diff options
author | Chris Dyer <cdyer@cs.cmu.edu> | 2012-01-27 13:19:27 -0500 |
---|---|---|
committer | Chris Dyer <cdyer@cs.cmu.edu> | 2012-01-27 13:19:27 -0500 |
commit | 203c3c3357b9ed8cfe44932c2bf5ea19eba6238c (patch) | |
tree | c446f8e8afbe194ef656b33cfc643f83633cf18c | |
parent | 481a120564fdb73c8c6833e2102acb533683261c (diff) |
migration to new metric api for vest, clean up of unsupported/not functional code
-rw-r--r-- | mteval/mbr_kbest.cc | 21 | ||||
-rw-r--r-- | utils/fast_sparse_vector.h | 6 | ||||
-rwxr-xr-x | vest/dist-vest.pl | 22 | ||||
-rw-r--r-- | vest/mbr_kbest.cc | 138 | ||||
-rw-r--r-- | vest/mr_vest_generate_mapper_input.cc | 356 | ||||
-rw-r--r-- | vest/mr_vest_map.cc | 16 |
6 files changed, 84 insertions, 475 deletions
diff --git a/mteval/mbr_kbest.cc b/mteval/mbr_kbest.cc index 64a6a8bf..b5e4750c 100644 --- a/mteval/mbr_kbest.cc +++ b/mteval/mbr_kbest.cc @@ -5,7 +5,7 @@ #include "prob.h" #include "tdict.h" -#include "scorer.h" +#include "ns.h" #include "filelib.h" #include "stringlib.h" @@ -17,7 +17,7 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("scale,a",po::value<double>()->default_value(1.0), "Posterior scaling factor (alpha)") - ("loss_function,l",po::value<string>()->default_value("bleu"), "Loss function") + ("evaluation_metric,m",po::value<string>()->default_value("ibm_bleu"), "Evaluation metric") ("input,i",po::value<string>()->default_value("-"), "File to read k-best lists from") ("output_list,L", "Show reranked list as output") ("help,h", "Help"); @@ -75,13 +75,14 @@ bool ReadKBestList(istream* in, string* sent_id, vector<pair<vector<WordID>, pro int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); - const string metric = conf["loss_function"].as<string>(); + const string smetric = conf["evaluation_metric"].as<string>(); + EvaluationMetric* metric = EvaluationMetric::Instance(smetric); + const bool is_loss = (UppercaseString(smetric) == "TER"); const bool output_list = conf.count("output_list") > 0; const string file = conf["input"].as<string>(); const double mbr_scale = conf["scale"].as<double>(); cerr << "Posterior scaling factor (alpha) = " << mbr_scale << endl; - ScoreType type = ScoreTypeFromString(metric); vector<pair<vector<WordID>, prob_t> > list; ReadFile rf(file); string sent_id; @@ -99,15 +100,15 @@ int main(int argc, char** argv) { vector<double> mbr_scores(output_list ? list.size() : 0); double mbr_loss = numeric_limits<double>::max(); for (int i = 0 ; i < list.size(); ++i) { - vector<vector<WordID> > refs(1, list[i].first); - //cerr << i << ": " << list[i].second <<"\t" << TD::GetString(list[i].first) << endl; - ScorerP scorer = SentenceScorer::CreateSentenceScorer(type, refs); + const vector<vector<WordID> > refs(1, list[i].first); + double wl_acc = 0; for (int j = 0; j < list.size(); ++j) { if (i != j) { - ScoreP s = scorer->ScoreCandidate(list[j].first); - double loss = 1.0 - s->ComputeScore(); - if (type == TER || type == AER) loss = 1.0 - loss; + SufficientStats ss; + metric->ComputeSufficientStatistics(list[j].first, refs, &ss); + double loss = 1.0 - metric->ComputeScore(ss); + if (is_loss) loss = 1.0 - loss; double weighted_loss = loss * (joints[j] / marginal).as_float(); wl_acc += weighted_loss; if ((!output_list) && wl_acc > mbr_loss) break; diff --git a/utils/fast_sparse_vector.h b/utils/fast_sparse_vector.h index 1301581a..17fa47bf 100644 --- a/utils/fast_sparse_vector.h +++ b/utils/fast_sparse_vector.h @@ -178,6 +178,12 @@ class FastSparseVector { T l2norm() const { return sqrt(l2norm_sq()); } + T pnorm(const double p) const { + T sum = T(); + for (const_iterator it = begin(), e = end(); it != e; ++it) + sum += pow(fabs(it->second), p); + return pow(sum, 1.0 / p); + } // if values are binary, gives |A intersect B|/|A union B| template<typename S> S tanimoto_coef(const FastSparseVector<S> &vec) const { diff --git a/vest/dist-vest.pl b/vest/dist-vest.pl index 8cde748b..1ec8c6b1 100755 --- a/vest/dist-vest.pl +++ b/vest/dist-vest.pl @@ -65,8 +65,6 @@ my $oraclen=0; my $oracleb=20; my $bleu_weight=1; my $use_make = 1; # use make to parallelize line search -my $dirargs=''; -my $density_prune; my $useqsub; my $pass_suffix = ''; my $cpbin=1; @@ -75,7 +73,6 @@ Getopt::Long::Configure("no_auto_abbrev"); if (GetOptions( "decoder=s" => \$decoderOpt, "jobs=i" => \$jobs, - "density-prune=f" => \$density_prune, "dont-clean" => \$disable_clean, "pass-suffix=s" => \$pass_suffix, "dry-run" => \$dryrun, @@ -87,15 +84,7 @@ if (GetOptions( "normalize=s" => \$normalize, "pmem=s" => \$pmem, "cpbin!" => \$cpbin, - "rand-directions=i" => \$rand_directions, - "random_directions=i" => \$rand_directions, - "bleu_weight=s" => \$bleu_weight, - "no-primary!" => \$noprimary, - "max-similarity=s" => \$maxsim, - "oracle-directions=i" => \$oraclen, - "n-oracle=i" => \$oraclen, - "oracle-batch=i" => \$oracleb, - "directions-args=s" => \$dirargs, + "random-directions=i" => \$rand_directions, "ref-files=s" => \$refFiles, "metric=s" => \$metric, "source-file=s" => \$srcFile, @@ -107,10 +96,6 @@ if (GetOptions( exit; } -if (defined $density_prune) { - die "--density_prune n: n must be greater than 1.0\n" unless $density_prune > 1.0; -} - if ($useqsub) { $use_make = 0; die "LocalEnvironment.pm does not have qsub configuration for this host. Cannot run with --qsub!\n" unless has_qsub(); @@ -328,10 +313,7 @@ while (1){ print STDERR "\nGENERATE OPTIMIZATION STRATEGY (OPT-ITERATION $opt_iter/$optimization_iters)\n"; print STDERR unchecked_output("date"); $icc++; - my $nop=$noprimary?"--no_primary":""; - my $targs=$oraclen ? "--decoder_translations='$runFile.gz' ".get_comma_sep_refs('-references',$refFiles):""; - my $bwargs=$bleu_weight!=1 ? "--bleu_weight=$bleu_weight":""; - $cmd="$MAPINPUT -w $inweights -r $dir/hgs $bwargs -s $devSize -d $rand_directions --max_similarity=$maxsim --oracle_directions=$oraclen --oracle_batch=$oracleb $targs $dirargs > $dir/agenda.$im1-$opt_iter"; + $cmd="$MAPINPUT -w $inweights -r $dir/hgs -s $devSize -d $rand_directions > $dir/agenda.$im1-$opt_iter"; print STDERR "COMMAND:\n$cmd\n"; check_call($cmd); check_call("mkdir -p $dir/splag.$im1"); diff --git a/vest/mbr_kbest.cc b/vest/mbr_kbest.cc deleted file mode 100644 index 2867b36b..00000000 --- a/vest/mbr_kbest.cc +++ /dev/null @@ -1,138 +0,0 @@ -#include <iostream> -#include <vector> - -#include <boost/program_options.hpp> - -#include "prob.h" -#include "tdict.h" -#include "scorer.h" -#include "filelib.h" -#include "stringlib.h" - -using namespace std; - -namespace po = boost::program_options; - -void InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("scale,a",po::value<double>()->default_value(1.0), "Posterior scaling factor (alpha)") - ("loss_function,l",po::value<string>()->default_value("bleu"), "Loss function") - ("input,i",po::value<string>()->default_value("-"), "File to read k-best lists from") - ("output_list,L", "Show reranked list as output") - ("help,h", "Help"); - po::options_description dcmdline_options; - dcmdline_options.add(opts); - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - bool flag = false; - if (flag || conf->count("help")) { - cerr << dcmdline_options << endl; - exit(1); - } -} - -struct LossComparer { - bool operator()(const pair<vector<WordID>, double>& a, const pair<vector<WordID>, double>& b) const { - return a.second < b.second; - } -}; - -bool ReadKBestList(istream* in, string* sent_id, vector<pair<vector<WordID>, prob_t> >* list) { - static