summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cs.cmu.edu>2012-06-18 20:28:42 -0400
committerChris Dyer <cdyer@cs.cmu.edu>2012-06-18 20:28:42 -0400
commitb89a1d3cb72ac36c137d6ae342f48ab9b8ee6655 (patch)
tree74dbff7519a3f3fe6906fff44128563300fec19b
parent953ec50e659084c13433ea311f6a07e7e1b292f8 (diff)
add non-const iterators to sparse vector, speed up model1 code
-rw-r--r--dtrain/dtrain.cc4
-rw-r--r--training/model1.cc61
-rw-r--r--training/mpi_flex_optimize.cc2
-rw-r--r--training/ttables.h17
-rw-r--r--utils/ccrp_onetable.h2
-rw-r--r--utils/corpus_tools.cc20
-rw-r--r--utils/corpus_tools.h4
-rw-r--r--utils/fast_sparse_vector.h80
-rw-r--r--utils/sampler.h16
9 files changed, 164 insertions, 42 deletions
diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc
index 8b1fc953..d9bce843 100644
--- a/dtrain/dtrain.cc
+++ b/dtrain/dtrain.cc
@@ -593,12 +593,12 @@ main(int argc, char** argv)
o.precision(17);
o << _np;
if (average) {
- for (SparseVector<weight_t>::const_iterator it = w_average.begin(); it != w_average.end(); ++it) {
+ for (SparseVector<weight_t>::iterator it = w_average.begin(); it != w_average.end(); ++it) {
if (it->second == 0) continue;
o << FD::Convert(it->first) << '\t' << it->second << endl;
}
} else {
- for (SparseVector<weight_t>::const_iterator it = lambdas.begin(); it != lambdas.end(); ++it) {
+ for (SparseVector<weight_t>::iterator it = lambdas.begin(); it != lambdas.end(); ++it) {
if (it->second == 0) continue;
o << FD::Convert(it->first) << '\t' << it->second << endl;
}
diff --git a/training/model1.cc b/training/model1.cc
index 73104304..19692b9a 100644
--- a/training/model1.cc
+++ b/training/model1.cc
@@ -5,7 +5,7 @@
#include <boost/program_options/variables_map.hpp>
#include "m.h"
-#include "lattice.h"
+#include "corpus_tools.h"
#include "stringlib.h"
#include "filelib.h"
#include "ttables.h"
@@ -19,6 +19,7 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
opts.add_options()
("iterations,i",po::value<unsigned>()->default_value(5),"Number of iterations of EM training")
("beam_threshold,t",po::value<double>()->default_value(-4),"log_10 of beam threshold (-10000 to include everything, 0 max)")
+ ("bidir,b", "Run bidirectional alignment")
("no_null_word,N","Do not generate from the null token")
("write_alignments,A", "Write alignments instead of parameters")
("favor_diagonal,d", "Use a static alignment distribution that assigns higher probabilities to alignments near the diagonal")
@@ -51,6 +52,15 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
return true;
}
+// src and trg are source and target strings, respectively (not really lattices)
+double PosteriorInference(const vector<WordID>& src, const vector<WordID>& trg) {
+ double llh = 0;
+ static vector<double> unnormed_a_i;
+ if (src.size() > unnormed_a_i.size())
+ unnormed_a_i.resize(src.size());
+ return llh;
+}
+
int main(int argc, char** argv) {
po::variables_map conf;
if (!InitCommandLine(argc, argv, &conf)) return 1;
@@ -74,8 +84,8 @@ int main(int argc, char** argv) {
return 1;
}
- TTable tt;
- TTable::Word2Word2Double was_viterbi;
+ TTable s2t, t2s;
+ TTable::Word2Word2Double s2t_viterbi;
double tot_len_ratio = 0;
double mean_srclen_multiplier = 0;
vector<double> unnormed_a_i;
@@ -96,14 +106,11 @@ int main(int argc, char** argv) {
++lc;
