1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
|
#include <sstream>
#include <iostream>
#include <vector>
#include <cassert>
#include <cmath>
#include <algorithm>
#include "config.h"
#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "sentence_metadata.h"
#include "scorer.h"
#include "verbose.h"
#include "viterbi.h"
#include "hg.h"
#include "prob.h"
#include "kbest.h"
#include "ff_register.h"
#include "decoder.h"
#include "filelib.h"
#include "fdict.h"
#include "time.h"
#include "sampler.h"
#include "weights.h"
#include "sparse_vector.h"
using namespace std;
namespace po = boost::program_options;
bool invert_score;
boost::shared_ptr<MT19937> rng;
bool approx_score;
bool no_reweight;
bool no_select;
bool unique_kbest;
int update_list_size;
vector<weight_t> dense_w_local;
double mt_metric_scale;
int optimizer;
int fear_select;
int hope_select;
bool pseudo_doc;
bool sent_approx;
bool checkloss;
bool stream;
struct FComp {
const vector<double>& w_;
FComp(const vector<double>& w) : w_(w) {}
bool operator()(int a, int b) const {
return fabs(w_[a]) > fabs(w_[b]);
}
};
void ShowLargestFeatures(const vector<double>& w) {
vector<int> fnums(w.size());
for (int i = 0; i < w.size(); ++i)
fnums[i] = i;
vector<int>::iterator mid = fnums.begin();
mid += (w.size() > 10 ? 10 : w.size());
partial_sort(fnums.begin(), mid, fnums.end(), FComp(w));
cerr << "TOP FEATURES:";
for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) {
cerr << ' ' << FD::Convert(*i) << '=' << w[*i];
}
cerr << endl;
}
bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("input_weights,w",po::value<string>(),"Input feature weights file")
("source,i",po::value<string>(),"Source file for development set")
("pass,p", po::value<int>()->default_value(15), "Current pass through the training data")
("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)")
("mt_metric,m",po::value<string>()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)")
("optimizer,o",po::value<int>()->default_value(1), "Optimizer (SGD=1, PA MIRA w/Delta=2, Cutting Plane MIRA=3, PA MIRA=4, Triple nbest list MIRA=5)")
("fear,f",po::value<int>()->default_value(1), "Fear selection (model-cost=1, maxcost=2, maxscore=3)")
("hope,h",po::value<int>()->default_value(1), "Hope selection (model+cost=1, mincost=2)")
("max_step_size,C", po::value<double>()->default_value(0.001), "regularization strength (C)")
("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Amount to scale MT loss function by")
("sent_approx,a", "Use smoothed sentence-level BLEU score for approximate scoring")
("pseudo_doc,e", "Use pseudo-document BLEU score for approximate scoring")
("no_reweight,d","Do not reweight forest for cutting plane")
("no_select,n", "Do not use selection heuristic")
("k_best_size,k", po::value<int>()->default_value(500), "Size of hypothesis list to search for oracles")
("update_k_best,b", po::value<int>()->default_value(1), "Size of good, bad lists to perform update with")
("unique_k_best,u", "Unique k-best translation list")
("stream,t", "Stream mode (used for realtime)")
("weights_output,O",po::value<string>(),"Directory to write weights to")
("output_dir,D",po::value<string>(),"Directory to place output in")
("decoder_config,c",po::value<string>(),"Decoder configuration file");
po::options_description clo("Command line options");
clo.add_options()
("config", po::value<string>(), "Configuration file")
("help,H", "Print this help message and exit");
po::options_description dconfig_options, dcmdline_options;
dconfig_options.add(opts);
dcmdline_options.add(opts).add(clo);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
if (conf->count("config")) {
ifstream config((*conf)["config"].as<string>().c_str());
po::store(po::parse_config_file(config, dconfig_options), *conf);
}
po::notify(*conf);
if (conf->count("help")
|| !conf->count("input_weights")
