1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
#include <iostream>
#include <cmath>
#include <utility>
#ifndef HAVE_OLD_CPP
# include <unordered_map>
#else
# include <tr1/unordered_map>
namespace std { using std::tr1::unordered_map; }
#endif
#include <boost/functional/hash.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "m.h"
#include "corpus_tools.h"
#include "stringlib.h"
#include "filelib.h"
#include "ttables.h"
#include "tdict.h"
#include "da.h"
namespace po = boost::program_options;
using namespace std;
bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("input,i",po::value<string>(),"Parallel corpus input file")
("reverse,r","Reverse estimation (swap source and target during training)")
("iterations,I",po::value<unsigned>()->default_value(5),"Number of iterations of EM training")
//("bidir,b", "Run bidirectional alignment")
("favor_diagonal,d", "Use a static alignment distribution that assigns higher probabilities to alignments near the diagonal")
("prob_align_null", po::value<double>()->default_value(0.08), "When --favor_diagonal is set, what's the probability of a null alignment?")
("diagonal_tension,T", po::value<double>()->default_value(4.0), "How sharp or flat around the diagonal is the alignment distribution (<1 = flat >1 = sharp)")
("optimize_tension,o", "Optimize diagonal tension during EM")
("variational_bayes,v","Infer VB estimate of parameters under a symmetric Dirichlet prior")
("alpha,a", po::value<double>()->default_value(0.01), "Hyperparameter for optional Dirichlet prior")
("no_null_word,N","Do not generate from a null token")
("output_parameters,p", po::value<string>(), "Write model parameters to file")
("beam_threshold,t",po::value<double>()->default_value(-4),"When writing parameters, log_10 of beam threshold for writing parameter (-10000 to include everything, 0 max parameter only)")
("hide_training_alignments,H", "Hide training alignments (only useful if you want to use -x option and just compute testset statistics)")
("testset,x", po::value<string>(), "After training completes, compute the log likelihood of this set of sentence pairs under the learned model")
("no_add_viterbi,V","When writing model parameters, do not add Viterbi alignment points (may generate a grammar where some training sentence pairs are unreachable)")
("force_align,f",po::value<string>(), "Load previously written parameters to 'force align' input. Set --diagonal_tension and --mean_srclen_multiplier as estimated during training.")
("mean_srclen_multiplier,m",po::value<double>()->default_value(1), "When --force_align, use this source length multiplier")
("init_ttable,J",po::value<string>(), "Initialize ttable with this file (output of -p). Also give --diagonal_tension.");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help,h", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help") || conf->count("input") == 0) {
cerr << "Usage " << argv[0] << " [OPTIONS] -i corpus.fr-en\n";
cerr << dcmdline_options << endl;
return false;
}
return true;
}
int main(int argc, char** argv) {
po::variables_map conf;
if (!InitCommandLine(argc, argv, &conf)) return 1;
const string fname = conf["input"].as<string>();
const bool reverse = conf.count("reverse") > 0;
const int ITERATIONS = (conf.count("force_align")) ? 0 : conf["iterations"].as<unsigned>();
const double BEAM_THRESHOLD = pow(10.0, conf["beam_threshold"].as<double>());
const bool use_null = (conf.count("no_null_word") == 0);
const WordID kNULL = TD::Convert("<eps>");
const bool add_viterbi = (conf.count("no_add_viterbi") == 0);
const bool variational_bayes = (conf.count("variational_bayes") > 0);
const bool output_parameters = (conf.count("force_align")) ? false : conf.count("output_parameters");
double diagonal_tension = conf["diagonal_tension"].as<double>();
bool optimize_tension = conf.count("optimize_tension");