if (lc % 1000 == 0) { cerr << '.'; flag = true; }
if (lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; }
- ParseTranslatorInput(line, &ssrc, &strg);
- Lattice src, trg;
- LatticeTools::ConvertTextToLattice(ssrc, &src);
- LatticeTools::ConvertTextToLattice(strg, &trg);
+ vector<WordID> src, trg;
+ CorpusTools::ReadLine(line, &src, &trg);
if (src.size() == 0 || trg.size() == 0) {
cerr << "Error: " << lc << "\n" << line << endl;
- assert(src.size() > 0);
- assert(trg.size() > 0);
+ return 1;
}
if (src.size() > unnormed_a_i.size())
unnormed_a_i.resize(src.size());
@@ -113,13 +120,13 @@ int main(int argc, char** argv) {
vector<double> probs(src.size() + 1);
bool first_al = true; // used for write_alignments
for (int j = 0; j < trg.size(); ++j) {
- const WordID& f_j = trg[j][0].label;
+ const WordID& f_j = trg[j];
double sum = 0;
const double j_over_ts = double(j) / trg.size();
double prob_a_i = 1.0 / (src.size() + use_null); // uniform (model 1)
if (use_null) {
if (favor_diagonal) prob_a_i = prob_align_null;
- probs[0] = tt.prob(kNULL, f_j) * prob_a_i;
+ probs[0] = s2t.prob(kNULL, f_j) * prob_a_i;
sum += probs[0];
}
double az = 0;
@@ -133,7 +140,7 @@ int main(int argc, char** argv) {
for (int i = 1; i <= src.size(); ++i) {
if (favor_diagonal)
prob_a_i = unnormed_a_i[i-1] / az;
- probs[i] = tt.prob(src[i-1][0].label, f_j) * prob_a_i;
+ probs[i] = s2t.prob(src[i-1], f_j) * prob_a_i;
sum += probs[i];
}
if (final_iteration) {
@@ -150,7 +157,7 @@ int main(int argc, char** argv) {
if (probs[i] > max_p) {
max_index = i;
max_p = probs[i];
- max_i = src[i-1][0].label;
+ max_i = src[i-1];
}
}
if (write_alignments) {
@@ -159,13 +166,13 @@ int main(int argc, char** argv) {
cout << (max_index - 1) << "-" << j;
}
}
- was_viterbi[max_i][f_j] = 1.0;
+ s2t_viterbi[max_i][f_j] = 1.0;
}
} else {
if (use_null)
- tt.Increment(kNULL, f_j, probs[0] / sum);
+ s2t.Increment(kNULL, f_j, probs[0] / sum);
for (int i = 1; i <= src.size(); ++i)
- tt.Increment(src[i-1][0].label, f_j, probs[i] / sum);
+ s2t.Increment(src[i-1], f_j, probs[i] / sum);
}
likelihood += log(sum);
}
@@ -186,9 +193,9 @@ int main(int argc, char** argv) {
cerr << " perplexity: " << pow(2.0, -base2_likelihood / denom) << endl;
if (!final_iteration) {
if (variational_bayes)
- tt.NormalizeVB(alpha);
+ s2t.NormalizeVB(alpha);
else
- tt.Normalize();
+ s2t.Normalize();
}
}
if (testset.size()) {
@@ -199,23 +206,21 @@ int main(int argc, char** argv) {
string ssrc, strg, line;
while (getline(in, line)) {
++lc;
- ParseTranslatorInput(line, &ssrc, &strg);
- Lattice src, trg;
- LatticeTools::ConvertTextToLattice(ssrc, &src);
- LatticeTools::ConvertTextToLattice(strg, &trg);
+ vector<WordID> src, trg;
+ CorpusTools::ReadLine(line, &src, &trg);
double log_prob = Md::log_poisson(trg.size(), 0.05 + src.size() * mean_srclen_multiplier);
if (src.size() > unnormed_a_i.size())
unnormed_a_i.resize(src.size());
// compute likelihood
for (int j = 0; j < trg.size(); ++j) {
- const WordID& f_j = trg[j][0].label;
+ const WordID& f_j = trg[j];
double sum = 0;
const double j_over_ts = double(j) / trg.size();
double prob_a_i = 1.0 / (src.size() + use_null); // uniform (model 1)
if (use_null) {
if (favor_diagonal) prob_a_i = prob_align_null;
- sum += tt.prob(kNULL, f_j) * prob_a_i;
+ sum += s2t.prob(kNULL, f_j) * prob_a_i;
}
double az = 0;
