summaryrefslogtreecommitdiff
path: root/decoder/ff.cc
diff options
context:
space:
mode:
authorAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
committerAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
commit3d8d656fa7911524e0e6885647173474524e0784 (patch)
tree81b1ee2fcb67980376d03f0aa48e42e53abff222 /decoder/ff.cc
parentbe7f57fdd484e063775d7abf083b9fa4c403b610 (diff)
parent96fedabebafe7a38a6d5928be8fff767e411d705 (diff)
fixed conflicts
Diffstat (limited to 'decoder/ff.cc')
-rw-r--r--decoder/ff.cc197
1 files changed, 8 insertions, 189 deletions
diff --git a/decoder/ff.cc b/decoder/ff.cc
index 557e0b5f..a6a035b5 100644
--- a/decoder/ff.cc
+++ b/decoder/ff.cc
@@ -1,9 +1,3 @@
-//TODO: non-sparse vector for all feature functions? modelset applymodels keeps track of who has what features? it's nice having FF that could generate a handful out of 10000 possible feats, though.
-
-//TODO: actually score rule_feature()==true features once only, hash keyed on rule or modify TRule directly? need to keep clear in forest which features come from models vs. rules; then rescoring could drop all the old models features at once
-
-#include "fast_lexical_cast.hpp"
-#include <stdexcept>
#include "ff.h"
#include "tdict.h"
@@ -16,8 +10,7 @@ FeatureFunction::~FeatureFunction() {}
void FeatureFunction::PrepareForInput(const SentenceMetadata&) {}
void FeatureFunction::FinalTraversalFeatures(const void* /* ant_state */,
- SparseVector<double>* /* features */) const {
-}
+ SparseVector<double>* /* features */) const {}
string FeatureFunction::usage_helper(std::string const& name,std::string const& params,std::string const& details,bool sp,bool sd) {
string r=name;
@@ -32,188 +25,14 @@ string FeatureFunction::usage_helper(std::string const& name,std::string const&
return r;
}
-Features FeatureFunction::single_feature(WordID feat) {
- return Features(1,feat);
-}
-
-Features ModelSet::all_features(std::ostream *warn,bool warn0) {
- //return ::all_features(models_,weights_,warn,warn0);
-}
-
-void show_features(Features const& ffs,DenseWeightVector const& weights_,std::ostream &out,std::ostream &warn,bool warn_zero_wt) {
- out << "Weight Feature\n";
- for (unsigned i=0;i<ffs.size();++i) {
- WordID fid=ffs[i];
- string const& fname=FD::Convert(fid);
- double wt=weights_[fid];
- if (warn_zero_wt && wt==0)
- warn<<"WARNING: "<<fname<<" has 0 weight."<<endl;
- out << wt << " " << fname<<endl;
- }
-}
-
-void ModelSet::show_features(std::ostream &out,std::ostream &warn,bool warn_zero_wt)
-{
-// ::show_features(all_features(),weights_,out,warn,warn_zero_wt);
- //show_all_features(models_,weights_,out,warn,warn_zero_wt,warn_zero_wt);
-}
-
-// Hiero and Joshua use log_10(e) as the value, so I do to
-WordPenalty::WordPenalty(const string& param) :
- fid_(FD::Convert("WordPenalty")),
- value_(-1.0 / log(10)) {
- if (!param.empty()) {
- cerr << "Warning WordPenalty ignoring parameter: " << param << endl;
- }
-}
-
-void FeatureFunction::TraversalFeaturesImpl(const SentenceMetadata& smeta,
- const Hypergraph::Edge& edge,
- const std::vector<const void*>& ant_states,
- SparseVector<double>* features,
- SparseVector<double>* estimated_features,
- void* state) const {
- throw std::runtime_error("TraversalFeaturesImpl not implemented - override it or TraversalFeaturesLog.\n");
+void FeatureFunction::TraversalFeaturesImpl(const SentenceMetadata&,
+ const Hypergraph::Edge&,
+ const std::vector<const void*>&,
+ SparseVector<double>*,
+ SparseVector<double>*,
+ void*) const {
+ cerr << "TraversalFeaturesImpl not implemented - override it or TraversalFeaturesLog\n";
abort();
}
-void WordPenalty::TraversalFeaturesImpl(const SentenceMetadata& smeta,
- const Hypergraph::Edge& edge,
- const std::vector<const void*>& ant_states,
- SparseVector<double>* features,
- SparseVector<double>* estimated_features,
- void* state) const {
- (void) smeta;
- (void) ant_states;
- (void) state;
- (void) estimated_features;
- features->set_value(fid_, edge.rule_->EWords() * value_);
-}
-
-SourceWordPenalty::SourceWordPenalty(const string& param) :