string cache_id; - static pair<vector<WordID>, prob_t> cache_pair; - list->clear(); - string cur_id; - if (cache_pair.first.size() > 0) { - list->push_back(cache_pair); - cur_id = cache_id; - cache_pair.first.clear(); - } - string line; - string tstr; - while(*in) { - getline(*in, line); - if (line.empty()) continue; - size_t p1 = line.find(" ||| "); - if (p1 == string::npos) { cerr << "Bad format: " << line << endl; abort(); } - size_t p2 = line.find(" ||| ", p1 + 4); - if (p2 == string::npos) { cerr << "Bad format: " << line << endl; abort(); } - size_t p3 = line.rfind(" ||| "); - cache_id = line.substr(0, p1); - tstr = line.substr(p1 + 5, p2 - p1 - 5); - double val = strtod(line.substr(p3 + 5).c_str(), NULL); - TD::ConvertSentence(tstr, &cache_pair.first); - cache_pair.second.logeq(val); - if (cur_id.empty()) cur_id = cache_id; - if (cur_id == cache_id) { - list->push_back(cache_pair); - *sent_id = cur_id; - cache_pair.first.clear(); - } else { break; } - } - return !list->empty(); -} - -int main(int argc, char** argv) { - po::variables_map conf; - InitCommandLine(argc, argv, &conf); - const string metric = conf["loss_function"].as<string>(); - const bool output_list = conf.count("output_list") > 0; - const string file = conf["input"].as<string>(); - const double mbr_scale = conf["scale"].as<double>(); - cerr << "Posterior scaling factor (alpha) = " << mbr_scale << endl; - - ScoreType type = ScoreTypeFromString(metric); - vector<pair<vector<WordID>, prob_t> > list; - ReadFile rf(file); - string sent_id; - while(ReadKBestList(rf.stream(), &sent_id, &list)) { - vector<prob_t> joints(list.size()); - const prob_t max_score = pow(list.front().second, mbr_scale); - prob_t marginal = prob_t::Zero(); - for (int i = 0 ; i < list.size(); ++i) { - const prob_t joint = pow(list[i].second, mbr_scale) / max_score; - joints[i] = joint; - // cerr << "list[" << i << "] joint=" << log(joint) << endl; - marginal += joint; - } - int mbr_idx = -1; - vector<double> mbr_scores(output_list ? list.size() : 0); - double mbr_loss = numeric_limits<double>::max(); - for (int i = 0 ; i < list.size(); ++i) { - vector<vector<WordID> > refs(1, list[i].first); - //cerr << i << ": " << list[i].second <<"\t" << TD::GetString(list[i].first) << endl; - ScorerP scorer = SentenceScorer::CreateSentenceScorer(type, refs); - double wl_acc = 0; - for (int j = 0; j < list.size(); ++j) { - if (i != j) { - ScoreP s = scorer->ScoreCandidate(list[j].first); - double loss = 1.0 - s->ComputeScore(); - if (type == TER || type == AER) loss = 1.0 - loss; - double weighted_loss = loss * (joints[j] / marginal); - wl_acc += weighted_loss; - if ((!output_list) && wl_acc > mbr_loss) break; - } - } - if (output_list) mbr_scores[i] = wl_acc; - if (wl_acc < mbr_loss) { - mbr_loss = wl_acc; - mbr_idx = i; - } - } - // cerr << "ML translation: " << TD::GetString(list[0].first) << endl; - cerr << "MBR Best idx: " << mbr_idx << endl; - if (output_list) { - for (int i = 0; i < list.size(); ++i) - list[i].second.logeq(mbr_scores[i]); - sort(list.begin(), list.end(), LossComparer()); - for (int i = 0; i < list.size(); ++i) - cout << sent_id << " ||| " - << TD::GetString(list[i].first) << " ||| " - << log(list[i].second) << endl; - } else { - cout << TD::GetString(list[mbr_idx].first) << endl; - } - } - return 0; -} - diff --git a/vest/mr_vest_generate_mapper_input.cc b/vest/mr_vest_generate_mapper_input.cc index 0c094fd5..59d4f24f 100644 --- a/vest/mr_vest_generate_mapper_input.cc +++ b/vest/mr_vest_generate_mapper_input.cc @@ -1,320 +1,78 @@ -//TODO: debug segfault when references supplied, null shared_ptr when oracle #include <iostream> #include <vector> -#include <sstream> #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> -#include "sampler.h" #include "filelib.h" #include "weights.h" #include "line_optimizer.h" -#include "hg.h" -#include "hg_io.h" -#include "scorer.h" -#include "oracle_bleu.h" -#include "ff_bleu.h" - -const bool DEBUG_ORACLE=true; - -//TODO: decide on cdec_ff ffs, or just bleumodel - if just bleumodel, then do existing features on serialized hypergraphs remain? weights (origin) is passed to oracle_bleu.h:ComputeOracle -//void register_feature_functions(); -//FFRegistry ff_registry; -namespace { -void init_bleumodel() { - ff_registry.clear(); - ff_registry.Register(new FFFactory<BLEUModel>); -} - -struct init_ff { - init_ff() { - init_bleumodel(); - } -}; -//init_ff reg; // order of initialization? ff_registry may not be init yet. call in Run() instead. -} using namespace std; namespace po = boost::program_options; -typedef SparseVector<double> Dir; -typedef Dir Point; - -void compress_similar(vector<Dir> &dirs,double min_dist,ostream *log=&cerr,bool avg=true,bool verbose=true) { - // return; //TODO: debug - if (min_dist<=0) return; - double max_s=1.-min_dist; - if (log&&verbose) *log<<"max allowed S="<<max_s<<endl; - unsigned N=dirs.size(); - for (int i=0;i<N;++i) { - for (int j=i+1;j<N;++j) { - double s=dirs[i].tanimoto_coef(dirs[j]); - if (log&&verbose) *log<<"S["<<i<<","<<j<<"]="<<s<<' '; - if (s>max_s) { - if (log) *log << "Collapsing similar directions (T="<<s<<" > "<<max_s<<"). dirs["<<i<<"]="<<dirs[i]<<" dirs["<<j<<"]"<<endl; - if (avg) { - dirs[i]+=dirs[j]; - dirs[i]/=2.; - if (log) *log<<" averaged="<<dirs[i]; - } - if (log) *log<<endl; - swap(dirs[j],dirs[--N]); - } - } - if (log&&verbose) *log<<endl; - - } - dirs.resize(N); -} - -struct oracle_directions { - MT19937 rng; - OracleBleu oracle; - vector<Dir> directions; - - bool start_random; - bool include_primary; - bool old_to_hope; - bool fear_to_hope; - unsigned n_random; - void AddPrimaryAndRandomDirections() { - LineOptimizer::CreateOptimizationDirections( - fids,n_random,&rng,&directions,include_primary); - } - - void Print() { - for (int i = 0; i < dev_set_size; ++i) - for (int j = 0; j < directions.size(); ++j) { - cout << forest_file(i) <<" " << i<<" "; - print(cout,origin,"=",";"); - cout<<" "; - print(cout,directions[j],"=",";"); - cout<<"\n"; - } - } - - void AddOptions(po::options_description *opts) { - oracle.AddOptions(opts); - opts->add_options() - ("dev_set_size,s",po::value<unsigned>(&dev_set_size),"[REQD] Development set size (# of parallel sentences)") - ("forest_repository,r",po::value<string>(&forest_repository),"[REQD] Path to forest repository") - ("weights,w",po::value<string>(&weights_file),"[REQD] Current feature weights file") - ("optimize_feature,o",po::value<vector<string> >(), "Feature to optimize (if none specified, all weights listed in the weights file will be optimized)") - ("random_directions,d",po::value<unsigned>(&n_random)->default_value(10),"Number of random directions to run the line optimizer in") - ("no_primary,n","don't use the primary (orthogonal each feature alone) directions") - ("oracle_directions,O",po::value<unsigned>(&n_oracle)->default_value(0),"read the forests and choose this many directions based on heading toward a hope max (bleu+modelscore) translation.") - ("oracle_start_random",po::bool_switch(&start_random),"sample random subsets of dev set for ALL oracle directions, not just those after a sequential run through it") - ("oracle_batch,b",po::value<unsigned>(&oracle_batch)->default_value(10),"to produce each oracle direction, sum the 'gradient' over this many sentences") - ("max_similarity,m",po::value<double>(&max_similarity)->default_value(0),"remove directions that are too similar (Tanimoto coeff. less than (1-this)). 