if (favor_diagonal) {
@@ -228,7 +233,7 @@ int main(int argc, char** argv) {
for (int i = 1; i <= src.size(); ++i) {
if (favor_diagonal)
prob_a_i = unnormed_a_i[i-1] / az;
- sum += tt.prob(src[i-1][0].label, f_j) * prob_a_i;
+ sum += s2t.prob(src[i-1], f_j) * prob_a_i;
}
log_prob += log(sum);
}
@@ -240,16 +245,16 @@ int main(int argc, char** argv) {
if (write_alignments) return 0;
- for (TTable::Word2Word2Double::iterator ei = tt.ttable.begin(); ei != tt.ttable.end(); ++ei) {
+ for (TTable::Word2Word2Double::iterator ei = s2t.ttable.begin(); ei != s2t.ttable.end(); ++ei) {
const TTable::Word2Double& cpd = ei->second;
- const TTable::Word2Double& vit = was_viterbi[ei->first];
+ const TTable::Word2Double& vit = s2t_viterbi[ei->first];
const string& esym = TD::Convert(ei->first);
double max_p = -1;
for (TTable::Word2Double::const_iterator fi = cpd.begin(); fi != cpd.end(); ++fi)
if (fi->second > max_p) max_p = fi->second;
const double threshold = max_p * BEAM_THRESHOLD;
for (TTable::Word2Double::const_iterator fi = cpd.begin(); fi != cpd.end(); ++fi) {
- if (fi->second > threshold || (vit.count(fi->first) > 0)) {
+ if (fi->second > threshold || (vit.find(fi->first) != vit.end())) {
cout << esym << ' ' << TD::Convert(fi->first) << ' ' << log(fi->second) << endl;
}
}
diff --git a/training/mpi_flex_optimize.cc b/training/mpi_flex_optimize.cc
index a9ead018..b52decdc 100644
--- a/training/mpi_flex_optimize.cc
+++ b/training/mpi_flex_optimize.cc
@@ -356,7 +356,7 @@ int main(int argc, char** argv) {
gg.clear();
gg.resize(FD::NumFeats());
if (gg.size() != cur_weights.size()) { cur_weights.resize(gg.size()); }
- for (SparseVector<double>::const_iterator it = g.begin(); it != g.end(); ++it)
+ for (SparseVector<double>::iterator it = g.begin(); it != g.end(); ++it)
if (it->first) { gg[it->first] = it->second; }
g.clear();
double r = ApplyRegularizationTerms(regularization_strength,
diff --git a/training/ttables.h b/training/ttables.h
index bf3351d2..9baa13ca 100644
--- a/training/ttables.h
+++ b/training/ttables.h
@@ -4,6 +4,7 @@
#include <iostream>
#include <tr1/unordered_map>
+#include "sparse_vector.h"
#include "m.h"
#include "wordid.h"
#include "tdict.h"
@@ -68,18 +69,18 @@ class TTable {
}
return *this;
}
- void ShowTTable() {
- for (Word2Word2Double::iterator it = ttable.begin(); it != ttable.end(); ++it) {
- Word2Double& cpd = it->second;
- for (Word2Double::iterator j = cpd.begin(); j != cpd.end(); ++j) {
+ void ShowTTable() const {
+ for (Word2Word2Double::const_iterator it = ttable.begin(); it != ttable.end(); ++it) {
+ const Word2Double& cpd = it->second;
+ for (Word2Double::const_iterator j = cpd.begin(); j != cpd.end(); ++j) {
std::cerr << "P(" << TD::Convert(j->first) << '|' << TD::Convert(it->first) << ") = " << j->second << std::endl;
}
}
}
- void ShowCounts() {
- for (Word2Word2Double::iterator it = counts.begin(); it != counts.end(); ++it) {
- Word2Double& cpd = it->second;
- for (Word2Double::iterator j = cpd.begin(); j != cpd.end(); ++j) {
+ void ShowCounts() const {
+ for (Word2Word2Double::const_iterator it = counts.begin(); it != counts.end(); ++it) {
+ const Word2Double& cpd = it->second;
+ for (Word2Double::const_iterator j = cpd.begin(); j != cpd.end(); ++j) {
std::cerr << "c(" << TD::Convert(j->first) << '|' << TD::Convert(it->first) << ") = " << j->second << std::endl;