- fid_(FD::Convert("SourceWordPenalty")),
- value_(-1.0 / log(10)) {
- if (!param.empty()) {
- cerr << "Warning SourceWordPenalty ignoring parameter: " << param << endl;
- }
-}
-
-Features SourceWordPenalty::features() const {
- return single_feature(fid_);
-}
-
-Features WordPenalty::features() const {
- return single_feature(fid_);
-}
-
-
-void SourceWordPenalty::TraversalFeaturesImpl(const SentenceMetadata& smeta,
- const Hypergraph::Edge& edge,
- const std::vector<const void*>& ant_states,
- SparseVector<double>* features,
- SparseVector<double>* estimated_features,
- void* state) const {
- (void) smeta;
- (void) ant_states;
- (void) state;
- (void) estimated_features;
- features->set_value(fid_, edge.rule_->FWords() * value_);
-}
-
-ArityPenalty::ArityPenalty(const std::string& param) :
- value_(-1.0 / log(10)) {
- string fname = "Arity_";
- unsigned MAX=DEFAULT_MAX_ARITY;
- using namespace boost;
- if (!param.empty())
- MAX=lexical_cast<unsigned>(param);
- for (unsigned i = 0; i <= MAX; ++i) {
- WordID fid=FD::Convert(fname+lexical_cast<string>(i));
- fids_.push_back(fid);
- }
- while (!fids_.empty() && fids_.back()==0) fids_.pop_back(); // pretty up features vector in case FD was frozen. doesn't change anything
-}
-
-Features ArityPenalty::features() const {
- return Features(fids_.begin(),fids_.end());
-}
-
-void ArityPenalty::TraversalFeaturesImpl(const SentenceMetadata& smeta,
- const Hypergraph::Edge& edge,
- const std::vector<const void*>& ant_states,
- SparseVector<double>* features,
- SparseVector<double>* estimated_features,
- void* state) const {
- (void) smeta;
- (void) ant_states;
- (void) state;
- (void) estimated_features;
- unsigned a=edge.Arity();
- features->set_value(a<fids_.size()?fids_[a]:0, value_);
-}
-
-ModelSet::ModelSet(const vector<double>& w, const vector<const FeatureFunction*>& models) :
- models_(models),
- weights_(w),
- state_size_(0),
- model_state_pos_(models.size()) {
- for (int i = 0; i < models_.size(); ++i) {
- model_state_pos_[i] = state_size_;
- state_size_ += models_[i]->NumBytesContext();
- }
-}
-
-void ModelSet::PrepareForInput(const SentenceMetadata& smeta) {
- for (int i = 0; i < models_.size(); ++i)
- const_cast<FeatureFunction*>(models_[i])->PrepareForInput(smeta);
-}
-
-void ModelSet::AddFeaturesToEdge(const SentenceMetadata& smeta,
- const Hypergraph& /* hg */,
- const FFStates& node_states,
- Hypergraph::Edge* edge,
- FFState* context,
- prob_t* combination_cost_estimate) const {
- edge->reset_info();
- context->resize(state_size_);
- if (state_size_ > 0) {
- memset(&(*context)[0], 0, state_size_);
- }
- SparseVector<double> est_vals; // only computed if combination_cost_estimate is non-NULL
- if (combination_cost_estimate) *combination_cost_estimate = prob_t::One();
- for (int i = 0; i < models_.size(); ++i) {
- const FeatureFunction& ff = *models_[i];
- void* cur_ff_context = NULL;
- vector<const void*> ants(edge->tail_nodes_.size());
- bool has_context = ff.NumBytesContext() > 0;
- if (has_context) {
- int spos = model_state_pos_[i];
- cur_ff_context = &(*context)[spos];
- for (int i = 0; i < ants.size(); ++i) {
- ants[i] = &node_states[edge->tail_nodes_[i]][spos];
- }
- }
- ff.TraversalFeatures(smeta, *edge, ants, &edge->feature_values_, &est_vals, cur_ff_context);
- }
- if (combination_cost_estimate)
- combination_cost_estimate->logeq(est_vals.dot(weights_));
- edge->edge_prob_.logeq(edge->feature_values_.dot(weights_));
-}
-
-void ModelSet::AddFinalFeatures(const FFState& state, Hypergraph::Edge* edge,SentenceMetadata const& smeta) const {
- assert(1 == edge->rule_->Arity());
- edge->reset_info();
- for (int i = 0; i < models_.size(); ++i) {
- const FeatureFunction& ff = *models_[i];
- const void* ant_state = NULL;
- bool has_context = ff.NumBytesContext() > 0;
- if (has_context) {
- int spos = model_state_pos_[i];
- ant_state = &state[spos];
- }
- ff.FinalTraversalFeatures(smeta, *edge, ant_state, &edge->feature_values_);
- }
- edge->edge_prob_.logeq(edge->feature_values_.dot(weights_));
-}
-