0 means don't filter, 1 means only 1 direction allowed?") - ("fear_to_hope,f",po::bool_switch(&fear_to_hope),"for each of the oracle_directions, also include a direction from fear to hope (as well as origin to hope)") - ("no_old_to_hope","don't emit the usual old -> hope oracle") - ("decoder_translations",po::value<string>(&decoder_translations_file)->default_value(""),"one per line decoder 1best translations for computing document BLEU vs. sentences-seen-so-far BLEU") - ; - } - void InitCommandLine(int argc, char *argv[], po::variables_map *conf) { - po::options_description opts("Configuration options"); - AddOptions(&opts); - opts.add_options()("help,h", "Help"); - - po::options_description dcmdline_options; - dcmdline_options.add(opts); - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - po::notify(*conf); - if (conf->count("dev_set_size") == 0) { - cerr << "Please specify the size of the development set using -s N\n"; - goto bad_cmdline; - } - if (conf->count("weights") == 0) { - cerr << "Please specify the starting-point weights using -w <weightfile.txt>\n"; - goto bad_cmdline; - } - if (conf->count("forest_repository") == 0) { - cerr << "Please specify the forest repository location using -r <DIR>\n"; - goto bad_cmdline; - } - if (n_oracle && oracle.refs.empty()) { - cerr<<"Specify references when using oracle directions\n"; - goto bad_cmdline; - } - if (conf->count("help")) { - cout << dcmdline_options << endl; - exit(0); - } - - return; - bad_cmdline: - cerr << dcmdline_options << endl; - exit(1); +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("dev_set_size,s",po::value<unsigned>(),"[REQD] Development set size (# of parallel sentences)") + ("forest_repository,r",po::value<string>(),"[REQD] Path to forest repository") + ("weights,w",po::value<string>(),"[REQD] Current feature weights file") + ("optimize_feature,o",po::value<vector<string> >(), "Feature to optimize (if none specified, all weights listed in the weights file will be optimized)") + ("random_directions,d",po::value<unsigned int>()->default_value(20),"Number of random directions to run the line optimizer in") + ("help,h", "Help"); + po::options_description dcmdline_options; + dcmdline_options.add(opts); + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + bool flag = false; + if (conf->count("dev_set_size") == 0) { + cerr << "Please specify the size of the development set using -d N\n"; + flag = true; } - - int main(int argc, char *argv[]) { - po::variables_map conf; - InitCommandLine(argc,argv,&conf); - init_bleumodel(); - UseConf(conf); - Run(); - return 0; + if (conf->count("weights") == 0) { + cerr << "Please specify the starting-point weights using -w <weightfile.txt>\n"; + flag = true; } - bool verbose() const { return oracle.verbose; } - void Run() { -// register_feature_functions(); - AddPrimaryAndRandomDirections(); - AddOracleDirections(); - compress_similar(directions,max_similarity,&cerr,true,verbose()); - Print(); + if (conf->count("forest_repository") == 0) { + cerr << "Please specify the forest repository location using -r <DIR>\n"; + flag = true; } - - - Point origin; // old weights that gave model 1best. - vector<string> optimize_features; - void UseConf(po::variables_map const& conf) { - oracle.UseConf(conf); - include_primary=!conf.count("no_primary"); - old_to_hope=!conf.count("no_old_to_hope"); - - if (conf.count("optimize_feature") > 0) - optimize_features=conf["optimize_feature"].as<vector<string> >(); - Init(); + if (flag || conf->count("help")) { + cerr << dcmdline_options << endl; + exit(1); } +} - string weights_file; - double max_similarity; - unsigned