bool hide_training_alignments = (conf.count("hide_training_alignments") > 0);
const bool write_alignments = (conf.count("force_align")) ? true : !hide_training_alignments;
string testset;
if (conf.count("testset")) testset = conf["testset"].as<string>();
if (conf.count("force_align")) testset = fname;
double prob_align_null = conf["prob_align_null"].as<double>();
double prob_align_not_null = 1.0 - prob_align_null;
const double alpha = conf["alpha"].as<double>();
const bool favor_diagonal = conf.count("favor_diagonal");
if (variational_bayes && alpha <= 0.0) {
cerr << "--alpha must be > 0\n";
return 1;
}
TTable s2t, t2s;
TTable::Word2Word2Double s2t_viterbi;
unordered_map<pair<short, short>, unsigned, boost::hash<pair<short, short> > > size_counts;
double tot_len_ratio = 0;
double mean_srclen_multiplier = 0;
vector<double> probs;
if (conf.count("force_align")) {
// load model parameters
ReadFile s2t_f(conf["force_align"].as<string>());
s2t.DeserializeLogProbsFromText(s2t_f.stream());
mean_srclen_multiplier = conf["mean_srclen_multiplier"].as<double>();
}
if (conf.count("init_ttable")) {
ReadFile s2t_f(conf["init_ttable"].as<string>());
s2t.DeserializeLogProbsFromText(s2t_f.stream());
}
for (int iter = 0; iter < ITERATIONS; ++iter) {
const bool final_iteration = (iter == (ITERATIONS - 1));
cerr << "ITERATION " << (iter + 1) << (final_iteration ? " (FINAL)" : "") << endl;
ReadFile rf(fname);
istream& in = *rf.stream();
double likelihood = 0;
double denom = 0.0;
int lc = 0;
bool flag = false;
string line;
string ssrc, strg;
vector<WordID> src, trg;
double c0 = 0;
double emp_feat = 0;
double toks = 0;
while(true) {
getline(in, line);
if (!in) break;
++lc;
if (lc % 1000 == 0) { cerr << '.'; flag = true; }
if (lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; }
src.clear(); trg.clear();
CorpusTools::ReadLine(line, &src, &trg);
if (reverse) swap(src, trg);
if (src.size() == 0 || trg.size() == 0) {
cerr << "Error: " << lc << "\n" << line << endl;
return 1;
}
if (iter == 0)
tot_len_ratio += static_cast<double>(trg.size()) / static_cast<double>(src.size());
denom += trg.size();
probs.resize(src.size() + 1);
if (iter == 0)
++size_counts[make_pair<short,short>(trg.size(), src.size())];
bool first_al = true; // used for write_alignments
toks += trg.size();
for (unsigned j = 0; j < trg.size(); ++j) {
const WordID& f_j = trg[j];
double sum = 0;
double prob_a_i = 1.0 / (src.size() + use_null); // uniform (model 1)
if (use_null) {
if (favor_diagonal) prob_a_i = prob_align_null;
probs[0] = s2t.prob(kNULL, f_j) * prob_a_i;
sum += probs[0];
}
double az = 0;
if (favor_diagonal)
az = DiagonalAlignment::ComputeZ(j+1, trg.size(), src.size(), diagonal_tension) / prob_align_not_null;
for (unsigned i = 1; i <= src.size(); ++i) {
if (favor_diagonal)
prob_a_i = DiagonalAlignment::UnnormalizedProb(j + 1, i, trg.size(), src.size(), diagonal_tension) / az;
probs[i] = s2t.prob(src[i-1], f_j) * prob_a_i;
sum += probs[i];
}
if (final_iteration) {
if (add_viterbi || write_alignments) {
WordID max_i = 0;
double max_p = -1;
int max_index = -1;
if (use_null) {
max_i = kNULL;
max_index = 0;
max_p = probs[0];
}
for (unsigned i = 1; i <= src.size(); ++i) {
if (probs[i] > max_p) {
max_index = i;
max_p = probs[i];
max_i = src[i-1];
}
}
if (!hide_training_alignments && write_alignments) {
if (max_index > 0) {
if (first_al) first_al = false; else cout << ' ';
if (reverse)
cout << j << '-' << (max_index - 1);
else
cout << (max_index - 1) << '-' << j;
}
}
if (s2t_viterbi.size() <= static_cast<unsigned>(max_i)) s2t_viterbi.resize(max_i + 1);
s2t_viterbi[max_i][f_j] = 1.0;
}
} else {
if (use_null) {
double count = probs[0] / sum;
c0 += count;
s2t.Increment(kNULL, f_j, count);
}
for (unsigned i = 1; i <= src.size(); ++i) {
const double p = probs[i] / sum;
s2t.Increment(src[i-1], f_j, p);
emp_feat += DiagonalAlignment::Feature(j, i, trg.size(), src.size()) * p;
}
}