|| !conf->count("decoder_config")
|| (!conf->count("stream") && (!conf->count("reference") || !conf->count("weights_output") || !conf->count("output_dir")))
) {
cerr << dcmdline_options << endl;
return false;
}
return true;
}
//load previous translation, store array of each sentences score, subtract it from current sentence and replace with new translation score
static const double kMINUS_EPSILON = -1e-6;
static const double EPSILON = 0.000001;
static const double SMO_EPSILON = 0.0001;
static const double PSEUDO_SCALE = 0.95;
static const int MAX_SMO = 10;
int cur_pass;
struct HypothesisInfo {
HypothesisInfo() : mt_metric(), hope(), fear(), alpha(), oracle_loss() {}
SparseVector<double> features;
vector<WordID> hyp;
double mt_metric;
double hope;
double fear;
double alpha;
double oracle_loss;
SparseVector<double> oracle_feat_diff;
boost::shared_ptr<HypothesisInfo> oracleN;
};
bool ApproxEqual(double a, double b) {
if (a == b) return true;
return (fabs(a-b)/fabs(b)) < EPSILON;
}
typedef boost::shared_ptr<HypothesisInfo> HI;
bool HypothesisCompareB(const HI& h1, const HI& h2 )
{
return h1->mt_metric > h2->mt_metric;
};
bool HopeCompareB(const HI& h1, const HI& h2 )
{
return h1->hope > h2->hope;
};
bool FearCompareB(const HI& h1, const HI& h2 )
{
return h1->fear > h2->fear;
};
bool FearComparePred(const HI& h1, const HI& h2 )
{
return h1->features.dot(dense_w_local) > h2->features.dot(dense_w_local);
};
bool HypothesisCompareG(const HI& h1, const HI& h2 )
{
return h1->mt_metric < h2->mt_metric;
};
void CuttingPlane(vector<boost::shared_ptr<HypothesisInfo> >* cur_c, bool* again, vector<boost::shared_ptr<HypothesisInfo> >& all_hyp, vector<weight_t> dense_weights)
{
bool DEBUG_CUT = false;
boost::shared_ptr<HypothesisInfo> max_fear, max_fear_in_set;
vector<boost::shared_ptr<HypothesisInfo> >& cur_constraint = *cur_c;
if(no_reweight)
{
//find new hope hypothesis
for(int u=0;u!=all_hyp.size();u++)
{
double t_score = all_hyp[u]->features.dot(dense_weights);
all_hyp[u]->hope = 1 * all_hyp[u]->mt_metric + t_score;
}
//sort hyps by hope score
sort(all_hyp.begin(),all_hyp.end(),HopeCompareB);
double hope_score = all_hyp[0]->features.dot(dense_weights);
if(DEBUG_CUT) cerr << "New hope derivation score " << hope_score << endl;
for(int u=0;u!=all_hyp.size();u++)
{
double t_score = all_hyp[u]->features.dot(dense_weights);
all_hyp[u]->fear = -1*all_hyp[u]->mt_metric + 1*all_hyp[0]->mt_metric - hope_score + t_score; //relative loss
}
sort(all_hyp.begin(),all_hyp.end(),FearCompareB);
}
//assign maximum fear derivation from all derivations
max_fear = all_hyp[0];
if(DEBUG_CUT) cerr <<"Cutting Plane Max Fear "<<max_fear->fear ;
for(int i=0; i < cur_constraint.size();i++) //select maximal violator already in constraint set
{
if (!max_fear_in_set || cur_constraint[i]->fear > max_fear_in_set->fear)
max_fear_in_set = cur_constraint[i];
}
if(DEBUG_CUT) cerr << "Max Fear in constraint set " << max_fear_in_set->fear << endl;
if(max_fear->fear > max_fear_in_set->fear + SMO_EPSILON)
{
cur_constraint.push_back(max_fear);
*again = true;
if(DEBUG_CUT) cerr << "Optimize Again " << *again << endl;
}
}
double ComputeDelta(vector<boost::shared_ptr<HypothesisInfo> >* cur_p, double max_step_size,vector<weight_t> dense_weights )
{
vector<boost::shared_ptr<HypothesisInfo> >& cur_pair = *cur_p;
double loss = cur_pair[0]->oracle_loss - cur_pair[1]->oracle_loss;
double margin = -(cur_pair[0]->oracleN->features.dot(dense_weights)- cur_pair[0]->features.dot(dense_weights)) + (cur_pair[1]->oracleN->features.dot(dense_weights) - cur_pair[1]->features.dot(dense_weights));
const double num = margin + loss;
cerr << "LOSS: " << num << " Margin:" << margin << " BLEUL:" << loss << " " << cur_pair[1]->features.dot(dense_weights) << " " << cur_pair[0]->features.dot(dense_weights) <<endl;
SparseVector<double> diff = cur_pair[0]->features;
