diff options
author | Chris Dyer <cdyer@cs.cmu.edu> | 2011-07-06 19:54:58 -0400 |
---|---|---|
committer | Chris Dyer <cdyer@cs.cmu.edu> | 2011-07-06 19:54:58 -0400 |
commit | fe4b60f8669f0bdfcc67832e5487b33bd4b28938 (patch) | |
tree | d26226cf3ac885175e226d47b19f9ce8eea6a6c7 | |
parent | 164d32f02604ee5bff5de94ad669fb2b4d12d34a (diff) |
ngram count features
-rw-r--r-- | decoder/Makefile.am | 1 | ||||
-rw-r--r-- | decoder/cdec_ff.cc | 2 | ||||
-rw-r--r-- | decoder/ff_ngrams.cc | 319 | ||||
-rw-r--r-- | decoder/ff_ngrams.h | 29 |
4 files changed, 351 insertions, 0 deletions
diff --git a/decoder/Makefile.am b/decoder/Makefile.am index 244da2de..d884c431 100644 --- a/decoder/Makefile.am +++ b/decoder/Makefile.am @@ -65,6 +65,7 @@ libcdec_a_SOURCES = \ ff_charset.cc \ ff_lm.cc \ ff_klm.cc \ + ff_ngrams.cc \ ff_spans.cc \ ff_ruleshape.cc \ ff_wordalign.cc \ diff --git a/decoder/cdec_ff.cc b/decoder/cdec_ff.cc index 31f88a4f..3451c9fb 100644 --- a/decoder/cdec_ff.cc +++ b/decoder/cdec_ff.cc @@ -4,6 +4,7 @@ #include "ff_spans.h" #include "ff_lm.h" #include "ff_klm.h" +#include "ff_ngrams.h" #include "ff_csplit.h" #include "ff_wordalign.h" #include "ff_tagger.h" @@ -51,6 +52,7 @@ void register_feature_functions() { ff_registry.Register("RandLM", new FFFactory<LanguageModelRandLM>); #endif ff_registry.Register("SpanFeatures", new FFFactory<SpanFeatures>()); + ff_registry.Register("NgramFeatures", new FFFactory<NgramDetector>()); ff_registry.Register("RuleNgramFeatures", new FFFactory<RuleNgramFeatures>()); ff_registry.Register("CMR2008ReorderingFeatures", new FFFactory<CMR2008ReorderingFeatures>()); ff_registry.Register("KLanguageModel", new FFFactory<KLanguageModel<lm::ngram::ProbingModel> >()); diff --git a/decoder/ff_ngrams.cc b/decoder/ff_ngrams.cc new file mode 100644 index 00000000..54b394ae --- /dev/null +++ b/decoder/ff_ngrams.cc @@ -0,0 +1,319 @@ +#include "ff_ngrams.h" + +#include <cstring> +#include <iostream> + +#include <boost/scoped_ptr.hpp> + +#include "filelib.h" +#include "stringlib.h" +#include "hg.h" +#include "tdict.h" + +using namespace std; + +static const unsigned char HAS_FULL_CONTEXT = 1; +static const unsigned char HAS_EOS_ON_RIGHT = 2; +static const unsigned char MASK = 7; + +namespace { +template <unsigned MAX_ORDER = 5> +struct State { + explicit State() { + memset(state, 0, sizeof(state)); + } + explicit State(int order) { + memset(state, 0, (order - 1) * sizeof(WordID)); + } + State<MAX_ORDER>(char order, const WordID* mem) { + memcpy(state, mem, (order - 1) * sizeof(WordID)); + } + State(const State<MAX_ORDER>& other) { + memcpy(state, other.state, sizeof(state)); + } + const State& operator=(const State<MAX_ORDER>& other) { + memcpy(state, other.state, sizeof(state)); + } + explicit State(const State<MAX_ORDER>& other, unsigned order, WordID extend) { + char om1 = order - 1; + assert(om1 > 0); + for (char i = 1; i < om1; ++i) state[i - 1]= other.state[i]; + state[om1 - 1] = extend; + } + const WordID& operator[](size_t i) const { return state[i]; } + WordID& operator[](size_t i) { return state[i]; } + WordID state[MAX_ORDER]; +}; +} + +class NgramDetectorImpl { + + // returns the number of unscored words at the left edge of a span + inline int UnscoredSize(const void* state) const { + return *(static_cast<const char*>(state) + unscored_size_offset_); + } + + inline void SetUnscoredSize(int size, void* state) const { + *(static_cast<char*>(state) + unscored_size_offset_) = size; + } + + inline State<5> RemnantLMState(const void* cstate) const { + return State<5>(order_, static_cast<const WordID*>(cstate)); + } + + inline const State<5> BeginSentenceState() const { + State<5> state(order_); + state.state[0] = kSOS_; + return state; + } + + inline void SetRemnantLMState(const State<5>& lmstate, void* state) const { + // if we were clever, we could use the memory pointed to by state to do all + // the work, avoiding this copy + memcpy(state, lmstate.state, (order_-1) * sizeof(WordID)); + } + + WordID IthUnscoredWord(int i, const void* state) const { + const WordID* const mem = reinterpret_cast<const WordID*>(static_cast<const