}
}
diff --git a/utils/ccrp_onetable.h b/utils/ccrp_onetable.h
index 1fe01b0e..abe399ea 100644
--- a/utils/ccrp_onetable.h
+++ b/utils/ccrp_onetable.h
@@ -183,7 +183,7 @@ class CCRP_OneTable {
assert(has_discount_prior() || has_alpha_prior());
DiscountResampler dr(*this);
ConcentrationResampler cr(*this);
- for (int iter = 0; iter < nloop; ++iter) {
+ for (unsigned iter = 0; iter < nloop; ++iter) {
if (has_alpha_prior()) {
alpha_ = slice_sampler1d(cr, alpha_, *rng, 0.0,
std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
diff --git a/utils/corpus_tools.cc b/utils/corpus_tools.cc
index d17785af..191153a2 100644
--- a/utils/corpus_tools.cc
+++ b/utils/corpus_tools.cc
@@ -8,6 +8,26 @@
using namespace std;
+void CorpusTools::ReadLine(const string& line,
+ vector<WordID>* src,
+ vector<WordID>* trg) {
+ static const WordID kDIV = TD::Convert("|||");
+ static vector<WordID> tmp;
+ src->clear();
+ trg->clear();
+ TD::ConvertSentence(line, &tmp);
+ unsigned i = 0;
+ while(i < tmp.size() && tmp[i] != kDIV) {
+ src->push_back(tmp[i]);
+ ++i;
+ }
+ if (i < tmp.size() && tmp[i] == kDIV) {
+ ++i;
+ for (; i < tmp.size() ; ++i)
+ trg->push_back(tmp[i]);
+ }
+}
+
void CorpusTools::ReadFromFile(const string& filename,
vector<vector<WordID> >* src,
set<WordID>* src_vocab,
diff --git a/utils/corpus_tools.h b/utils/corpus_tools.h
index 97bdaa94..f6699d87 100644
--- a/utils/corpus_tools.h
+++ b/utils/corpus_tools.h
@@ -7,6 +7,10 @@
#include "wordid.h"
struct CorpusTools {
+ static void ReadLine(const std::string& line,
+ std::vector<WordID>* src,
+ std::vector<WordID>* trg);
+
static void ReadFromFile(const std::string& filename,
std::vector<std::vector<WordID> >* src,
std::set<WordID>* src_vocab = NULL,
diff --git a/utils/fast_sparse_vector.h b/utils/fast_sparse_vector.h
index e86cbdc1..6e5dfb14 100644
--- a/utils/fast_sparse_vector.h
+++ b/utils/fast_sparse_vector.h
@@ -66,6 +66,60 @@ BOOST_STATIC_ASSERT(sizeof(PairIntT<float>) == sizeof(std::pair<unsigned,float>)
template <typename T, unsigned LOCAL_MAX = (sizeof(T) == sizeof(float) ? 15u : 7u)>
class FastSparseVector {
public:
+ struct iterator {
+ iterator(FastSparseVector<T>& v, const bool is_end) : local_(!v.is_remote_) {
+ if (local_) {
+ local_it_ = &v.data_.local[is_end ? v.local_size_ : 0];
+ } else {
+ if (is_end)
+ remote_it_ = v.data_.rbmap->end();
+ else
+ remote_it_ = v.data_.rbmap->begin();
+ }
+ }
+ iterator(FastSparseVector<T>& v, const bool, const unsigned k) : local_(!v.is_remote_) {
+ if (local_) {
+ unsigned i = 0;
+ while(i < v.local_size_ && v.data_.local[i].first() != k) { ++i; }
+ local_it_ = &v.data_.local[i];
+ } else {
+ remote_it_ = v.data_.rbmap->find(k);
+ }
+ }
+ const bool local_;
+ PairIntT<T>* local_it_;
+ typename std::map<unsigned, T>::iterator remote_it_;
+ std::pair<const unsigned, T>& operator*() const {
+ if (local_)
+ return *reinterpret_cast<std::pair<const unsigned, T>*>(local_it_);
+ else
+ return *remote_it_;
+ }
+
+ std::pair<const unsigned, T>* operator->() const {
+ if (local_)
+ return reinterpret_cast<std::pair<const unsigned, T>*>(local_it_);
+ else
+ return &*remote_it_;
+ }
+
+ iterator& operator++() {
+ if (local_) ++local_it_; else ++remote_it_;
+ return *this;
+ }
+
+ inline bool operator==(const iterator& o) const {