diff -= cur_pair[1]->features;
double diffsqnorm = diff.l2norm_sq();
double delta;
if (diffsqnorm > 0)
delta = num / (diffsqnorm * max_step_size);
else
delta = 0;
cerr << " D1:" << delta;
//clip delta (enforce margin constraints)
delta = max(-cur_pair[0]->alpha, min(delta, cur_pair[1]->alpha));
cerr << " D2:" << delta;
return delta;
}
vector<boost::shared_ptr<HypothesisInfo> > SelectPair(vector<boost::shared_ptr<HypothesisInfo> >* cur_c)
{
bool DEBUG_SELECT= false;
vector<boost::shared_ptr<HypothesisInfo> >& cur_constraint = *cur_c;
vector<boost::shared_ptr<HypothesisInfo> > pair;
if (no_select || optimizer == 2){ //skip heuristic search and return oracle and fear for pa-mira
pair.push_back(cur_constraint[0]);
pair.push_back(cur_constraint[1]);
return pair;
}
for(int u=0;u != cur_constraint.size();u++)
{
boost::shared_ptr<HypothesisInfo> max_fear;
if(DEBUG_SELECT) cerr<< "cur alpha " << u << " " << cur_constraint[u]->alpha;
for(int i=0; i < cur_constraint.size();i++) //select maximal violator
{
if(i != u)
if (!max_fear || cur_constraint[i]->fear > max_fear->fear)
max_fear = cur_constraint[i];
}
if(!max_fear) return pair; //
if ((cur_constraint[u]->alpha == 0) && (cur_constraint[u]->fear > max_fear->fear + SMO_EPSILON))
{
for(int i=0; i < cur_constraint.size();i++) //select maximal violator
{
if(i != u)
if (cur_constraint[i]->alpha > 0)
{
pair.push_back(cur_constraint[u]);
pair.push_back(cur_constraint[i]);
return pair;
}
}
}
if ((cur_constraint[u]->alpha > 0) && (cur_constraint[u]->fear < max_fear->fear - SMO_EPSILON))
{
for(int i=0; i < cur_constraint.size();i++) //select maximal violator
{
if(i != u)
if (cur_constraint[i]->fear > cur_constraint[u]->fear)
{
pair.push_back(cur_constraint[u]);
pair.push_back(cur_constraint[i]);
return pair;
}
}
}
}
return pair; //no more constraints to optimize, we're done here
}
struct GoodBadOracle {
vector<boost::shared_ptr<HypothesisInfo> > good;
vector<boost::shared_ptr<HypothesisInfo> > bad;
};
struct BasicObserver: public DecoderObserver {
Hypergraph* hypergraph;
BasicObserver() : hypergraph(NULL) {}
~BasicObserver() {
if(hypergraph != NULL) delete hypergraph;
}
void NotifyDecodingStart(const SentenceMetadata& smeta) {}
void NotifySourceParseFailure(const SentenceMetadata& smeta) {}
void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
if(hypergraph != NULL) delete hypergraph;
hypergraph = new Hypergraph(*hg);
}
void NotifyAlignmentFailure(const SentenceMetadata& semta) {
if(hypergraph != NULL) delete hypergraph;
}
void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) {}
void NotifyDecodingComplete(const SentenceMetadata& smeta) {}
};
struct TrainingObserver : public DecoderObserver {
TrainingObserver(const int k,
const DocScorer& d,
vector<GoodBadOracle>* o,
vector<ScoreP>* cbs) : ds(d), oracles(*o), corpus_bleu_sent_stats(*cbs), kbest_size(k) {
if(!pseudo_doc && !sent_approx) {
if(cur_pass > 0) { //calculate corpus bleu score from previous iterations 1-best for BLEU gain
ScoreP acc;
for (int ii = 0; ii < corpus_bleu_sent_stats.size(); ii++) {
if (!acc) { acc = corpus_bleu_sent_stats[ii]->GetZero(); }
acc->PlusEquals(*corpus_bleu_sent_stats[ii]);
}
corpus_bleu_stats = acc;
corpus_bleu_score = acc->ComputeScore();
}
}
}
const DocScorer& ds;
vector<ScoreP>& corpus_bleu_sent_stats;
vector<GoodBadOracle>& oracles;
vector<boost::shared_ptr<HypothesisInfo> > cur_best;
boost::shared_ptr<HypothesisInfo> cur_oracle;
const int kbest_size;
Hypergraph forest;
int cur_sent;
ScoreP corpus_bleu_stats;
float corpus_bleu_score;
float corpus_src_length;
float curr_src_length;
const int GetCurrentSent() const {
return cur_sent;
}
const HypothesisInfo& GetCurrentBestHypothesis() const {
return *cur_best[0];
}
const vector<boost::shared_ptr<HypothesisInfo> > GetCurrentBest() const {
return cur_best;
}