n_oracle, oracle_batch; - string forest_repository; - unsigned dev_set_size; - vector<Oracle> oracles; - vector<int> fids; - string forest_file(unsigned i) const { - ostringstream o; - o << forest_repository << '/' << i << ".json.gz"; - return o.str(); - } - - oracle_directions() { } - - Sentences model_hyps; - - vector<ScoreP> model_scores; - bool have_doc; - void Init() { - have_doc=!decoder_translations_file.empty(); - if (have_doc) { - model_hyps.Load(decoder_translations_file); - if (verbose()) model_hyps.Print(cerr,5); - model_scores.resize(model_hyps.size()); - if (dev_set_size!=model_hyps.size()) { - cerr<<"You supplied decoder_translations with a different number of lines ("<<model_hyps.size()<<") than dev_set_size ("<<dev_set_size<<")"<<endl; - abort(); - } - cerr << "Scoring model translations " << model_hyps << endl; - for (int i=0;i<model_hyps.size();++i) { - //TODO: what is scoreCcand? without clipping? do without for consistency w/ oracle - model_scores[i]=oracle.ds[i]->ScoreCandidate(model_hyps[i]); - assert(model_scores[i]); - if (verbose()) cerr<<"Before model["<<i<<"]: "<<ds().ScoreDetails()<<endl; - if (verbose()) cerr<<"model["<<i<<"]: "<<model_scores[i]->ScoreDetails()<<endl; - oracle.doc_score->PlusEquals(*model_scores[i]); - if (verbose()) cerr<<"After model["<<i<<"]: "<<ds().ScoreDetails()<<endl; - } - //TODO: compute doc bleu stats for each sentence, then when getting oracle temporarily exclude stats for that sentence (skip regular score updating) - } - start_random=false; - cerr << "Forest repo: " << forest_repository << endl; - assert(DirectoryExists(forest_repository)); - vector<string> features; - vector<weight_t> dorigin; - Weights::InitFromFile(weights_file, &dorigin, &features); - if (optimize_features.size()) - features=optimize_features; - Weights::InitSparseVector(dorigin, &origin); - fids.clear(); - AddFeatureIds(features); - oracles.resize(dev_set_size); - } - - void AddFeatureIds(vector<string> const& features) { - int i = fids.size(); - fids.resize(fids.size()+features.size()); - for (; i < features.size(); ++i) - fids[i] = FD::Convert(features[i]); - } - - - std::string decoder_translations_file; // one per line - //TODO: is it worthwhile to get a complete document bleu first? would take a list of 1best translations one per line from the decoders, rather than loading all the forests (expensive). translations are in run.raw.N.gz - new arg - void adjust_doc(unsigned i,double scale=1.) { - oracle.doc_score->PlusEquals(*model_scores[i],scale); - } - - Score &ds() { - return *oracle.doc_score; - } - - Oracle const& ComputeOracle(unsigned i) { - Oracle &o=oracles[i]; - if (o.is_null()) { - if (have_doc) { - if (verbose()) cerr<<"Before removing i="<<i<<" "<<ds().ScoreDetails()<<"\n"; - adjust_doc(i,-1); - } - ReadFile rf(forest_file(i)); - Hypergraph hg; - { - Timer t("Loading forest from JSON "+forest_file(i)); - HypergraphIO::ReadFromJSON(rf.stream(), &hg); - } - if (verbose()) cerr<<"Before oracle["<<i<<"]: "<<ds().ScoreDetails()<<endl; - o=oracle.ComputeOracle(oracle.MakeMetadata(hg,i),&hg,origin); - if (verbose()) { - cerr << o; - ScoreP hopesc=oracle.GetScore(o.hope.sentence,i); - oracle.doc_score->PlusEquals(*hopesc,1); - cerr<<"With hope: "<<ds().ScoreDetails()<<endl; - oracle.doc_score->PlusEquals(*hopesc,-1); - cerr<<"Without hope: "<<ds().ScoreDetails()<<endl; - cerr<<" oracle="<<oracle.GetScore(o.hope.sentence,i)->ScoreDetails()<<endl - <<" model="<<oracle.GetScore(o.model.sentence,i)->ScoreDetails()<<endl; - if (have_doc) - cerr<<" doc (should = model): "<<model_scores[i]->ScoreDetails()<<endl; - } - if (have_doc) { - adjust_doc(i,1); - } else - oracle.IncludeLastScore(); - } - return