likelihood += log(sum);
}
if (write_alignments && final_iteration && !hide_training_alignments) cout << endl;
}
// log(e) = 1.0
double base2_likelihood = likelihood / log(2);
if (flag) { cerr << endl; }
if (iter == 0) {
mean_srclen_multiplier = tot_len_ratio / lc;
cerr << "expected target length = source length * " << mean_srclen_multiplier << endl;
}
emp_feat /= toks;
cerr << " log_e likelihood: " << likelihood << endl;
cerr << " log_2 likelihood: " << base2_likelihood << endl;
cerr << " cross entropy: " << (-base2_likelihood / denom) << endl;
cerr << " perplexity: " << pow(2.0, -base2_likelihood / denom) << endl;
cerr << " posterior p0: " << c0 / toks << endl;
cerr << " posterior al-feat: " << emp_feat << endl;
//cerr << " model tension: " << mod_feat / toks << endl;
cerr << " size counts: " << size_counts.size() << endl;
if (!final_iteration) {
if (favor_diagonal && optimize_tension && iter > 0) {
for (int ii = 0; ii < 8; ++ii) {
double mod_feat = 0;
unordered_map<pair<short,short>,unsigned,boost::hash<pair<short, short> > >::iterator it = size_counts.begin();
for(; it != size_counts.end(); ++it) {
const pair<short,short>& p = it->first;
for (short j = 1; j <= p.first; ++j)
mod_feat += it->second * DiagonalAlignment::ComputeDLogZ(j, p.first, p.second, diagonal_tension);
}
mod_feat /= toks;
cerr << " " << ii + 1 << " model al-feat: " << mod_feat << " (tension=" << diagonal_tension << ")\n";
diagonal_tension += (emp_feat - mod_feat) * 20.0;
if (diagonal_tension <= 0.1) diagonal_tension = 0.1;
if (diagonal_tension > 14) diagonal_tension = 14;
}
cerr << " final tension: " << diagonal_tension << endl;
}
if (variational_bayes)
s2t.NormalizeVB(alpha);
else
s2t.Normalize();
//prob_align_null *= 0.8; // XXX
//prob_align_null += (c0 / toks) * 0.2;
prob_align_not_null = 1.0 - prob_align_null;
}
}
if (testset.size()) {
ReadFile rf(testset);
istream& in = *rf.stream();
int lc = 0;
double tlp = 0;
string line;
while (getline(in, line)) {
++lc;
vector<WordID> src, trg;
CorpusTools::ReadLine(line, &src, &trg);
cout << TD::GetString(src) << " ||| " << TD::GetString(trg) << " |||";
if (reverse) swap(src, trg);
double log_prob = Md::log_poisson(trg.size(), 0.05 + src.size() * mean_srclen_multiplier);
// compute likelihood
for (unsigned j = 0; j < trg.size(); ++j) {
const WordID& f_j = trg[j];
double sum = 0;
int a_j = 0;
double max_pat = 0;
double prob_a_i = 1.0 / (src.size() + use_null); // uniform (model 1)
if (use_null) {
if (favor_diagonal) prob_a_i = prob_align_null;
max_pat = s2t.prob(kNULL, f_j) * prob_a_i;
sum += max_pat;
}
double az = 0;
if (favor_diagonal)
az = DiagonalAlignment::ComputeZ(j+1, trg.size(), src.size(), diagonal_tension) / prob_align_not_null;
for (unsigned i = 1; i <= src.size(); ++i) {
if (favor_diagonal)
prob_a_i = DiagonalAlignment::UnnormalizedProb(j + 1, i, trg.size(), src.size(), diagonal_tension) / az;
double pat = s2t.prob(src[i-1], f_j) * prob_a_i;
if (pat > max_pat) { max_pat = pat; a_j = i; }
sum += pat;
}
log_prob += log(sum);
if (write_alignments) {
if (a_j > 0) {
cout << ' ';
if (reverse)
cout << j << '-' << (a_j - 1);
else
cout << (a_j - 1) << '-' << j;
}
}
}
tlp += log_prob;
cout << " ||| " << log_prob << endl << flush;
} // loop over test set sentences
cerr << "TOTAL LOG PROB " << tlp << endl;
}
if (output_parameters) {
WriteFile params_out(conf["output_parameters"].as<string>());
for (unsigned eind = 1; eind < s2t.ttable.size(); ++eind) {
const auto& cpd = s2t.ttable[eind];
const TTable::Word2Double& vit = s2t_viterbi[eind];
const string& esym = TD::Convert(eind);
double max_p = -1;
for (auto& fi : cpd)
if (fi.second > max_p) max_p = fi.second;
const double threshold = max_p * BEAM_THRESHOLD;
for (auto& fi : cpd) {
if (fi.second > threshold || (vit.find(fi.first) != vit.end())) {
*params_out << esym << ' ' << TD::Convert(fi.first) << ' ' << log(fi.second) << endl;
}
}
}
}
return 0;
}
|