const HypothesisInfo& GetCurrentOracle() const {
return *cur_oracle;
}
const Hypergraph& GetCurrentForest() const {
return forest;
}
virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
cur_sent = stream ? 0 : smeta.GetSentenceID();
curr_src_length = (float) smeta.GetSourceLength();
if(unique_kbest)
UpdateOracles<KBest::FilterUnique>(smeta.GetSentenceID(), *hg);
else
UpdateOracles<KBest::NoFilter<std::vector<WordID> > >(smeta.GetSentenceID(), *hg);
forest = *hg;
}
boost::shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double score, const vector<WordID>& hyp) {
boost::shared_ptr<HypothesisInfo> h(new HypothesisInfo);
h->features = feats;
h->mt_metric = score;
h->hyp = hyp;
return h;
}
template <class Filter>
void UpdateOracles(int sent_id, const Hypergraph& forest) {
if (stream) sent_id = 0;
bool PRINT_LIST= false;
assert(sent_id < oracles.size());
vector<boost::shared_ptr<HypothesisInfo> >& cur_good = oracles[sent_id].good;
vector<boost::shared_ptr<HypothesisInfo> >& cur_bad = oracles[sent_id].bad;
//TODO: look at keeping previous iterations hypothesis lists around
cur_best.clear();
cur_good.clear();
cur_bad.clear();
vector<boost::shared_ptr<HypothesisInfo> > all_hyp;
typedef KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,Filter> K;
K kbest(forest,kbest_size);
for (int i = 0; i < kbest_size; ++i) {
typename K::Derivation *d =
kbest.LazyKthBest(forest.nodes_.size() - 1, i);
if (!d) break;
float sentscore;
if(cur_pass > 0 && !pseudo_doc && !sent_approx)
{
ScoreP sent_stats = ds[sent_id]->ScoreCandidate(d->yield);
ScoreP corpus_no_best = corpus_bleu_stats->GetZero();
corpus_bleu_stats->Subtract(*corpus_bleu_sent_stats[sent_id], &*corpus_no_best);
sent_stats->PlusEquals(*corpus_no_best, 0.5);
//compute gain from new sentence in 1-best corpus
sentscore = mt_metric_scale * (sent_stats->ComputeScore() - corpus_no_best->ComputeScore());// - corpus_bleu_score);
}
else if(pseudo_doc) //pseudo-corpus smoothing
{
float src_scale = corpus_src_length + curr_src_length;
ScoreP sent_stats = ds[sent_id]->ScoreCandidate(d->yield);
if(!corpus_bleu_stats){ corpus_bleu_stats = sent_stats->GetZero();}
sent_stats->PlusEquals(*corpus_bleu_stats);
sentscore = mt_metric_scale * src_scale * sent_stats->ComputeScore();
}
else //use sentence-level smoothing ( used when cur_pass=0 if not pseudo_doc)
{
sentscore = mt_metric_scale * (ds[sent_id]->ScoreCandidate(d->yield)->ComputeScore());
}
if (invert_score) sentscore *= -1.0;
if (i < update_list_size){
if(PRINT_LIST)cerr << TD::GetString(d->yield) << " ||| " << d->score << " ||| " << sentscore << endl;
cur_best.push_back( MakeHypothesisInfo(d->feature_values, sentscore, d->yield));
}
all_hyp.push_back(MakeHypothesisInfo(d->feature_values, sentscore,d->yield)); //store all hyp to extract hope and fear
}
if(pseudo_doc){
//update psuedo-doc stats
string details, details2;
corpus_bleu_stats->ScoreDetails(&details2);
ScoreP sent_stats = ds[sent_id]->ScoreCandidate(cur_best[0]->hyp);
corpus_bleu_stats->PlusEquals(*sent_stats);
sent_stats->ScoreDetails(&details);
sent_stats = corpus_bleu_stats;
corpus_bleu_stats = sent_stats->GetZero();
corpus_bleu_stats->PlusEquals(*sent_stats, PSEUDO_SCALE);
corpus_src_length = PSEUDO_SCALE * (corpus_src_length + curr_src_length);
cerr << "ps corpus size: " << corpus_src_length << " " << curr_src_length << "\n" << details << "\n" << details2 << endl;
}
//figure out how many hyps we can keep maximum
int temp_update_size = update_list_size;
if (all_hyp.size() < update_list_size){ temp_update_size = all_hyp.size();}
//sort all hyps by sentscore (eg. bleu)
sort(all_hyp.begin(),all_hyp.end(),HypothesisCompareB);
if(PRINT_LIST){ cerr << "Sorting " << endl; for(int u=0;u!=all_hyp.size();u++)
cerr << all_hyp[u]->mt_metric << " " << all_hyp[u]->features.dot(dense_w_local) << endl; }
if(hope_select == 1)
{