char*>(state) + unscored_words_offset_); + return mem[i]; + } + + void SetIthUnscoredWord(int i, const WordID index, void *state) const { + WordID* mem = reinterpret_cast<WordID*>(static_cast<char*>(state) + unscored_words_offset_); + mem[i] = index; + } + + inline bool GetFlag(const void *state, unsigned char flag) const { + return (*(static_cast<const char*>(state) + is_complete_offset_) & flag); + } + + inline void SetFlag(bool on, unsigned char flag, void *state) const { + if (on) { + *(static_cast<char*>(state) + is_complete_offset_) |= flag; + } else { + *(static_cast<char*>(state) + is_complete_offset_) &= (MASK ^ flag); + } + } + + inline bool HasFullContext(const void *state) const { + return GetFlag(state, HAS_FULL_CONTEXT); + } + + inline void SetHasFullContext(bool flag, void *state) const { + SetFlag(flag, HAS_FULL_CONTEXT, state); + } + + void FireFeatures(const State<5>& state, const WordID cur, SparseVector<double>* feats) { + assert(order_ == 2); + if (cur >= unimap_.size()) + unimap_.resize(cur + 10, 0); + int& uf = unimap_[cur]; + if (!uf) { + ostringstream os; + os << "U:" << TD::Convert(cur); + uf = FD::Convert(os.str()); + } + feats->set_value(uf, 1.0); + if (state.state[0]) { + if (state.state[0] >= bimap_.size()) + bimap_.resize(state.state[0] + 10); + int& bf = bimap_[state.state[0]][cur]; + if (!bf) { + ostringstream os; + os << "B:" << TD::Convert(state[0]) << '_' << TD::Convert(cur); + bf = FD::Convert(os.str()); + } + feats->set_value(bf, 1.0); + } + } + + public: + void LookupWords(const TRule& rule, const vector<const void*>& ant_states, SparseVector<double>* feats, SparseVector<double>* est_feats, void* remnant) { + double sum = 0.0; + double est_sum = 0.0; + int num_scored = 0; + int num_estimated = 0; + bool saw_eos = false; + bool has_some_history = false; + State<5> state; + const vector<WordID>& e = rule.e(); + bool context_complete = false; + for (int j = 0; j < e.size(); ++j) { + if (e[j] < 1) { // handle non-terminal substitution + const void* astate = (ant_states[-e[j]]); + int unscored_ant_len = UnscoredSize(astate); + for (int k = 0; k < unscored_ant_len; ++k) { + const WordID cur_word = IthUnscoredWord(k, astate); + const bool is_oov = (cur_word == 0); + SparseVector<double> p; + if (cur_word == kSOS_) { + state = BeginSentenceState(); + if (has_some_history) { // this is immediately fully scored, and bad + p.set_value(FD::Convert("Malformed"), 1.0); + context_complete = true; + } else { // this might be a real <s> + num_scored = max(0, order_ - 2); + } + } else { + FireFeatures(state, cur_word, &p); + const State<5> scopy = State<5>(state, order_, cur_word); + state = scopy; + if (saw_eos) { p.set_value(FD::Convert("Malformed"), 1.0); } + saw_eos = (cur_word == kEOS_); + } + has_some_history = true; + ++num_scored; + if (!context_complete) { + if (num_scored >= order_) context_complete = true; + } + if (context_complete) { + (*feats) += p; + } else { + if (remnant) + SetIthUnscoredWord(num_estimated, cur_word, remnant); + ++num_estimated; + (*est_feats) += p; + } + } + saw_eos = GetFlag(astate, HAS_EOS_ON_RIGHT); + if (HasFullContext(astate)) { // this is equivalent to the "star" in Chiang 2007 + state = RemnantLMState(astate); + context_complete = true; + } + } else { // handle terminal + const WordID cur_word = e[j]; + SparseVector<double> p; + if (cur_word == kSOS_) { + state = BeginSentenceState(); + if (has_some_history) { // this is immediately fully scored, and bad + p.set_value(FD::Convert("Malformed"), -100); + context_complete = true; + } else { // this might be a real <s> + num_scored = max(0, order_ - 2); + } + } else { + FireFeatures(state, cur_word, &p); + const State<5> scopy = State<5>(state, order_, cur_word); + state = scopy; + if (saw_eos) { p.set_value(FD::Convert("Malformed"), 1.0); } + saw_eos = (cur_word == kEOS_); + } + has_some_history = true; + ++num_scored; + if (!context_complete) { + if (num_scored >= order_) context_complete = true; + } + if (context_complete) { + (*feats) += p; + } else { + if (remnant) + SetIthUnscoredWord(num_estimated, cur_word, remnant); + ++num_estimated; + (*est_feats) += p; + } + } + } + if (remnant) { + SetFlag(saw_eos, HAS_EOS_ON_RIGHT, remnant); + SetRemnantLMState(state, remnant); + SetUnscoredSize(num_estimated, remnant); + SetHasFullContext(context_complete || (num_scored >= order_), remnant); + } + } + + // this assumes no target words on final unary -> goal rule. is that ok? + // for <s> (n-1 left words) and (n-1 right words) </s> + void FinalTraversal(const void* state, SparseVector<double>* feats) { + if (add_sos_eos_) { // rules do not produce <s> </s>, so do it here + SetRemnantLMState(BeginSentenceState(), dummy_state_); + SetHasFullContext(1, dummy_state_); + SetUnscoredSize(0, dummy_state_); + dummy_ants_[1] = state; + LookupWords(*dummy_rule_, dummy_ants_, feats, NULL, NULL); + } else { // rules DO produce <s> ... </s> +#if 0 + double p = 0; + if (!GetFlag(state, HAS_EOS_ON_RIGHT)) { p -= 100; } + if (UnscoredSize(state) > 0) { // are there unscored words + if (kSOS_ != IthUnscoredWord(0, state)) { + p -= 100 * UnscoredSize(state); + } + } + return p; +#endif + } + } + + public: + explicit NgramDetectorImpl(bool explicit_markers) : + kCDEC_UNK(TD::Convert("<unk>")) , + add_sos_eos_(!explicit_markers) { + order_ = 2; + state_size_ = (order_ - 1) * sizeof(WordID) + 2 + (order_ - 1) * sizeof(WordID); + unscored_size_offset_ = (order_ - 1) * sizeof(WordID); + is_complete_offset_ = unscored_size_offset_ + 1; + unscored_words_offset_ = is_complete_offset_ + 1; + + // special handling of beginning / ending sentence markers + dummy_state_ = new char[state_size_]; + memset(dummy_state_, 0, state_size_); + dummy_ants_.push_back(dummy_state_); + dummy_ants_.push_back(NULL); + dummy_rule_.reset(new TRule("[DUMMY] ||| [BOS] [DUMMY] ||| [1] [2] </s> ||| X=0")); + kSOS_ = TD::Convert("<s>"); + kEOS_ = TD::Convert("</s>"); + } + + ~NgramDetectorImpl() { + delete[] dummy_state_; + } + + int ReserveStateSize() const { return state_size_; } + + private: + const WordID kCDEC_UNK; + WordID kSOS_; // <s> - requires special handling. + WordID kEOS_; // </s> + const bool add_sos_eos_; // flag indicating whether the hypergraph produces <s> and </s> + // if this is true, FinalTransitionFeatures will "add" <s> and </s> + // if false, FinalTransitionFeatures will score anything with the + // markers in the right place (i.e., the beginning and end of + // the sentence) with 0, and anything else with -100 + + int order_; + int state_size_; + int unscored_size_offset_; + int is_complete_offset_; + int unscored_words_offset_; + char* dummy_state_; + vector<const void*> dummy_ants_; + TRulePtr dummy_rule_; + mutable std::vector<int> unimap_; // [left][right] + mutable std::vector<std::map<WordID, int> > bimap_; // [left][right] +}; + +NgramDetector::NgramDetector(const string& param) { + string filename, mapfile, featname; + bool explicit_markers = (param == "-x"); + pimpl_ = new NgramDetectorImpl(explicit_markers); + SetStateSize(pimpl_->ReserveStateSize()); +} + +NgramDetector::~NgramDetector() { + delete pimpl_; +} + +void NgramDetector::TraversalFeaturesImpl(const SentenceMetadata& /* smeta */, + const Hypergraph::Edge& edge, + const vector<const void*>& ant_states, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* state) const { + pimpl_->LookupWords(*edge.rule_, ant_states, features, estimated_features, state); +} + +void NgramDetector::FinalTraversalFeatures(const void* ant_state, + SparseVector<double>* features) const { + pimpl_->FinalTraversal(ant_state, features); +} + diff --git a/decoder/ff_ngrams.h b/decoder/ff_ngrams.h new file mode 100644 index 00000000..82f61b33 --- /dev/null +++ b/decoder/ff_ngrams.h @@ -0,0 +1,29 @@ +#ifndef _NGRAMS_FF_H_ +#define _NGRAMS_FF_H_ + +#include <vector> +#include <map> +#include <string> + +#include "ff.h" + +struct NgramDetectorImpl; +class NgramDetector : public FeatureFunction { + public: + // param = "filename.lm [-o n]" + NgramDetector(const std::string& param); + ~NgramDetector(); + virtual void FinalTraversalFeatures(const void* context, + SparseVector<double>* features) const; + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* out_context) const; + private: + NgramDetectorImpl* pimpl_; +}; + +#endif |