) {
+ int edge = len;
+ bool flag = true;
+ double sum = 0.0;
+ while (i >= 0) {
+ if (buffer_[i] == kSTAR) {
+ edge = i;
+ flag = false;
+ } else if (buffer_[i] <= 0) {
+ edge = i;
+ flag = true;
+ } else {
+ if ((edge-i >= order_) || (flag && !(i == (len-1) && buffer_[i] == kSTART)))
+ sum += LookupProbForBufferContents(i);
+ }
+ --i;
+ }
+ return sum;
+ }
+
+ double EstimateProb(const vector<WordID>& phrase) {
+ int len = phrase.size();
+ buffer_.resize(len + 1);
+ buffer_[len] = kNONE;
+ int i = len - 1;
+ for (int j = 0; j < len; ++j,--i)
+ buffer_[i] = phrase[j];
+ return ProbNoRemnant(len - 1, len);
+ }
+
+ double EstimateProb(const void* state) {
+ int len = StateSize(state);
+ // cerr << "residual len: " << len << endl;
+ buffer_.resize(len + 1);
+ buffer_[len] = kNONE;
+ const int* astate = reinterpret_cast<const int*>(state);
+ int i = len - 1;
+ for (int j = 0; j < len; ++j,--i)
+ buffer_[i] = astate[j];
+ return ProbNoRemnant(len - 1, len);
+ }
+
+ double FinalTraversalCost(const void* state) {
+ int slen = StateSize(state);
+ int len = slen + 2;
+ // cerr << "residual len: " << len << endl;
+ buffer_.resize(len + 1);
+ buffer_[len] = kNONE;
+ buffer_[len-1] = kSTART;
+ const int* astate = reinterpret_cast<const int*>(state);
+ int i = len - 2;
+ for (int j = 0; j < slen; ++j,--i)
+ buffer_[i] = astate[j];
+ buffer_[i] = kSTOP;
+ assert(i == 0);
+ return ProbNoRemnant(len - 1, len);
+ }
+
+ double LookupWords(const TRule& rule, const vector<const void*>& ant_states, void* vstate) {
+ int len = rule.ELength() - rule.Arity();
+ for (int i = 0; i < ant_states.size(); ++i)
+ len += StateSize(ant_states[i]);
+ buffer_.resize(len + 1);
+ buffer_[len] = kNONE;
+ int i = len - 1;
+ const vector<WordID>& e = rule.e();
+ for (int j = 0; j < e.size(); ++j) {
+ if (e[j] < 1) {
+ const int* astate = reinterpret_cast<const int*>(ant_states[-e[j]]);
+ int slen = StateSize(astate);
+ for (int k = 0; k < slen; ++k)
+ buffer_[i--] = astate[k];
+ } else {
+ buffer_[i--] = e[j];
+ }
+ }
+
+ double sum = 0.0;
+ int* remnant = reinterpret_cast<int*>(vstate);
+ int j = 0;
+ i = len - 1;
+ int edge = len;
+
+ while (i >= 0) {
+ if (buffer_[i] == kSTAR) {
+ edge = i;
+ } else if (edge-i >= order_) {
+ sum += LookupProbForBufferContents(i);
+ } else if (edge == len && remnant) {
+ remnant[j++] = buffer_[i];
+ }
+ --i;
+ }
+ if (!remnant) return sum;
+
+ if (edge != len || len >= order_) {
+ remnant[j++] = kSTAR;
+ if (order_-1 < edge) edge = order_-1;
+ for (int i = edge-1; i >= 0; --i)
+ remnant[j++] = buffer_[i];
+ }
+
+ SetStateSize(j, vstate);
+ return sum;
+ }
+
+ static int OrderToStateSize(int order) {
+ return ((order-1) * 2 + 1) * sizeof(WordID) + 1;
+ }
+
+ private:
+ Ngram ngram_;
+ vector<WordID> buffer_;
+ const int order_;
+ const int state_size_;
+ const double floor_;
+ LMClient* client_;
+
+ public:
+ const WordID kSTART;
+ const WordID kSTOP;
+ const WordID kUNKNOWN;
+ const WordID kNONE;
+ const WordID kSTAR;
+};
+
+LanguageModel::LanguageModel(const string& param) :
+ fid_(FD::Convert("LanguageModel")) {
+ vector<string> argv;
+ int argc = SplitOnWhitespace(param, &argv);
+ int order = 3;
+ // TODO add support for -n FeatureName
+ string filename;
+ if (argc < 1) { cerr << "LanguageModel requires a filename, minimally!\n"; abort(); }
+ else if (argc == 1) { filename = argv[0]; }
+ else if (argc == 2 || argc > 3) { cerr << "Don't understand 'LanguageModel " << param << "'\n"; }
+ else if (argc == 3) {
+ if (argv[0] == "-o") {
+ order = atoi(argv[1].c_str());
+ filename = argv[2];
+ } else if (argv[1] == "-o") {
+ order = atoi(argv[2].c_str());
+ filename = argv[0];
+ }
+ }
+ SetStateSize(LanguageModelImpl::OrderToStateSize(order));
+ pimpl_ = new LanguageModelImpl(order, filename);
+}
+
+LanguageModel::~LanguageModel() {
+ delete pimpl_;
+}
+
+string LanguageModel::DebugStateToString(const void* state) const{
+ return pimpl_->DebugStateToString(state);
+}
+
+void LanguageModel::TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const vector<const void*>& ant_states,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* state) const {
+ (void) smeta;
+ features->set_value(fid_, pimpl_->LookupWords(*edge.rule_, ant_states, state));
+ estimated_features->set_value(fid_, pimpl_->EstimateProb(state));
+}
+
+void LanguageModel::FinalTraversalFeatures(const void* ant_state,
+ SparseVector<double>* features) const {
+ features->set_value(fid_, pimpl_->FinalTraversalCost(ant_state));
+}
+