//find hope hypothesis using model + bleu
if (PRINT_LIST) cerr << "HOPE " << endl;
for(int u=0;u!=all_hyp.size();u++)
{
double t_score = all_hyp[u]->features.dot(dense_w_local);
all_hyp[u]->hope = all_hyp[u]->mt_metric + t_score;
if (PRINT_LIST) cerr << all_hyp[u]->mt_metric << " H:" << all_hyp[u]->hope << " S:" << t_score << endl;
}
//sort hyps by hope score
sort(all_hyp.begin(),all_hyp.end(),HopeCompareB);
}
//assign cur_good the sorted list
cur_good.insert(cur_good.begin(), all_hyp.begin(), all_hyp.begin()+temp_update_size);
if(PRINT_LIST) { cerr << "GOOD" << endl; for(int u=0;u!=cur_good.size();u++) cerr << cur_good[u]->mt_metric << " " << cur_good[u]->hope << endl;}
//use hope for fear selection
boost::shared_ptr<HypothesisInfo>& oracleN = cur_good[0];
if(fear_select == 1){ //compute fear hyps with model - bleu
if (PRINT_LIST) cerr << "FEAR " << endl;
double hope_score = oracleN->features.dot(dense_w_local);
if (PRINT_LIST) cerr << "hope score " << hope_score << endl;
for(int u=0;u!=all_hyp.size();u++)
{
double t_score = all_hyp[u]->features.dot(dense_w_local);
all_hyp[u]->fear = -1*all_hyp[u]->mt_metric + 1*oracleN->mt_metric - hope_score + t_score; //relative loss
all_hyp[u]->oracle_loss = -1*all_hyp[u]->mt_metric + 1*oracleN->mt_metric;
all_hyp[u]->oracle_feat_diff = oracleN->features - all_hyp[u]->features;
all_hyp[u]->oracleN=oracleN;
if (PRINT_LIST) cerr << all_hyp[u]->mt_metric << " H:" << all_hyp[u]->hope << " F:" << all_hyp[u]->fear << endl;
}
sort(all_hyp.begin(),all_hyp.end(),FearCompareB);
}
else if(fear_select == 2) //select fear based on cost
{
sort(all_hyp.begin(),all_hyp.end(),HypothesisCompareG);
}
else //max model score, also known as prediction-based
{
sort(all_hyp.begin(),all_hyp.end(),FearComparePred);
}
cur_bad.insert(cur_bad.begin(), all_hyp.begin(), all_hyp.begin()+temp_update_size);
if(PRINT_LIST){ cerr<< "BAD"<<endl; for(int u=0;u!=cur_bad.size();u++) cerr << cur_bad[u]->mt_metric << " H:" << cur_bad[u]->hope << " F:" << cur_bad[u]->fear << endl;}
cerr << "GOOD (BEST): " << cur_good[0]->mt_metric << endl;
cerr << " CUR: " << cur_best[0]->mt_metric << endl;
cerr << " BAD (WORST): " << cur_bad[0]->mt_metric << endl;
}
};
void ReadTrainingCorpus(const string& fname, vector<string>* c) {
ReadFile rf(fname);
istream& in = *rf.stream();
string line;
while(in) {
getline(in, line);
if (!in) break;
c->push_back(line);
}
}
void ReadPastTranslationForScore(const int cur_pass, vector<ScoreP>* c, DocScorer& ds, const string& od) {
cerr << "Reading previous score file ";
string fname;
if (cur_pass == 0) {
fname = od + "/run.raw.init";
} else {
int last_pass = cur_pass - 1;
fname = od + "/run.raw." + boost::lexical_cast<std::string>(last_pass) + ".B";
}
cerr << fname << "\n";
ReadFile rf(fname);
istream& in = *rf.stream();
ScoreP acc;
string line;
int lc = 0;
while(in) {
getline(in, line);
if (line.empty() && !in) break;
vector<WordID> sent;
TD::ConvertSentence(line, &sent);
ScoreP sentscore = ds[lc]->ScoreCandidate(sent);
c->push_back(sentscore);
if (!acc) { acc = sentscore->GetZero(); }
acc->PlusEquals(*sentscore);
++lc;
}
assert(lc > 0);
float score = acc->ComputeScore();
string details;
acc->ScoreDetails(&details);
cerr << "Previous run: " << details << score << endl;
}
int main(int argc, char** argv) {
register_feature_functions();
SetSilent(true); // turn off verbose decoder output
po::variables_map conf;
if (!InitCommandLine(argc, argv, &conf)) return 1;
if (conf.count("random_seed"))
rng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
rng.reset(new MT19937);
vector<string> corpus;
const string metric_name = conf["mt_metric"].as<string>();
optimizer = conf["optimizer"].as<int>();
fear_select = conf["fear"].as<int>();
hope_select = conf["hope"].as<int>();
mt_metric_scale = conf["mt_metric_scale"].as<double>();
approx_score = conf.count("approx_score");