+ if (o.local_ != local_) return false;
+ if (local_) {
+ return local_it_ == o.local_it_;
+ } else {
+ return remote_it_ == o.remote_it_;
+ }
+ }
+ inline bool operator!=(const iterator& o) const {
+ return !(o == *this);
+ }
+ };
struct const_iterator {
const_iterator(const FastSparseVector<T>& v, const bool is_end) : local_(!v.is_remote_) {
if (local_) {
@@ -77,12 +131,21 @@ class FastSparseVector {
remote_it_ = v.data_.rbmap->begin();
}
}
+ const_iterator(const FastSparseVector<T>& v, const bool, const unsigned k) : local_(!v.is_remote_) {
+ if (local_) {
+ unsigned i = 0;
+ while(i < v.local_size_ && v.data_.local[i].first() != k) { ++i; }
+ local_it_ = &v.data_.local[i];
+ } else {
+ remote_it_ = v.data_.rbmap->find(k);
+ }
+ }
const bool local_;
const PairIntT<T>* local_it_;
typename std::map<unsigned, T>::const_iterator remote_it_;
const std::pair<const unsigned, T>& operator*() const {
if (local_)
- return *reinterpret_cast<const std::pair<const unsigned, float>*>(local_it_);
+ return *reinterpret_cast<const std::pair<const unsigned, T>*>(local_it_);
else
return *remote_it_;
}
@@ -160,6 +223,9 @@ class FastSparseVector {
bool nonzero(unsigned k) const {
return static_cast<bool>(value(k));
}
+ inline T& operator[](unsigned k) {
+ return get_or_create_bin(k);
+ }
inline void set_value(unsigned k, const T& v) {
get_or_create_bin(k) = v;
}
@@ -283,6 +349,18 @@ class FastSparseVector {
}
return o;
}
+ iterator find(unsigned k) {
+ return iterator(*this, false, k);
+ }
+ iterator begin() {
+ return iterator(*this, false);
+ }
+ iterator end() {
+ return iterator(*this, true);
+ }
+ const_iterator find(unsigned k) const {
+ return const_iterator(*this, false, k);
+ }
const_iterator begin() const {
return const_iterator(*this, false);
}
diff --git a/utils/sampler.h b/utils/sampler.h
index b237c716..3e4a4086 100644
--- a/utils/sampler.h
+++ b/utils/sampler.h
@@ -12,6 +12,7 @@
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/random/variate_generator.hpp>
+#include <boost/random/gamma_distribution.hpp>
#include <boost/random/normal_distribution.hpp>
#include <boost/random/poisson_distribution.hpp>
#include <boost/random/uniform_int.hpp>
@@ -76,6 +77,18 @@ struct RandomNumberGenerator {
return boost::poisson_distribution<int>(lambda)(m_random);
}
+ double NextGamma(double shape, double scale = 1.0) {
+ boost::gamma_distribution<> gamma(shape);
+ boost::variate_generator<boost::mt19937&,boost::gamma_distribution<> > vg(m_generator, gamma);
+ return vg() * scale;
+ }
+
+ double NextBeta(double alpha, double beta) {
+ double x = NextGamma(alpha);
+ double y = NextGamma(beta);
+ return x / (x + y);
+ }
+
bool AcceptMetropolisHastings(const prob_t& p_cur,
const prob_t& p_prev,
const prob_t& q_cur,
@@ -123,11 +136,12 @@ size_t RandomNumberGenerator<RNG>::SelectSample(const SampleSet<F>& ss, double T
const bool anneal = (T != 1.0);
F sum = F(0);
if (anneal) {
- for (int i = 0; i < ss.m_scores.size(); ++i)
+ for (unsigned i = 0; i < ss.m_scores.size(); ++i)
sum += pow(ss.m_scores[i], annealing_factor); // p^(1/T)
} else {
sum = std::accumulate(ss.m_scores.begin(), ss.m_scores.end(), F(0));
}
+ //std::cerr << "SUM: " << sum << std::endl;
//for (size_t i = 0; i < ss.m_scores.size(); ++i) std::cerr << ss.m_scores[i] << ",";
//std::cerr << std::endl;