o; - } - - // if start_random is true, immediately sample w/ replacement from src sentences; otherwise, consume them sequentially until exhausted, then random. oracle vectors are summed - void AddOracleDirections() { - MT19937::IntRNG rsg=rng.inclusive(0,dev_set_size-1); - unsigned b=0; - for(unsigned i=0;i<n_oracle;++i) { - Dir o2hope; - Dir fear2hope; - for (unsigned j=0;j<oracle_batch;++j,++b) { - Oracle const& o=ComputeOracle((start_random||b>=dev_set_size) ? rsg() : b); - - if (old_to_hope) - o2hope+=o.ModelHopeGradient(); - if (fear_to_hope) - fear2hope+=o.FearHopeGradient(); - } - double N=(double)oracle_batch; - if (old_to_hope) { - o2hope/=N; - directions.push_back(o2hope); - } - if (fear_to_hope) { - fear2hope/=N; - directions.push_back(fear2hope); - } +int main(int argc, char** argv) { + RandomNumberGenerator<boost::mt19937> rng; + po::variables_map conf; + InitCommandLine(argc, argv, &conf); + vector<string> features; + SparseVector<weight_t> origin; + vector<weight_t> w; + Weights::InitFromFile(conf["weights"].as<string>(), &w, &features); + Weights::InitSparseVector(w, &origin); + const string forest_repository = conf["forest_repository"].as<string>(); + assert(DirectoryExists(forest_repository)); + if (conf.count("optimize_feature") > 0) + features=conf["optimize_feature"].as<vector<string> >(); + vector<SparseVector<weight_t> > directions; + vector<int> fids(features.size()); + for (int i = 0; i < features.size(); ++i) + fids[i] = FD::Convert(features[i]); + LineOptimizer::CreateOptimizationDirections( + fids, + conf["random_directions"].as<unsigned int>(), + &rng, + &directions); + unsigned dev_set_size = conf["dev_set_size"].as<unsigned>(); + for (unsigned i = 0; i < dev_set_size; ++i) { + for (unsigned j = 0; j < directions.size(); ++j) { + cout << forest_repository << '/' << i << ".json.gz " << i << ' '; + print(cout, origin, "=", ";"); + cout << ' '; + print(cout, directions[j], "=", ";"); + cout << endl; } } -}; - -int main(int argc, char** argv) { - oracle_directions od; - return od.main(argc,argv); + return 0; } diff --git a/vest/mr_vest_map.cc b/vest/mr_vest_map.cc index 8f6e085d..7d9625bc 100644 --- a/vest/mr_vest_map.cc +++ b/vest/mr_vest_map.cc @@ -82,20 +82,20 @@ int main(int argc, char** argv) { if (line.empty()) continue; istringstream is(line); int sent_id; - string file, s_origin, s_axis; + string file, s_origin, s_direction; // path-to-file (JSON) sent_ed starting-point search-direction - is >> file >> sent_id >> s_origin >> s_axis; + is >> file >> sent_id >> s_origin >> s_direction; SparseVector<double> origin; - assert(ReadSparseVectorString(s_origin, &origin)); - SparseVector<double> axis; - assert(ReadSparseVectorString(s_axis, &axis)); - // cerr << "File: " << file << "\nAxis: " << axis << "\n X: " << origin << endl; + ReadSparseVectorString(s_origin, &origin); + SparseVector<double> direction; + ReadSparseVectorString(s_direction, &direction); + // cerr << "File: " << file << "\nDir: " << direction << "\n X: " << origin << endl; if (last_file != file) { last_file = file; ReadFile rf(file); HypergraphIO::ReadFromJSON(rf.stream(), &hg); } - ViterbiEnvelopeWeightFunction wf(origin, axis); + ViterbiEnvelopeWeightFunction wf(origin, direction); ViterbiEnvelope ve = Inside<ViterbiEnvelope, ViterbiEnvelopeWeightFunction>(hg, NULL, wf); ErrorSurface es; @@ -104,7 +104,7 @@ int main(int argc, char** argv) { // cerr << "Error surface has " << es.size() << " segments\n"; string val; es.Serialize(&val); - cout << 'M' << ' ' << s_origin << ' ' << s_axis << '\t'; + cout << 'M' << ' ' << s_origin << ' ' << s_direction << '\t'; B64::b64encode(val.c_str(), val.size(), &cout); cout << endl << flush; } |