no_reweight = conf.count("no_reweight");
no_select = conf.count("no_select");
update_list_size = conf["update_k_best"].as<int>();
unique_kbest = conf.count("unique_k_best");
stream = conf.count("stream");
pseudo_doc = conf.count("pseudo_doc");
sent_approx = conf.count("sent_approx");
cerr << "Using pseudo-doc:" << pseudo_doc << " Sent:" << sent_approx << endl;
if(pseudo_doc)
mt_metric_scale=1;
const string weights_dir = stream ? "-" : conf["weights_output"].as<string>();
const string output_dir = stream ? "-" : conf["output_dir"].as<string>();
ScoreType type = ScoreTypeFromString(metric_name);
//establish metric used for tuning
if (type == TER) {
invert_score = true;
} else {
invert_score = false;
}
boost::shared_ptr<DocScorer> ds;
//normal: load references, stream: start stream scorer
if (stream) {
ds = boost::shared_ptr<DocScorer>(new DocStreamScorer(type, vector<string>(0), ""));
cerr << "Scoring doc stream with " << metric_name << endl;
} else {
ds = boost::shared_ptr<DocScorer>(new DocScorer(type, conf["reference"].as<vector<string> >(), ""));
cerr << "Loaded " << ds->size() << " references for scoring with " << metric_name << endl;
}
vector<ScoreP> corpus_bleu_sent_stats;
//check training pass,if >0, then use previous iterations corpus bleu stats
cur_pass = stream ? 0 : conf["pass"].as<int>();
if(cur_pass > 0) {
ReadPastTranslationForScore(cur_pass, &corpus_bleu_sent_stats, *ds, output_dir);
}
cerr << "Using optimizer:" << optimizer << endl;
ReadFile ini_rf(conf["decoder_config"].as<string>());
Decoder decoder(ini_rf.stream());
vector<weight_t>& dense_weights = decoder.CurrentWeightVector();
SparseVector<weight_t> lambdas;
Weights::InitFromFile(conf["input_weights"].as<string>(), &dense_weights);
Weights::InitSparseVector(dense_weights, &lambdas);
const string input = stream ? "-" : decoder.GetConf()["input"].as<string>();
if (!SILENT) cerr << "Reading input from " << ((input == "-") ? "STDIN" : input.c_str()) << endl;
ReadFile in_read(input);
istream *in = in_read.stream();
assert(*in);
string buf;
const double max_step_size = conf["max_step_size"].as<double>();
vector<GoodBadOracle> oracles(ds->size());
BasicObserver bobs;
TrainingObserver observer(conf["k_best_size"].as<int>(), *ds, &oracles, &corpus_bleu_sent_stats);
int cur_sent = 0;
int lcount = 0;
double objective=0;
double tot_loss = 0;
int dots = 0;
SparseVector<double> tot;
SparseVector<double> final_tot;
SparseVector<double> old_lambdas = lambdas;
tot.clear();
tot += lambdas;
cerr << "PASS " << cur_pass << " " << endl << lambdas << endl;
ScoreP acc, acc_h, acc_f;
while(*in) {
getline(*in, buf);
if (buf.empty()) continue;
if (stream) {
cur_sent = 0;
int delim = buf.find(" ||| ");
// Translate only
if (delim == -1) {
decoder.SetId(cur_sent);
decoder.Decode(buf, &bobs);
vector<WordID> trans;
ViterbiESentence(bobs.hypergraph[0], &trans);
cout << TD::GetString(trans) << endl;
continue;
// Special command:
// CMD ||| arg1 ||| arg2 ...
} else {
string cmd = buf.substr(0, delim);
buf = buf.substr(delim + 5);
// Translate and update (normal MIRA)
// LEARN ||| source ||| reference
if (cmd == "LEARN") {
delim = buf.find(" ||| ");
ds->update(buf.substr(delim + 5));
buf = buf.substr(0, delim);
} else if (cmd == "WEIGHTS") {
// WEIGHTS ||| WRITE
if (buf == "WRITE") {
cout << Weights::GetString(dense_weights) << endl;
// WEIGHTS ||| f1=w1 f2=w2 ...
} else {
Weights::UpdateFromString(buf, dense_weights);
}
continue;
} else {
cerr << "Error: cannot parse command, skipping line:" << endl;
cerr << cmd << " ||| " << buf << endl;
continue;
}
}
}
// Regular mode or LEARN line from stream mode
//TODO: allow batch updating
lambdas.init_vector(&dense_weights);
dense_w_local = dense_weights;
decoder.SetId(cur_sent);
decoder.Decode(buf, &observer); // decode the sentence, calling Notify to get the hope,fear, and model best hyps.
cur_sent = observer.GetCurrentSent();
cerr << "SENT: " << cur_sent << endl;
const HypothesisInfo& cur_hyp = observer.GetCurrentBestHypothesis();
const HypothesisInfo& cur_good = *oracles[cur_sent].good[0];
const HypothesisInfo& cur_bad = *oracles[cur_sent].bad[0];
vector<boost::shared_ptr<HypothesisInfo> >& cur_good_v = oracles[cur_sent].good;
vector<boost::shared_ptr<HypothesisInfo> >& cur_bad_v = oracles[cur_sent].bad;
vector<boost::shared_ptr<HypothesisInfo> > cur_best_v = observer.GetCurrentBest();
tot_loss += cur_hyp.mt_metric;
//score hyps to be able to compute corpus level bleu after we finish this iteration through the corpus
ScoreP sentscore = (*ds)[cur_sent]->ScoreCandidate(cur_hyp.hyp);
if (!acc) { acc = sentscore->GetZero(); }
acc->PlusEquals(*sentscore);
ScoreP hope_sentscore = (*ds)[cur_sent]->ScoreCandidate(cur_good.hyp);
if (!acc_h) { acc_h = hope_sentscore->GetZero(); }
acc_h->PlusEquals(*hope_sentscore);
ScoreP fear_sentscore = (*ds)[cur_sent]->ScoreCandidate(cur_bad.hyp);
if (!acc_f) { acc_f = fear_sentscore->GetZero(); }
acc_f->PlusEquals(*fear_sentscore);
if(optimizer == 4) { //passive-aggresive update (single dual coordinate step)
double margin = cur_bad.features.dot(dense_weights) - cur_good.features.dot(dense_weights);
double mt_loss = (cur_good.mt_metric - cur_bad.mt_metric);
const double loss = margin + mt_loss;
cerr << "LOSS: " << loss << " Margin:" << margin << " BLEUL:" << mt_loss << " " << cur_bad.features.dot(dense_weights) << " " << cur_good.features.dot(dense_weights) <<endl;
if (loss > 0.0 || !checkloss) {
SparseVector<double> diff = cur_good.features;
diff -= cur_bad.features;
double diffsqnorm = diff.l2norm_sq();
double delta;
if (diffsqnorm > 0)
delta = loss / (diffsqnorm);
else
delta = 0;
if (delta > max_step_size) delta = max_step_size;
lambdas += (cur_good.features * delta);
lambdas -= (cur_bad.features * delta);
}
}
else if(optimizer == 1) //sgd - nonadapted step size
{
lambdas += (cur_good.features) * max_step_size;
lambdas -= (cur_bad.features) * max_step_size;
}
else if(optimizer == 5) //full mira with n-best list of constraints from hope, fear, model best
{
vector<boost::shared_ptr<HypothesisInfo> > cur_constraint;
cur_constraint.insert(cur_constraint.begin(), cur_bad_v.begin(), cur_bad_v.end());
cur_constraint.insert(cur_constraint.begin(), cur_best_v.begin(), cur_best_v.end());
cur_constraint.insert(cur_constraint.begin(), cur_good_v.begin(), cur_good_v.end());
bool optimize_again;
vector<boost::shared_ptr<HypothesisInfo> > cur_pair;
//SMO
for(int u=0;u!=cur_constraint.size();u++)
cur_constraint[u]->alpha =0;
cur_constraint[0]->alpha =1; //set oracle to alpha=1
cerr <<"Optimizing with " << cur_constraint.size() << " constraints" << endl;
int smo_iter = MAX_SMO, smo_iter2 = MAX_SMO;
int iter, iter2 =0;
bool DEBUG_SMO = false;
while (iter2 < smo_iter2)
{
iter =0;
while (iter < smo_iter)
{
optimize_again = true;
for (int i = 0; i< cur_constraint.size(); i++)
for (int j = i+1; j< cur_constraint.size(); j++)
{
if(DEBUG_SMO) cerr << "start " << i << " " << j << endl;
cur_pair.clear();
cur_pair.push_back(cur_constraint[j]);
cur_pair.push_back(cur_constraint[i]);
double delta = ComputeDelta(&cur_pair,max_step_size, dense_weights);
if (delta == 0) optimize_again = false;
cur_constraint[j]->alpha += delta;
cur_constraint[i]->alpha -= delta;
double step_size = delta * max_step_size;
lambdas += (cur_constraint[i]->features) * step_size;
lambdas -= (cur_constraint[j]->features) * step_size;
if(DEBUG_SMO) cerr << "SMO opt " << iter << " " << i << " " << j << " " << delta << " " << cur_pair[0]->alpha << " " << cur_pair[1]->alpha << endl;
}
iter++;
if(!optimize_again)
{
iter = MAX_SMO;
cerr << "Optimization stopped, delta =0" << endl;
}
}
iter2++;
}
}
else if(optimizer == 2 || optimizer == 3) //PA and Cutting Plane MIRA update
{
bool DEBUG_SMO= true;
vector<boost::shared_ptr<HypothesisInfo> > cur_constraint;
cur_constraint.push_back(cur_good_v[0]); //add oracle to constraint set
bool optimize_again = true;
int cut_plane_calls = 0;
while (optimize_again)
{
if(DEBUG_SMO) cerr<< "optimize again: " << optimize_again << endl;
if(optimizer == 2){ //PA
cur_constraint.push_back(cur_bad_v[0]);
//check if we have a violation
if(!(cur_constraint[1]->fear > cur_constraint[0]->fear + SMO_EPSILON))
{
optimize_again = false;
cerr << "Constraint not violated" << endl;
}
}
else
{ //cutting plane to add constraints
if(DEBUG_SMO) cerr<< "Cutting Plane " << cut_plane_calls << " with " << lambdas << endl;
optimize_again = false;
cut_plane_calls++;
CuttingPlane(&cur_constraint, &optimize_again, oracles[cur_sent].bad, dense_weights);
if (cut_plane_calls >= MAX_SMO) optimize_again = false;
}
if(optimize_again)
{
//SMO
for(int u=0;u!=cur_constraint.size();u++)
{
cur_constraint[u]->alpha =0;
}
cur_constraint[0]->alpha = 1;
cerr <<" Optimizing with " << cur_constraint.size() << " constraints" << endl;
int smo_iter = MAX_SMO;
int iter =0;
while (iter < smo_iter)
{
//select pair to optimize from constraint set
vector<boost::shared_ptr<HypothesisInfo> > cur_pair = SelectPair(&cur_constraint);
if(cur_pair.empty()){
iter=MAX_SMO;
cerr << "Undefined pair " << endl;
continue;
} //pair is undefined so we are done with this smo
double delta = ComputeDelta(&cur_pair,max_step_size, dense_weights);
cur_pair[0]->alpha += delta;
cur_pair[1]->alpha -= delta;
double step_size = delta * max_step_size;
cerr << "step " << step_size << endl;
lambdas += (cur_pair[1]->features) * step_size;
lambdas -= (cur_pair[0]->features) * step_size;
//reload weights based on update
dense_weights.clear();
lambdas.init_vector(&dense_weights);
if (dense_weights.size() < 500)
ShowLargestFeatures(dense_weights);
dense_w_local = dense_weights;
iter++;
if(DEBUG_SMO) cerr << "SMO opt " << iter << " " << delta << " " << cur_pair[0]->alpha << " " << cur_pair[1]->alpha << endl;
if(no_select) //don't use selection heuristic to determine when to stop SMO, rather just when delta =0
if (delta == 0) iter = MAX_SMO;
//only perform one dual coordinate ascent step
if(optimizer == 2)
{
optimize_again = false;
iter = MAX_SMO;
}
}
if(optimizer == 3)
{
if(!no_reweight) //reweight the forest and select a new k-best
{
if(DEBUG_SMO) cerr<< "Decoding with new weights -- now orac are " << oracles[cur_sent].good.size() << endl;
Hypergraph hg = observer.GetCurrentForest();
hg.Reweight(dense_weights);
if(unique_kbest)
observer.UpdateOracles<KBest::FilterUnique>(cur_sent, hg);
else
observer.UpdateOracles<KBest::NoFilter<std::vector<WordID> > >(cur_sent, hg);
}
}
}
}
//print objective after this sentence
double lambda_change = (lambdas - old_lambdas).l2norm_sq();
double max_fear = cur_constraint[cur_constraint.size()-1]->fear;
double temp_objective = 0.5 * lambda_change;// + max_step_size * max_fear;
for(int u=0;u!=cur_constraint.size();u++)
{
cerr << "alpha=" << cur_constraint[u]->alpha << " hope=" << cur_constraint[u]->hope << " fear=" << cur_constraint[u]->fear << endl;
temp_objective += cur_constraint[u]->alpha * cur_constraint[u]->fear;
}
objective += temp_objective;
cerr << "SENT OBJ: " << temp_objective << " NEW OBJ: " << objective << endl;
}
if ((cur_sent * 40 / ds->size()) > dots) { ++dots; cerr << '.'; }
tot += lambdas;
++lcount;
cur_sent++;
cout << TD::GetString(cur_good_v[0]->hyp) << " ||| " << TD::GetString(cur_best_v[0]->hyp) << " ||| " << TD::GetString(cur_bad_v[0]->hyp) << endl;
}
cerr << "FINAL OBJECTIVE: "<< objective << endl;
final_tot += tot;
cerr << "Translated " << lcount << " sentences " << endl;
cerr << " [AVG METRIC LAST PASS=" << (tot_loss / lcount) << "]\n";
tot_loss = 0;
// Write weights unless streaming
if (!stream) {
int node_id = rng->next() * 100000;
cerr << " Writing weights to " << node_id << endl;
//Weights::ShowLargestFeatures(dense_weights);
dots = 0;
ostringstream os;
os << weights_dir << "/weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "." << node_id << ".gz";
string msg = "# MIRA tuned weights ||| " + boost::lexical_cast<std::string>(node_id) + " ||| " + boost::lexical_cast<std::string>(lcount);
lambdas.init_vector(&dense_weights);
Weights::WriteToFile(os.str(), dense_weights, true, &msg);
SparseVector<double> x = tot;
x /= lcount+1;
ostringstream sa;
string msga = "# MIRA tuned weights AVERAGED ||| " + boost::lexical_cast<std::string>(node_id) + " ||| " + boost::lexical_cast<std::string>(lcount);
sa << weights_dir << "/weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "." << node_id << "-avg.gz";
x.init_vector(&dense_weights);
Weights::WriteToFile(sa.str(), dense_weights, true, &msga);
}
cerr << "Optimization complete.\n";
return 0;
}
|